
- 1. 다음 그림의 $\triangle ABC$ 에서 $\angle A$ 가 예각일 때, x 의 값의 범위는? (단, x가 가장 긴 변이 다.)

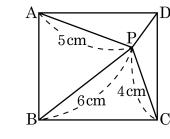
해설

- ① $1 < x < \sqrt{5}$ ② $2 < x < \sqrt{5}$ ③ $\sqrt{5} < x < \sqrt{7}$ (4) $\sqrt{5} < x < \sqrt{11}$ (5) $\sqrt{7} < x < \sqrt{11}$

i) x가 가장 긴 변이므로 2 < xii) $x^2 < 2^2 + 1^2$ ∴ $2 < x < \sqrt{5}$

- 다음 그림과 같이 $\angle B = 90^\circ$ 인 $\triangle ABC$ 에서 $\overline{AD} =$ **2.** $5\,\mathrm{cm}$, $\overline{\mathrm{BD}}=3\,\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?

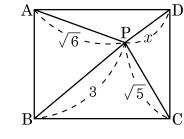
$$\overline{\text{CD}} = \frac{3^2}{\text{CD}} = \frac{9}{\text{C}} \text{ (cm)}$$

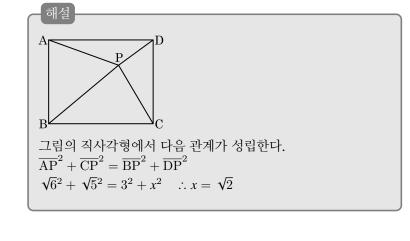

$$CD = \frac{3}{5} = \frac{3}{5} (cm)$$

$$\triangle ABC \text{ oil } ABD^{2} = \overline{AD} \cdot \overline{CD}$$

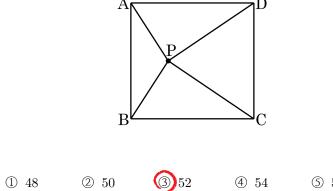
$$\overline{CD} = \frac{3^{2}}{5} = \frac{9}{5} \text{ (cm)}$$

$$x = \sqrt{3^{2} + \left(\frac{9}{5}\right)^{2}} = \frac{3\sqrt{34}}{5}$$


3. 다음 그림과 같이 직사각형 ABCD 의 내부에 한 점 P가 있다. $\overline{AP}=5\,\mathrm{cm}, \overline{BP}=6\,\mathrm{cm}, \ \overline{CP}=4\,\mathrm{cm}$ 일 때, \overline{PD} 의 길이를 구하면?

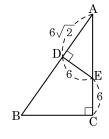

- ① $3\sqrt{2}$ cm ④ $3\sqrt{3}$ cm
- $3 5\sqrt{2} \text{ cm}$

 $\overline{PD^2} + 6^2 = 5^2 + 4^2 , \overline{PD} = \sqrt{5} \text{ cm}$


4. 다음 그림의 직사각형 ABCD 에서 $\overline{AP}=\sqrt{6}, \overline{BP}=3$, $\overline{CP}=\sqrt{5}$ 일 때, \overline{DP} 의 길이는?

① $\sqrt{2}$ ② $\sqrt{3}$ ③ $2\sqrt{3}$ ④ $3\sqrt{2}$ ⑤ 8

5. 다음 그림의 직사각형 ABCD 에서 $\overline{\rm PA}=4$, $\overline{\rm PC}=6$ 일 때, $\overline{\rm PB}^2+\overline{\rm PD}^2$ 의 값을 구하여라.


352

④ 54

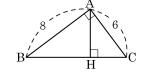
⑤ 56

 $\overline{\mathrm{PB^2}} + \overline{\mathrm{PD^2}} = 4^2 + 6^2 = 52$ 이다.

6. 다음 그림에서 $\triangle ABC$ 와 $\triangle ADE$ 가 모두 직각삼 각형이고 $\overline{\mathrm{AD}}=6\,\sqrt{2}$, $\overline{\mathrm{CE}}=\overline{\mathrm{DE}}=6$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?

- (4) $3\sqrt{2} + 3\sqrt{6}$ (5) $3\sqrt{3} + 3\sqrt{6}$
- ① $3\sqrt{2} + 3\sqrt{3}$ ② $3\sqrt{2} + 2\sqrt{3}$ ③ $3\sqrt{2} + 2\sqrt{6}$

△ADE 에서

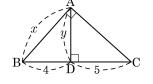

해설

 $\overline{AE} = \sqrt{6^2 + (6\sqrt{2})^2} = \sqrt{108} = 6\sqrt{3}$ $\triangle ADE$ 와 $\triangle ACB$ 는 닮음이므로 $\overline{BC}:\overline{AC}=\overline{ED}:\overline{AD}$

 $x: (6+6\sqrt{3}) = 6: 6\sqrt{2}$

 $\therefore \ x = \frac{6 + 6\sqrt{3}}{\sqrt{2}} = 3\sqrt{2} + 3\sqrt{6}$

- 7. 다음 그림에서 $\angle A=90\,^{\circ}$ 이고, $\overline{AH}oldsymbol{\perp}\overline{BC}$ 일 때, $\overline{\mathrm{AH}}$ 의 길이는?


① $\frac{12}{5}$ ② $\frac{24}{5}$ ③ 24 ④ $2\sqrt{6}$

 $\overline{BC} = \sqrt{8^2 + 6^2} = \sqrt{100} = 10$ $\triangle ABC$ 에서 삼각형의 넓이는 $8 \times 6 \times \frac{1}{2} = 10 \times \overline{AH} \times \frac{1}{2}$ $\therefore \overline{AH} = \frac{8 \times 6}{10} = \frac{24}{5}$

$$8 \times 6 \times \frac{1}{2} = 10 \times \overline{AH} \times \frac{1}{2}$$

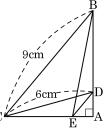
$$\therefore AH = \frac{3}{10} = \frac{2}{5}$$

8. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{\mathrm{AD}}_{\perp}\overline{\mathrm{BC}}$ 일 때, x,y 의 값을 각각 구하여 라.

 □
 □

 □
 □

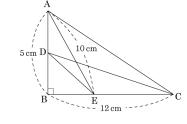
▷ 정답: x = 6


ightharpoonup 정답: $y = 2\sqrt{5}$

 $\overline{AB}^2 = \overline{BD} \cdot \overline{BC}$ 이므로

 $x^2 = 4 \times 9$ $\therefore x = 6$ 또한, $\overline{AD}^2 = \overline{BD} \cdot \overline{DC}$ 이므로 $y^2 = 4 \times 5$ $\therefore y = 2\sqrt{5}$

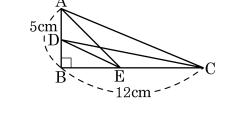
y = 4×3


다음 그림과 같이 $\angle A = 90^\circ$ 인 직각삼각형 ABC 에서 $\overline{CD} = 6 \, \mathrm{cm}$, $\overline{BC} = 9 \, \mathrm{cm}$ 일 때, $\overline{BE}^2 - \overline{DE}^2$ 의 값을 구하여라.(단, 단위는 생 9. 략)

▶ 답: ▷ 정답: 45

 $\overline{BE}^{2} = \overline{AE}^{2} + \left\{ (9^{2} - \overline{AC}^{2}) \right\},$ $\overline{DE}^{2} = \overline{AE}^{2} + \left\{ (6^{2} - \overline{AC}^{2}) \right\}$ $\overline{BE}^2 - \overline{DE}^2 = 9^2 - 6^2 = 45$

10. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AE}=10\mathrm{cm}$ 일 때, $\overline{CD}^2-\overline{DE}^2$ 의 값을 구하여라.(단, 단위는 생략)



답:▷ 정답: 69

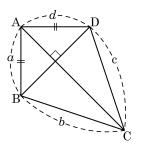
• --

 $\overline{AC} = \sqrt{5^2 + 12^2} = 13 \text{ cm}$ 이므로 $\overline{CD}^2 - \overline{DE}^2 = 13^2 - 10^2 = 69$

11. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AE}=7\mathrm{cm}$ 일 때, $\overline{\mathrm{CD}}^2-\overline{\mathrm{DE}}^2$ 의 값은?(단, 단위는 생략)

③ 150

4 150


⑤ 210

2120

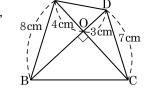
① 100

 $\overline{AC} = \sqrt{5^2 + 12^2} = 13$ 이므로 $\overline{CD}^2 - \overline{DE}^2 = 13^2 - 7^2 = 120$

12. 다음 두 대각선이 직교하는 사각형에서 a=d가 성립한다. $\frac{c}{b}$ 를 구하라.

▶ 답: ▷ 정답: 1

 $a^2+c^2=b^2+d^2$ 이고 a=d이므로 $c^2=b^2$ 그런데 b>0, c>0이므로 b=c따라서 $\frac{c}{b}=1$ 이 성립한다.

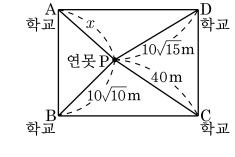

13. 아래 그림에서 $\overline{AC}\bot\overline{BD}$ 이고, $\overline{AB}=8cm$, $\overline{DC}=7cm$, $\overline{OA}=4cm$, $\overline{OD}=3cm$ 일 때, \overline{BC} 의 길이를 구하면?

① 9cm

② 10cm

③ $3\sqrt{10}$ cm ④ $2\sqrt{22}$ cm

⑤ 88cm

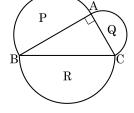

해설 ______

 $\overline{AD}^2 + \overline{BC}^2 = \overline{AB}^2 + \overline{CD}^2$ $5^2 + \overline{BC}^2 = 8^2 + 7^2$ $\therefore \overline{BC} = 2\sqrt{22} \text{ (cm)}$

 $\triangle ABO$ 에서 $\overline{BO} = \sqrt{64 - 16} = 4\sqrt{3}$ $\triangle DOC$ 에서 $\overline{OC} = \sqrt{49 - 9} = 2\sqrt{10}$

 \therefore $\triangle BOC$ 에서 $\overline{BC} = \sqrt{48 + 40} = 2\sqrt{22} \text{(cm)}$

14. 다음 그림과 같이 A, B, C, D 네 학교가 선으로 연결하면 직사각형이 된다. 연못에서 네 학교까지의 거리가 다음과 같을 때, A 학교에서 시속 9km 로 출발하여 연못에 도착하는데 걸리는 시간은 몇 초인가?

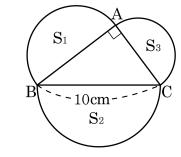

④12 초 ① 6초 ② 8초 ③ 10 초

⑤ 14 초

 $x^2 + 40^2 = (10\sqrt{5})^2 + (10\sqrt{10})^2, x^2 = 900, x = 30$ m 이다. $(시간) = \frac{(거리)}{\left(\overset{}{\sim} \overset{}{\neq} \overset{}{q} \right)} \text{ 이므로 구하는 시간은} \frac{30}{9000} \times 60 \times 60 = 12 \ (\overset{}{\mathbb{Z}})$ 이다.

15. 다음 그림에서 $\angle A = 90^\circ$ 인 $\triangle ABC$ 의 세 변을 지름으로 하는 반원의 넓이를 각 각 P, Q, R 라고 하자. P = $12\pi \text{cm}^2$, $\mathrm{Q} = 4\pi\mathrm{cm}^2$ 일 때, R 의 지름의 길이를 구 하여라. R

 $\underline{\mathrm{cm}}$


<mark>▷ 정답:</mark> 8√2<u>cm</u>

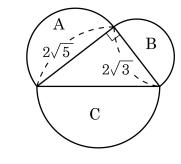
▶ 답:

P+Q=R 이므로 $R=12\pi+4\pi=16\pi(cm^2)$

 $\frac{1}{2}\pi\left(\frac{\overline{\mathrm{BC}}}{2}\right)^2 = 16\pi, \, \overline{\mathrm{BC}}^2 = 128$ $\overline{BC} = 8\,\sqrt{2}(cm)$

16. 그림과 같이 빗변의 길이가 10 cm 인 $\triangle \text{ABC}$ 의 각 변을 지름으로 하는 반원의 넓이를 각각 S_1 , S_2 , S_3 라고 할 때, $S_1+S_2+S_3$ 의 값을 구하면?

4 $25\pi \text{cm}^2$

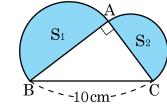

① $10\pi\mathrm{cm}^2$

- $2 15\pi \text{cm}^2$ $\Im 30\pi \text{cm}^2$
- $3 20\pi \mathrm{cm}^2$

 $S_1 + S_3 = S_2$ $S_1 + S_2 + S_3 = 2S_2$ $\therefore 2 \times \pi \times 5^2 \times \frac{1}{2} = 25\pi \text{ (cm}^2\text{)}$

17. 그림과 같이 직각삼각형의 각 변을 지름으로 하는 반원의 넓이를 각각 A,B,C 라고 할 때, 2(A+B)+C 의 값을 구하면?

① 8π ② 10π

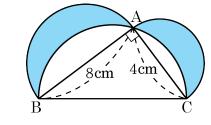

 312π

④ 14π ⑤ 16π

피타고라스 정리에 의해서 C 의 지름을 c 라고 하면 $c^2=\left(2\sqrt{5}\right)^2+\left(2\sqrt{3}\right)^2=32$ 따라서 $c=4\sqrt{2}$ 이므로 $\mathcal{C}=\frac{1}{2}\times\left(\frac{c}{2}\right)^2\pi=\frac{1}{8}\times32\pi=4\pi$

피타고라스 정리를 이용하면 C=A+B 이므로 2(A+B)+C= $3C = 12\pi$

18. 다음 그림과 같이 직각삼각형 ABC 에서 직각을 \overline{v} 두 변을 각각 지 름으로 하는 반원을 그렸을 때, 두 반원의 넓이의 합 $S_1 + S_2$ 의 값을 구하면?



- ① $\frac{45}{2}\pi \,\mathrm{cm}^2$ ② $\frac{35}{2}\,\mathrm{cm}^2$ ③ $\frac{25}{2}\pi \,\mathrm{cm}^2$ ④ $\frac{15}{2}\pi \,\mathrm{cm}^2$ ⑤ $\frac{5}{2}\pi \,\mathrm{cm}^2$

গ্রাপ্র
$$S_1 + S_2 = \left(\frac{\overline{AB}}{2}\right)^2 \pi \times \frac{1}{2} + \left(\frac{\overline{AC}}{2}\right)^2 \pi \times \frac{1}{2} = \frac{\pi}{8} \left(\overline{AB}^2 + \overline{AC}^2\right)$$

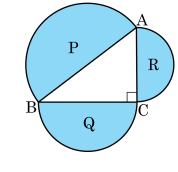
$$= \frac{\pi}{8} \times \overline{BC}^2 = \frac{25}{2} \pi (\text{cm}^2)$$

19. 다음 그림은 $\overline{AC} = 4 \, \mathrm{cm}$, $\overline{AB} = 8 \, \mathrm{cm}$, $\angle A = 90^\circ$ 인 직각삼각형 ABC 의 세 변을 지름으로 하는 반원을 그린 것이다. 색칠한 부분의 넓이를 구하면?

 $416 \, \text{cm}^2$

 \odot 22 cm²

 $2 12 \, \mathrm{cm}^2$


 $3 14 \,\mathrm{cm}^2$

 $(\overline{AB}$ 를 지름으로 하는 반원의 넓이) = 8π $(\overline{AC}$ 를 지름으로 하는 반원의 넓이) = 2π 이므로

해설

 $(\triangle ABC$ 와 두 반원의 넓이의 합)= $(16+10\pi)\,\mathrm{cm}^2$ 또, $\triangle ABC$ 에서 $\overline{BC}=4\sqrt{5}\,\mathrm{cm}$ 이므로 $(\overline{BC}$ 를 지름으로 하는 반원의 반지름)= $2\sqrt{5}\,\mathrm{cm}$, $(\overline{BC}$ 를 지름으로 하는 반원의 넓이) = 10π 따라서 색칠한 부분의 넓이는 $(16+10\pi)-10\pi=16(\,\mathrm{cm}^2)$

 ${f 20}$. 다음 직각삼각형 ${f ABC}$ 에서 ${f \overline{AB}},{f \overline{BC}},{f \overline{CA}}$ 를 지름으로 하는 반원의 넓이를 각각 P,Q,R 라 할 때, 다음 중 옳은 것은?

① P = Q + R ② P = QR ③ $Q^2 + R^2 = P^2$ ④ P = 2Q - R ③ P = Q - R

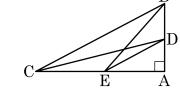
작은 두 반원의 넓이의 합은 가장 큰 반원의 넓이와 같다.

① P = Q + R

- ${f 21}$. 세 변의 길이가 $4{
 m cm}$, $6{
 m cm}$, $a{
 m cm}$ 인 삼각형이 둔각삼각형이 되기 위한 a 의 값의 범위를 구하면? (정답 2 개)
 - $\bigcirc 2\sqrt{13} < a < 10$ ③ $2 < a < 2\sqrt{13}$
- ② 2 < a < 10
- $\bigcirc 2 < a < 2\sqrt{5}$
- ⑤ $2\sqrt{5} < a < 2\sqrt{13}$

해설 i) *a* 가 가장 긴 변일 때,

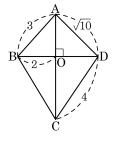
- $a > 6, a < 4 + 6, \ a^2 > 4^2 + 6^2$
- $\therefore 2\sqrt{13} < a < 10$
- ii) 6 이 가장 긴 변일 때,
- $a < 6, \ 6 < 4 + a, \ 6^2 > 4^2 + a^2$
- $\therefore \ 2 < a < 2\sqrt{5}$


- 22. 세 변의 길이가 다음과 같을 때 둔각삼각형인 것은?
 - ① 2, 3, 4 ② 7, 11, 13 ③ 3, 4, 5
 - 4 $\sqrt{7}$, $\sqrt{10}$, $\sqrt{17}$ 5 1, $\sqrt{3}$, 2

 - 해설
 - ② $7^2 + 11^2 > 13^2$ $3 3^2 + 4^2 = 5^2$

① $2^2 + 3^2 < 4^2$

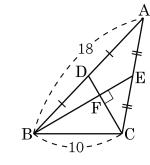
- 4 7 + 10 = 17
- (3) 1 + 3 = 4


23. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{DE}=3, \overline{BE}=4, \overline{CD}=6$ 일 때, \overline{BC} 의 길이를 구하여라.

답:▷ 정답: √43

 $\overline{BC}^2 + 3^2 = 4^2 + 6^2$ $\therefore \overline{BC} = \sqrt{43}$

24. 다음 그림과 같은 사각형 ABCD 에서 $\overline{AC} \perp \overline{BD}$ 일 때, \overline{OC} 의 길이를 구하여라.



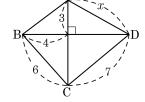
▷ 정답: √11

▶ 답:

 $\overline{BC}^2 + (\sqrt{10})^2 = 3^2 + 4^2, \ \overline{BC}^2 = 15, \ \overline{OC}^2 = \overline{BC}^2 - \overline{BO}^2 = 15 - 4 = 11$ $\therefore \overline{OC} = \sqrt{11}$

25. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{AB} 와 \overline{AC} 의 중점을 각각 D, E 라고하고 $\overline{BE}\bot\overline{CD}$, $\overline{AB}=18$, $\overline{BC}=10$ 일 때, \overline{AC} 의 길이를 구하면?

① $2\sqrt{11}$ ② $3\sqrt{11}$ ③ $4\sqrt{11}$ ④ $5\sqrt{11}$ ⑤ $6\sqrt{11}$


 $\overline{
m DE}$ 를 그으면 중점연결 정리에 의하여

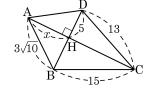
 $\overline{\mathrm{DE}} = \frac{1}{2}\overline{\mathrm{BC}} = 5$ 이다.

 $\Box DBCE$ 는 대각선이 직교하는 사각형이므로 $\overline{BD}^2 + \overline{EC}^2 = \overline{DE}^2 + \overline{BC}^2$ $81 + \overline{EC}^2 = 25 + 100$ $\therefore \overline{EC} = 2\sqrt{11}(\because \overline{EC} > 0)$ $\therefore \overline{AC} = 2 \times 2\sqrt{11} = 4\sqrt{11}$

- 26. 다음 그림에서 두 대각선이 서로 직교할 때, AD의 길이를 구하면?

 - ① $\sqrt{23}$ $\sqrt{38}$
 - ② $3\sqrt{3}$ ⑤ $3\sqrt{5}$
- ③ $\sqrt{31}$

피타고라스 정리에 의해

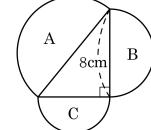

 $\overline{AB} = 5$

 $5^2 + 7^2 = x^2 + 6^2$

 $25 + 49 = x^2 + 36$

 $\therefore x = \sqrt{38}$

27. 다음 그림에서 $\triangle AHD$ 의 넓이를 구하여

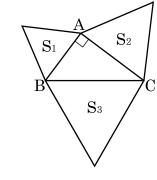

ightharpoonup 정답: $rac{15}{2}$

▶ 답:

 $\overline{AB}^2 + \overline{CD}^2 = \overline{AD}^2 + \overline{BC}^2$ 이므로 $(3\sqrt{10})^2 + 13^2 = \overline{AD}^2 + 225, \overline{AD}^2 = 34$ $\triangle AHD$ 는 직각삼각형이므로 피타고라스 정리에 의해 $34 = x^2 + 25$

 $\therefore x = 3$ $\triangle AHD = 3 \times 5 \times \frac{1}{2} = \frac{15}{2}$

- 28. 다음 그림과 같이 직각삼각형의 각 변을 지름으로 하는 반원을 그리고 각각의 넓이를 A, B, C 라고 할 때, A = $\frac{25}{2}\pi$ 라고 한다. A:B:C=25 : b : c 에서 b - c 를 구하여라.


▶ 답: ▷ 정답: 7

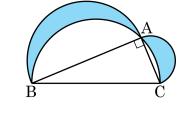
지름이 8 인 반원의 넓이는 $4^2\pi \times \frac{1}{2} = 8\pi$ 따라서 $C = A - B = \left(\frac{25}{2} - 8\right)\pi = \frac{9}{2}\pi$ 이므로 A: B: C =

$$\frac{25}{2}:8:\frac{9}{2}=25:b:c$$

그러므로 $b-c=16-9=7$

$$2$$
 2 그러므로 $b-c=16$

 ${f 29}$. $\angle A$ 가 90° 인 직각삼각형 ABC 에서 각 변을 한 변으로 하는 세 정 삼각형을 작도하였다. 각각의 정삼각형의 넓이를 S_1, S_2, S_3 라 하고, $S_1=5, S_2=6$ 일 때, S_3 의 값을 구하여라.



▷ 정답: 11

▶ 답:

세 정삼각형은 모두 닮음이므로 넓이가 S_1 인 정삼각형과 S_2 인 정삼각형의 닮음비는 $\sqrt{5}:\sqrt{6}$ $\overline{\mathrm{AB}} = \sqrt{5}a$, $\overline{\mathrm{AC}} = \sqrt{6}a$ 라고 하면 $\overline{BC} = \sqrt{5a^2 + 6a^2} = \sqrt{11}a$ 따라서, S_1 , S_2 , S_3 의 닮음비는 $\sqrt{5}$: $\sqrt{6}$: $\sqrt{11}$ 이므로 넓이의 비는 5:6:11이 되어 $\mathrm{S}_3=11$ 즉, $S_1 + S_2 = S_3$ 이다.

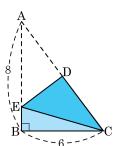
30. 다음 그림과 같이 $\angle A$ 가 직각인 $\triangle ABC$ 에서 \overline{AB} , \overline{AC} , \overline{BC} 를 지름으로 하는 반원을 각각 그렸다. $\overline{AC}=5$, $\overline{BC}=13$ 일 때, 색칠된 부분의 넓이를 구하여라.

 ► 답:

 ▷ 정답:
 30

 $\Delta {
m ABC}$ 는 $\overline{
m AC}=5$, $\overline{
m BC}=13$ 인 직각삼각형이므로

 $\overline{AB}=\sqrt{13^2-5^2}=12$ \overline{AB} , \overline{AC} , \overline{BC} 를 지름으로 하는 반원의 넓이를 각각 $S_1,~S_2,~S_3$


AB ,AC ,BC 를 지름 라 하면

 $S_1 + S_2 = S_3$ 이므로

(색칠된 부분의 넓이)= $S_1 + S_2 + \triangle ABC - S_3$

 $= \triangle ABC = \frac{1}{2} \times 5 \times 12 = 30$

31. 다음 그림과 같이 $\angle B$ 가 직각인 직각삼각형이 고 \overline{DE} 를 접선으로 점 A 가 점 C 와 겹쳐지 도록 접었을 때, $\triangle CDE$ 의 넓이와 $\triangle ECB$ 의 넓이의 합을 구하여라.

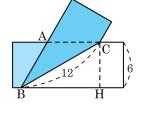
▶ 답:

ightharpoonup 정답: $rac{117}{8}$

$\overline{\mathrm{EB}} = x$ 라 두면 $\overline{\mathrm{AE}} = \overline{\mathrm{EC}} = 8 - x$ 이고

ΔEBC 가 직각삼각형이므로

 $(8-x)^2 = x^2 + 6^2, x = \frac{7}{4}$ 이코,


 ΔABC 가 직각삼각형이므로 $\overline{AC}^2=8^2+6^2,\ \overline{AC}=10$ 이다. ΔADE 가 직각삼각형이므로

 $\overline{\mathrm{DE}}^2 = \left(\frac{25}{4}\right)^2 - 5^2, \ \overline{\mathrm{DE}} = \frac{15}{4}$ 이다.

 Δ EDC 의 넓이는 $\frac{1}{2} \times 5 \times \frac{15}{4} = \frac{75}{8}$ 이고,

 \triangle EBC 의 넓이는 $\frac{1}{2} \times \frac{7}{4} \times 6 = \frac{21}{4}$ 이다. 따라서 합은 $\frac{75}{8} + \frac{21}{4} = \frac{117}{8}$ 이다.

32. 폭이 6 인 종이테이프를 접었더니 접은 선이 12 였다. 테이프가 겹쳐진 부분 $\triangle ABC$ 의 넓이를 $a\sqrt{b}$ 라고 할 때, $\frac{a}{b}$ 의 값을 구하여라.(단, b는 최소의 자연수)

▶ 답:

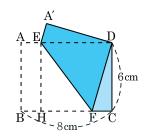
▷ 정답: 4

 $\overline{\mathrm{BH}} = \sqrt{12^2 - 6^2} = 6\sqrt{3}, \ \overline{\mathrm{AB}} = \overline{\mathrm{AC}} = x$ 라하면, $x^2 = 6^2 + (6\sqrt{3} - x)^2$ $12\sqrt{3}x = 144$ $\therefore \ x = 4\sqrt{3}$

 $\therefore \ \frac{1}{2} \times 4\sqrt{3} \times 6 = 12\sqrt{3}$

- ${f 33}$. 직사각형 ${f ABCD}$ 를 다음 그림과 같이 점 ${f A}$ 가 변 BC 위에 오도록 접었을 때, $\triangle A'BE$ 의 넓이는?

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 3 ⑤ 4


$\overline{\mathrm{EB}} = x$ 라 하면 $\overline{\mathrm{AE}} = 4 - x$

 $\overline{\rm AD} = \overline{\rm A'D} = 5$ 이므로 $\overline{\rm A'C} = \sqrt{5^2 - 4^2} = 3$, $\overline{\rm A'C} = 3$,

BA' = 2 이다. $\triangle A'BE$ 에서 $(4-x)^2 = x^2 + 2^2$

 $8x = 12 \therefore x = \frac{3}{2}$ $\therefore \triangle A' EB = \frac{1}{2} \times \frac{3}{2} \times 2 = \frac{3}{2}$

- 34. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접었다. $\overline{\mathrm{CD}} = 6\,\mathrm{cm},\ \overline{\mathrm{BC}} =$
 - $8\,\mathrm{cm}$, 점 H 는 점 E 에서 $\overline{\mathrm{BC}}$ 에 내린 수선의 발일 때, 다음 중 옳지 <u>않은</u> 것은?

- ① $\overline{A}\overline{E} = \frac{7}{4} \text{ cm}$ ③ $\overline{EF} = \frac{17}{2} \text{ cm}$ ⑤ $\overline{HF} = \frac{9}{2} \text{ cm}$
- $\textcircled{4} \ \overline{BF} = \overline{DE}$

② $\angle DEF = \angle EFH$

$\Delta A \prime \mathrm{ED}$ 에서 $\overline{A'\mathrm{E}}$ 를 x 로 잡으면 피타고라스 정리에 따라

 $x^{2} + 6^{2} = (8 - x)^{2}$, $x = \frac{7}{4} = \overline{A'E} = \overline{FC}$

$$\therefore \overline{ED} = 8 - \frac{7}{4} = \frac{25}{4} (\text{cm}) \circ] \overline{\mathcal{A}}, \overline{HF} =$$

$$\therefore \overline{ED} = 8 - \frac{7}{4} = \frac{25}{4} \text{ (cm) 이코, } \overline{HF} = \overline{CH} - \overline{CF} = \frac{25}{4} - \frac{7}{4} = \frac{18}{4} = \frac{9}{2} \text{ (cm)}$$

$$\frac{16}{4} = \frac{5}{2}$$
(cm)
 \triangle EHF 에서 피타고라스 정리에 따라

$$\overline{EF}^{2} = 6^{2} + \left(\frac{9}{2}\right)^{2} = \frac{225}{4}$$

$$\overline{\rm EF}$$
 는 변이므로 양수이다. 따라서 $\overline{\rm EF}=\frac{15}{2}({
m cm})$ 이다. $\overline{\rm 3}$ $\overline{\rm EF}$ $\neq \frac{17}{2}{
m cm}$

35. 세 변의 길이가 3, x, 7 인 삼각형이 둔각삼각형이 되기 위한 정수 x 는 모두 몇 개인지 구하여라.

 ▶ 답:
 개

 ▷ 정답:
 4개

7 02: 1_

해설 i) 7 이 가장 긴 변일 때(x ≤ 7)

삼각형이 될 조건에 의하여 x+3>7 $\therefore x>4\cdots$ ① 둔각삼각형이려면 $7^2>3^2+x^2$ $\therefore x<\sqrt{40}\cdots$ © 그러므로, ①, ⓒ에 의하여 $4< x<\sqrt{40}$ 따라서 x는 5, 6이다. ii) x 가 가장 긴 변일 때(x>7) 삼각형이 될 조건에 의하여 x<3+7 $\therefore x<10\cdots$ ① 둔각삼각형이려면 $x^2>3^2+7^2$ $\therefore x>\sqrt{58}\cdots$ ⓒ 그러므로, ①, ⓒ에 의하여 $\sqrt{58}< x<10$ 따라서 x는 8, 9이다. i), ii) 에 의해 x의 값은 4 개이다.

 36. 다음 그림과 같이 AC = BC = 4 인 직각이등 변삼각형 ABC 의 점 C 에서 변 AB 에 내린 수선의 발을 D, 점 D 에서 변 BC 에 내린 수선의 발을 E, 점 E 에서 변 AB 에 내린 수선의 발을 F, 점 F 에서 변 BC 에 내린 수선의 발을 G, 점 G 에서 변 AB 에 내린 수선의 발을 H라 할 때, 삼각형 BHG 의 넓이를 구하여라.

ightharpoonup 정답: $rac{1}{4}$

▶ 답:

 $\triangle ABC$ 가 직각이등변삼각형이므로 $\triangle HBG$, $\triangle HFG$, $\triangle FGE$, $\triangle FED$, $\triangle DEC$, $\triangle DCA$ 도 모두 직각이등변삼각형이다. $\overline{HB} = a$ 로 놓으면 $\overline{FG} = \overline{EG} = \sqrt{a^2 + a^2} = \sqrt{2}a$ $\overline{EF} = \sqrt{2a^2 + 2a^2} = 2a$ $\overline{DE} = \overline{CE} = \sqrt{4a^2 + 4a^2} = 2\sqrt{2}a$ $\overline{DC} = \overline{AD} = \sqrt{8a^2 + 8a^2} = 4a$ $\overline{AC} = \sqrt{16a^2 + 16a^2} = 4\sqrt{2}a$ $\overline{AC} = \overline{BC}$ 이므로 $\therefore 4\sqrt{2}a = 4, a = \frac{\sqrt{2}}{2}$ 따라서 삼각형 BHG 의 넓이는

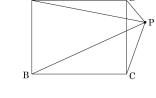
 $\frac{1}{2} \left(\frac{\sqrt{2}}{2} \right)^2 = \frac{1}{4} \text{ ord.}$

 $\overline{AB}=12,\;\overline{BC}=9$ 인 삼각형 ABC 의 변 AB, BC 의 중점을 각각 D, E 이라 할 때, 선분 AE와 선분 CD가 수직이 된다. 이때 삼각형 ABC 의 둘레의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $21 + 3\sqrt{5}$

 $\overline{\mathrm{AC}}=x$ 라 하면 삼각형의 중점연결 정리에 의하여 $\overline{\mathrm{DE}}=rac{1}{2}x$

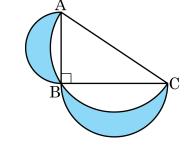

 $\Box DECA$ 에서 $\overline{AE} \perp \overline{DC}$ 이므로 $\overline{AD^2} + \overline{EC^2} = \overline{DE^2} + \overline{AC^2}$ $6^2 + \left(\frac{9}{2}\right)^2 = \left(\frac{1}{2}x\right)^2 + x^2$

$$6^{2} + \left(\frac{9}{2}\right) = \left(\frac{1}{2}x\right) + x^{2}$$

$$\therefore x = 3\sqrt{5}$$

따라서 삼각형 ABC 의 둘레의 길이는 $12+9+3\sqrt{5}=21+3\sqrt{5}$ 이다.

 $oldsymbol{38}$. 다음 그림과 같이 직사각형 $oldsymbol{\mathrm{ABCD}}$ 의 외부에 잡은 한 점 $oldsymbol{\mathrm{P}}$ 와 사각형 의 각 꼭짓점을 연결하였다. $\overline{PA}=9$, $\overline{PB}=10$, $\overline{PD}=2$ 일 때, \overline{PC} 의 길이를 구하여라.

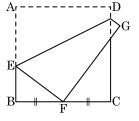


ightharpoonup 정답: $\sqrt{23}$

▶ 답:

 $\overline{\mathrm{PA}}^2 + \overline{\mathrm{PC}}^2 = \overline{\mathrm{PB}}^2 + \overline{\mathrm{PD}}^2$ 이므로 $9^2 + \overline{\mathrm{PC}^2} = 10^2 + 2^2$ $\frac{\overline{PC^2}}{\overline{PC^2}} = 104 - 81 = 23$ $\overline{PC} = \sqrt{23} \ (\because \overline{PC} > 0)$

39. 다음 그림과 같이 $\angle B=90^\circ$, $\overline{AB}:\overline{BC}=2:3$ 인 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 반원을 그렸더니 색칠한 부분의 넓이가 24 였다. 이때 변 AC 의 길이를 구하여라.


▷ 정답: 2√26

답:

$\overline{AB} = 2a$, $\overline{BC} = 3a$ 라 하면

 \overline{AB} , \overline{BC} , \overline{CA} 를 지름으로 하는 세 반원의 넓이를 각각 S_1 , S_2 , S_3 이라 하면 (색칠한 부분의 넓이) $= S_1 + S_2 + \triangle ABC - S_3$ $= \triangle ABC \ (\because S_1 + S_2 = S_3)$ $= \frac{1}{2} \times 2a \times 3a = 3a^2$ $즉, <math>3a^2 = 24$ 이므로 $a = 2\sqrt{2}$ 이다. 따라서 $\triangle ABC$ 에서 $\overline{AC} = \sqrt{(2a)^2 + (3a)^2} = \sqrt{13}a = 2\sqrt{26}$ 이다.

40. 한 변의 길이가 10인 정사각형 ABCD 를 다음 그림과 같이 접을 때, ∆EBF 의 넓이를 구하여라. (단, 점 F 는 $\overline{\mathrm{BC}}$ 의 중점이다.)

답:

ightharpoons 정답: $rac{75}{8}$

해설

 $\overline{\mathrm{EB}} = x$ 라 하면 $\overline{\mathrm{AE}} = \overline{\mathrm{EF}}$ 이므로 $\overline{\mathrm{EF}} = 10 - x$ 이다.

∆EBF 에서 $(10-x)^2 = x^2 + 5^2$ $100 - 20x + x^2 = x^2 + 25$

20x = 75

 $\therefore x = \frac{15}{4}$ $\therefore \Delta EBF = \frac{1}{2} \times 5 \times \frac{15}{4} = \frac{75}{8}$