
1. 다음 그림에서 닮음비가 같은 도형끼리 묶은 것은?

① ⑦, ⑤

② ¬, □ 3 □, ≡

4 2, **0**

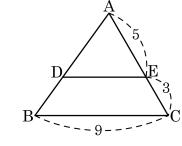
(5) (E), (E)

① 5:3 ① 4:5 © 3:2 ② 2:3 ② 3:4.5 = 30:45 = 6:9 = 2:3 따라서 닮음비가 같은 것은 ②, ②이다.

- **2.** 다음 중 항상 닮음인 도형이 아닌 것을 모두 고르면?
 - ① 두 정육각형 ③ 두 삼각뿔

② 두 반원

⑤ 두 직각이등변삼각형



④ 두 직육면체

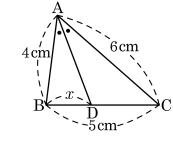
평면도형에서 항상 닮음이 되는 도형은 모든 원, 중심각의 크기가

같은 부채꼴, 모든 직각이등변삼각형, 모든 정다각형이다. 입체도형에서 항상 닮음이 되는 도형은 모든 구와 모든 정다면 체이다.

다음 그림과 같이 ΔABC 에서 $\overline{
m DE} \, / \! / \, \overline{
m BC}$ 일 때, 다음 중 옳지 $\underline{
m ce}$ 3. 것은?

② \overline{AD} : $\overline{BD} = 5$: 3

 \bigcirc \overline{BC} : $\overline{DE} = 8$: 3


① $\triangle ABC \hookrightarrow \triangle ADE$

 $\triangle ABC$ \hookrightarrow $\triangle ADE$ 이므로 $\overline{AD}:\overline{AB}=\overline{DE}:\overline{BC}=5:8$

해설

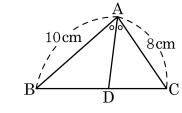
따라서 \overline{BC} : $\overline{DE} = 8$: 5 이다.

4. 다음 그림과 같은 $\angle ABC$ 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 할 때, $\overline{AB}=4\mathrm{cm}$, $\overline{BC}=5\mathrm{cm}$, $\overline{CA}=6\mathrm{cm}$ 라 한다. 이 때, x 의 길이는?

④ 3cm

 \bigcirc 1.5cm

② 2cm ⑤ 3.5cm


③ 2.5cm

해설 <u>AB</u> : <u>AC</u> = <u>BD</u> : <u>DC</u>

4: 6 = x: (5 - x)20 - 4x = 6x, x = 2(cm)

20 - 4x = 6x, x

 $\triangle ABC$ 에서 $\angle A$ 의 이등분선과 변 BC 의 교점을 D 라 할 때, $\triangle ABD$ **5.** 의 넓이가 30cm² 이면, ΔADC 의 넓이는?

- $\textcircled{4} \ \ 26\,\mathrm{cm}^2$
- $22 \,\mathrm{cm}^2$ \bigcirc 28 cm²
- $324 \, \mathrm{cm}^2$

$\overline{AB} : \overline{AC} = \overline{BD} : \overline{DC}$ 이므로

 $\overline{BD}:\overline{DC}=10:8$ 따라서, ΔABD 와 ΔADC 의 넓이의 비는 5:4 이다.

 $5:4=30:\triangle ADC$ $\therefore \triangle ADC = 24(cm^2)$

6. 다음 중 항상 닮은 도형이라고 할 수 $\frac{\text{없는}}{\text{것을}}$ 것을 보기에서 모두 골라라.

 보기

 ① 두 사각뿔
 ① 두 정육면체

 ⑥ 두 삼각기둥
 ② 두 구

 ⑩ 두 정사면체

▶ 답:

▶ 답:

 ▷ 정답: ①

 ▷ 정답: ②

확대, 축소했을 때 사각뿔과 삼각기둥은 밑면, 옆면의 모양이 일정한 비율로 변하지 않으므로 항상 닮은 도형이 아니다.

- 7. 다음 중 항상 닮음 도형인 것을 골라라.
 - 및 밑변의 길이가 같은 두 직각삼각형⑤ 중심각의 크기가 같은 두 부채꼴
 - 9 01 1-1 -- 1-1 EC 1 1-112
 - ② 한 대응하는 변의 길이가 같은 두 직사각형② 한 대응하는 각의 크기가 같은 두 사다리꼴

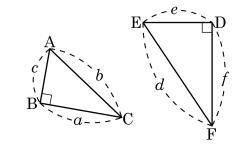
▷ 정답: □

해설

▶ 답:

두 부채꼴이 중심각의 크기가 같으면 확대, 축소했을 때 반지름의 길이와 호의 길이가 일정한 비율로 변하므로 항상 닮음이다.

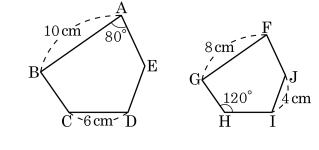
- **8.** 다음 중 항상 닮음인 도형이 <u>아닌</u> 것은?
 - ① 두 정삼각형
 - ② 두 정사각형
 - ③ 합동인 두 삼각형
 - ④ 두 평행사변형
 - ⑤ 꼭지각의 크기가 같은 두 이등변삼각형


③ 합동인 두 삼각형은 닮음비가 1:1 인 닮은 도형이다.

- ④ 두 평행사변형이 항상 닮음인 것은 아니다.

- 9. 다음 도형 중 항상 닮은 도형인 것을 모두 고르면?
 - ④ 두 사각기둥 ⑤ 두 정육면체
 - ① 두 원기둥 ② 두 원뿔
- ③ 두 구

두 구와 두 정육면체는 항상 닮음이다.


10. 다음 그림의 두 삼각형이 닮은 도형일 때, 다음 중 두 삼각형의 닮음 비로 옳은 것은?

① a : d④ c : d ② b : f
⑤ b : e

무 삼각형의 닮음비는 a:f 또는 b:d 또는 c=e이다.

11. 다음 그림에서 두 오각형 ABCDE와 FGHIJ는 닮은 도형이다. 이 때, $\angle F$ 의 크기와 \overline{DE} 의 길이는?

 \bigcirc $\angle F = 75^{\circ}, \overline{DE} = 5 \text{ cm}$

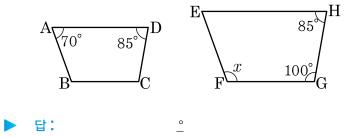
① $\angle F = 60^{\circ}, \overline{DE} = 4 \text{ cm}$

4 $\angle F = 80^{\circ}, \overline{DE} = 5 \text{ cm}$

② $\angle F = 70^{\circ}, \overline{DE} = 4 \text{ cm}$

- \bigcirc $\angle F = 85^{\circ}, \overline{DE} = 6 \text{ cm}$

오각형ABCDE∽오각형FGHIJ 이고, 닮음비는 \overline{AB} : \overline{FG} =


10:8=5:4이다. 닮은 도형에서 대응하는 각의 크기는 서로 같으므로 ∠F의 크기

는 대응각 ∠A 와 같다. ∴ ∠F = 80° 이다. 닮음비가 5 : 4 이므로 DE : IJ = 5 : 4 = DE : 4 이다.

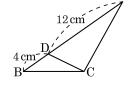
낢음비가 5 : 4 ∴ DE = 5 cm

.. DE = 3 cm

12. 다음 두 도형이 닮은 도형일 때, $\angle x$ 의 크기를 구하여라.

➢ 정답: 105 º

_


해설

□ABCD \bigcirc □EFGH 이므로 \angle E = \angle A = 70° \therefore \angle x = 360° - (70° + 85° + 100°) = 360° - 255°

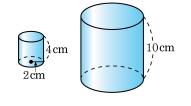
 $= 360\degree - 255\degree$ = $105\degree$

_ 100

13. 다음 그림에서 $\triangle ABC$ 와 $\triangle CBD$ 가 닮은 도 형일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.

▶ 답: ▷ 정답: 8<u>cm</u>

 $\underline{\mathrm{cm}}$


해설

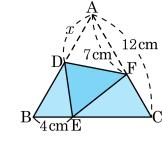
 $\triangle ABC \circlearrowleft \triangle CBD$

 $\overline{AB} : \overline{CB} = \overline{BC} : \overline{BD}$ $\begin{array}{l}
16 : \overline{BC} = \overline{BC} : 4 \\
\overline{BC}^2 = 64
\end{array}$

 $\therefore \ \overline{\mathrm{BC}} = 8\,\mathrm{cm} \ (\because \overline{\mathrm{BC}} > 0)$

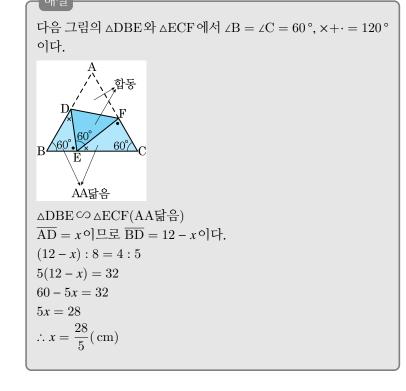
14. 다음 그림의 두 원기둥이 닮은 도형일 때, 큰 원기둥의 밑넓이를 구하여라.

답: <u>cm²</u>
 ▷ 정답: 25π cm²

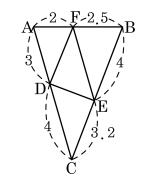

4:10=2:x

해설

 $x = 5 \,\mathrm{cm}$


그러므로 큰 원기둥의 밑넓이는 $5 \times 5 \times \pi = 25\pi \text{ (cm}^2\text{)}$

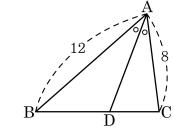
15. 다음 그림에서 정삼각형 \overline{ABC} 의 꼭짓점 \overline{A} 가 \overline{BC} 위의 점 \overline{E} 에 오도록 접었다. $\overline{AF}=7\,\mathrm{cm},$ $\overline{AC}=12\,\mathrm{cm},$ $\overline{BE}=4\,\mathrm{cm}$ 일 때, x의 길이를 구하여라.



► 답: <u>cm</u>
 ▷ 정답: <u>28</u> <u>cm</u>

Ü

16. 다음 그림의 $\overline{\rm DE},\;\overline{\rm DF},\;\overline{\rm EF}$ 중에서 $\triangle {\rm ABC}$ 의 변과 평행한 선분은?


① EF 4 $\overline{\text{DE}}$, $\overline{\text{EF}}$ 5 $\overline{\text{DE}}$

 \bigcirc $\overline{\mathrm{DF}}$

 $\Im \overline{\mathrm{DF}}, \overline{\mathrm{EF}}$

 $\overline{\mathrm{BF}}:\overline{\mathrm{FA}}=\overline{\mathrm{BE}}:\overline{\mathrm{EC}}$ 라면, $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{EF}}\,$ 이다. 2.5:2=4:3.2 이므로 $\overline{\mathrm{AC}}\,/\!/\,\overline{\mathrm{EF}}$ 이다.

17. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 이등분선이고, $\triangle ABC$ 의 넓이 가 $35 \mathrm{cm}^2$ 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?

- $10^{7} cm^2$ $40^{2} cm^2$
- ② 9cm^2 ③ 24cm^2
- $3 14 \text{cm}^2$
- 0 ----
- 0 -----

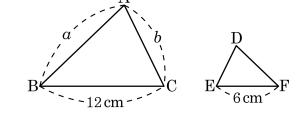
 \overline{AD} 는 A 의 이등분선이므로 \overline{AB} : \overline{AC} = \overline{BD} : \overline{DC} = 3 : 2

 ΔABD 와 ΔADC 에서 높이는 같고, 밑변이 3:2 이므로 $\Delta ABD:$ $\Delta BDC=3:2$ 이다. $\Delta ABD=\frac{3}{5}\Delta ABC=\frac{3}{5}\times 35=21$

$$\triangle ACD = \frac{2}{5} \triangle ABC = \frac{2}{5} \times 35 = 14$$

18. 다음 보기 중에서 서로 닮은 도형은 모두 몇 개인가?

두 구, 두 정사면체, 두 정팔각기둥, 두 원뿔, 두 정육면체, 두 정육각형, 두 마름모, 두 직각삼각형, 두 직육면체, 두 원기둥, 두 직각이등변삼각형


① 5 개 ② 6 개 ③ 7 개 ④ 8 개 ⑤ 4 개

해석

서로 닮은 도형은 구와 정사면체, 정육각형, 정육면체, 직각이등

변삼각형이다.

19. 다음 그림에서 $\triangle ABC \bigcirc \triangle DFE$ 이다. \overline{DE} 와 \overline{DF} 의 길이를 a, b를 사용한 식으로 나타낸 것은? (단, $\angle A = \angle D$, $\angle B = \angle F$)

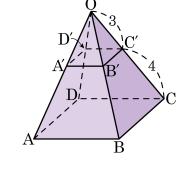
4 $\overline{\mathrm{DE}} = b(\mathrm{cm}), \ \overline{\mathrm{DF}} = a(\mathrm{cm})$

 \bigcirc $\overline{\rm DE} = 2b({\rm cm}), \ \overline{\rm DF} = 2a({\rm cm})$

두 도형의 닮음비는 $\overline{\mathrm{BC}}$: $\overline{\mathrm{FE}} = 12$: 6 = 2 : 1이다.

 $\overline{\mathrm{BC}}:\overline{\mathrm{FE}}=\overline{\mathrm{AC}}:\overline{\mathrm{DE}}$ 이므로 $\overline{\mathrm{DE}}=rac{b}{2}(\mathrm{cm})$ 이다. $\overline{\mathrm{BC}}:\overline{\mathrm{FE}}=\overline{\mathrm{AB}}:\overline{\mathrm{DF}}$ 이므로 $\overline{\mathrm{DF}}=rac{a}{2}(\mathrm{cm})$ 이다.

20. 닮음비가 4:5인 두 정사각형이 있다. 이 두 정사각형의 둘레의 합이 $72\mathrm{cm}$ 일 때, 작은 정사각형의 한 변의 길이를 $a\,\mathrm{cm}$, 큰 정사각형의 한 변의 길이를 b cm 라고 하자. a + b의 값은?


① 8 ② 10

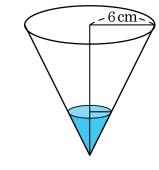
③ 18 ④ 32 ⑤ 40

해설

두 정사각형의 둘레의 합이 72cm 이므로 작은 정사각형의 둘레 는 $72 \times \frac{4}{9} = 32$ (cm), 큰 정사각형의 둘레는 $72 \times \frac{5}{9} = 40$ (cm) 이다. 따라서 한 변의 길이는 각각 $a=8,\ b=10$ 이다. $\therefore a + b = 8 + 10 = 18$

21. 다음 그림의 사각뿔 O - ABCD 에서 □A'B'C'D' 을 포함하는 평면과 □ABCD 를 포함하는 평면이 서로 평행할 때, O - ABCD 와 O - A'B'C'D' 의 닮음비는?

47:3


⑤ 3:5

① 3:4 ② 4:3 ③ 3:7

두 입체도형 O – ABCD 와 O – A'B'C'D' 이 닮음이므로 닮음

비는 \overline{OC} : $\overline{OC'} = 7:3$ 이다.

22. 다음 그림과 같은 원뿔 모양의 그릇에 물을 부어서 전체 높이의 $\frac{1}{3}$ 만큼 채웠다. 이때, 수면의 반지름의 길이는?

그릇 전체와 물이 채워진 부분까지의 닮음비가 3 : 1이므로

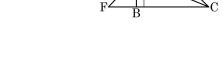
④ 2.5cm

① 1cm

② 1.5cm ⑤ 3cm ③2cm

수면의 반지름의 길이를 xcm 라고 하면 3:1=6:x

해설

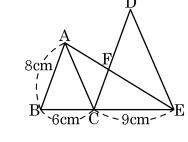

3x = 6 $\therefore x = 2$

 $\dots x - z$

23. 다음 그림에서 서로 닮음인 삼각형이 $\underline{\mathbf{o}}$ 또 짝지어진 것은?

① △FDC ∽ △ABC

- ② △ADE∽△FBE
- ⁽⁴⁾ △EBC ∽ △EDC ⑤ $\triangle FDC \circlearrowleft \triangle ADE$



① \triangle ABC 와 \triangle FDC 에서 \angle C 는 공통, \angle ABC = \angle FDC = 90°

해설

- ∴ △ABC∽△FDC (AA 닮음)
- ② $\triangle ADE$ 와 $\triangle FBE$ 에서 $\angle DAE = \angle BFE$, $\angle EDA = \angle EBF =$
- 90° ∴ △ADE∽△FBE (AA 닮음)
- ③ \triangle ADE 와 \triangle ABC 에서 \angle A 는 공통, \angle EDA = \angle CBA = 90°
- ∴ △ADE ∽ △ABC (AA 닮음) ②와 ③ 에 의해 $\triangle ADE \bigcirc \triangle ABC \bigcirc \triangle FBE$.. $\triangle ABC \bigcirc \triangle FBE$
- ⑤ ①, ③ 에 의해 ∴ △FDC ♡ △ADE

24. 다음 그림에서 $\triangle ABC \bigcirc \triangle DCE$ 이고, 점 $C \leftarrow \overline{BE}$ 위에 있다. $\overline{AB} =$ 8cm, $\overline{BC}=6$ cm, $\overline{CE}=9$ cm 일 때, \overline{DF} 의 길이는?

4 8cm

① 6cm

 \bigcirc 8.2cm

② 6.8cm

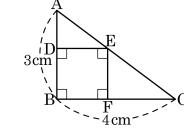
③7.2cm

 $\angle FCE(\because$

 $\triangle ABC$ \hookrightarrow $\triangle DCE$ 이므로 $\overline{AB}:\overline{DC}=\overline{BC}:\overline{CE}$

해설

 $8: \overline{\mathrm{DC}} = 6: 9$ 이므로 $\overline{\mathrm{DC}} = 12 (\,\mathrm{cm})$ ΔEAB 와 ΔEFC 에서 $\angle E$ 는 공통, $\angle B$

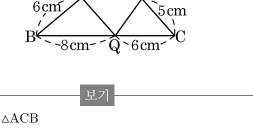

 $\triangle ABC \hookrightarrow \triangle DCE)$

 $\overline{\operatorname{EB}}:\overline{\operatorname{EC}}=\overline{\operatorname{AB}}:\overline{\operatorname{FC}}$ 이므로 $15:9=8:\overline{\operatorname{CF}}$

 $\overline{\mathrm{CF}} = 4.8 (\,\mathrm{cm})$ $\therefore \overline{\rm DF} = 12 - 4.8 = 7.2 (\,\rm cm)$

△EAB∽△EFC (AA 닮음)

 ${f 25}$. 아래 그림에서 ${f \overline{AB}}=3{
m cm},$ ${f \overline{BC}}=4{
m cm},$ ${f \overline{AC}}=5{
m cm}$ 일 때, 정사각형 DBFE 의 한 변의 길이를 구하면?


- \bigcirc 2cm
- $2 \frac{12}{7} \text{cm}$
- $3 \frac{10}{7} \text{cm}$
- ⑤ 1cm

△ABC ∽△ADE (AA 닮음) 이므로 $\overline{AB} : \overline{AD} = \overline{BC} : \overline{DE}$

정사각형의 한 변인 $\overline{\rm DE}$ 를 $a\ ({
m cm})$ 라고 하면 3:(3-a)=4:a

 $a = \frac{12}{7}$ $\therefore \frac{12}{7} \text{cm}$

26. 다음 그림을 보고 보기에서 옳은 것을 모두 고르면?

 $\mathop{\hbox{$\, \, \square$}}\nolimits \overline{\operatorname{PR}} \mathop{/\!/} \overline{\operatorname{BC}}$ $\tiny \textcircled{\tiny E} \ \overline{PQ} \ /\!/ \ \overline{AC}$ $\ \, \boxdot \Delta \mathrm{BQP} \circlearrowleft \Delta \mathrm{BCA}$

4.5cm A

① ⑦, ⑩ 4 0,8 ② U, @, © ⑤ ©, @, 回

③□, □

 $\bigcirc\overline{\mathrm{BP}}:\overline{\mathrm{PA}}=\overline{\mathrm{BQ}}:\overline{\mathrm{QC}}$ 라면, $\overline{\mathrm{PQ}}//\overline{\mathrm{AC}}$ 이다.

해설

6:4.5=8:6 이므로 $\overline{\mathrm{PQ}}//\overline{\mathrm{AC}}$ 이다. @ $\overline{BP}:\overline{BA}=\overline{BQ}:\overline{BC}=4:7, \angle B$ 는 공통이므로 $\triangle BQP$ \circlearrowleft

△BCA (SAS 닮음) 이다.

27. 다음 그림의 △ABC 에서 ∠DAB = ∠ACB, ∠DAE = ∠CAE 이고, $\overline{AB}=8\mathrm{cm},\,\overline{BC}=16\mathrm{cm},\,\overline{AC}=10\mathrm{cm}$ 일 때, \overline{DE} 의 길이를 구하여라.

E -16cm-

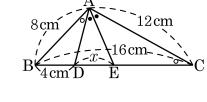
▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 4<u>cm</u>

△ABD ∽ △CBA (AA 닮음) 이므로

해설

 $\overline{BD}: 8 = 8: 16 \to \overline{BD} = 4(cm)$ $\overline{\mathrm{AD}}: 10 = 8: 16 \rightarrow \overline{\mathrm{AD}} = 5 (\mathrm{cm})$

 $\overline{\mathrm{DE}}=x$ 라 하면 $\overline{\mathrm{EC}}=16-4-x=12-x$ 이고


 ΔADC 에서 삼각형의 내각의 이등분선의 정리에 의해 \overline{AD} :

 $\overline{\mathrm{AC}} = \overline{\mathrm{DE}} : \overline{\mathrm{EC}}$ 5:10 = x:(12 - x)

10x = 5(12 - x)15x = 60

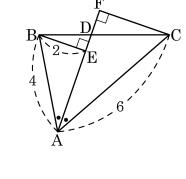
x = 4 $\therefore \ \overline{\rm DE} = 4 \rm cm$

28. 다음 그림의 $\triangle ABC$ 에서 $\angle DAB = \angle ACB$, $\angle DAE = \angle CAE$ 일 때, x의 값을 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 4<u>cm</u>

▶ 답:


 $\angle B$ 는 공통, $\angle BAD = \angle BCA$.: $\triangle ABD$ \hookrightarrow $\triangle CBA$ (AA 닮음)

닮음비로 \overline{AB} : $\overline{BC} = \overline{AD}$: \overline{CA} 에서 $8:16 = \overline{AD}:12$ $\therefore \overline{AD} = 6(\,\mathrm{cm})$ \triangle ADC 에서 $\overline{\rm AE}$ 는 \angle CAD 의 이등분선이므로 6:12=x:

(12 - x)

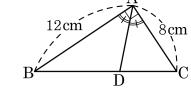
 $\therefore x = 4(\text{cm})$

 ${f 29}.~$ 다음 그림과 같은 ΔABC 에서 \overline{AD} 는 $\angle A$ 의 이등분선이고 점 B,~C에서 $\overline{\mathrm{AD}}$ 또는 그 연장선 위에 내린 수선의 발을 각각 E, F 라고 할 때, $\overline{\mathrm{CF}}$ 의 길이는?

3 4

4 5 **5 6**

ΔABE와 ΔACF는 닮음이다.

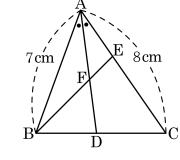

해설

① 2

 $\therefore \ 4:2=6:\overline{\mathrm{CF}}$ $\therefore \overline{\mathrm{CF}} = 3$

②3

30. 다음 그림과 같이 $\angle BAC = 90^{\circ}$ 이고, $\angle BAD = \angle CAD$, $\overline{AB} =$ 12cm, $\overline{AC} = 8$ cm 일 때, $\triangle ADC$ 의 넓이를 구하면?



- ① $\frac{48}{5}$ cm² ② $\frac{96}{5}$ cm² ④ 45 cm² ⑤ $\frac{75}{2}$ cm²

 $3 40 \text{cm}^2$

 $\triangle ABC$ 는 직각삼각형이므로 $\triangle ABC=12\times 8\times \frac{1}{2}=48 (cm^2)$ 이다. $\overline{AB} : \overline{AC} = \overline{BD} : \overline{DC} = 3 : 2 \circ \square = 2 \circ ABD : \triangle ADC = 3 : 2$ $\therefore \triangle ADC = \triangle ABC \times \frac{2}{5} = 48 \times \frac{2}{5} = \frac{96}{5} (cm^2)$

31. 다음 그림에서 넓이가 $80\mathrm{cm}^2$ 인 $\Delta\mathrm{ABC}$ 에서 $\overline{\mathrm{AD}}$ 는 $\angle\mathrm{A}$ 의 이등분선 이다. $\overline{AB}=7\mathrm{cm},\ \overline{AC}=8\mathrm{cm}$ 이고, $\overline{AE}:\overline{EC}=3:5,\ \overline{AD}$ 와 \overline{BE} 의 교점을 F 라 할 때, △ABF 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

▷ 정답: 21<u>cm²</u>

답:

 $\overline{AE}: \overline{EC} = 3:5$ 이므로 $\overline{AE} = 3 \mathrm{cm}$

 ΔABE 에서 $\angle A$ 의 이등분선이 \overline{AF} 이므로

$$\overline{BF} : \overline{EF} = \overline{AB} : \overline{AE} = 7 : 3$$

$$\therefore \triangle ABF = \frac{7}{10} \triangle ABE = \frac{7}{10} \times \left(\frac{3}{8} \triangle ABC\right)$$

$$= \frac{21}{80} \triangle ABC = \frac{21}{80} \times 80 = 21 \text{ (cm}^2)$$

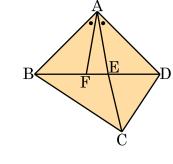
32. 다음 그림과 같이 $\angle BAC = \angle CAD = \angle DAE$ 일 때, \overline{CD} 의 길이를 구하여라.

▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 7<u>cm</u>

그림과 같이 $\overline{\mathrm{AB}}=a,\;\overline{\mathrm{CD}}=b$ 라고 하면

△ABD 에서 내각의 이등분선의 정리에 의해

 $\overline{\mathrm{AB}}:\overline{\mathrm{AD}}=\overline{\mathrm{BC}}:\overline{\mathrm{CD}}$ a: 8 = 7: b


 $\therefore ab = 56 \cdots \bigcirc$ 또, 삼각형의 외각의 이등분선의 정리에 의해

 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ a: 4 = (7+b): b

 $\therefore ab = 28 + 4b \cdots \bigcirc$ ①, ⓒ에 의해 56 = 28 + 4b $\therefore b = 7$

따라서 $\overline{\text{CD}} = 7\text{cm}$ 이다.

33. 다음 그림과 같이 $\overline{AB} = \overline{AD} = 12$ 인 $\triangle ABD$ 에서 $\angle BAE = \angle DAF$ 이고 $\overline{AE}=\overline{DF}=9$, $\overline{CE}=7$, $\overline{DE}=7$ 일 때, $\overline{AD}\times\overline{CD}$ 를 구하여라.

답: ▷ 정답: 112

△ABD 가 이등변삼각형이므로

∠ABD = ∠ADB 조건에서 $\overline{AB} = \overline{AD} = 12$, $\angle BAE = \angle DAF$ 이므로

 $\triangle ABE \equiv \triangle ADF (ASA 합동)$

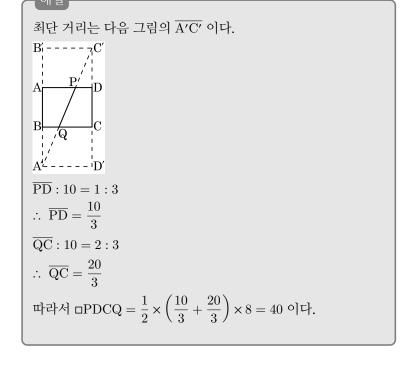
그러므로 $\overline{AE} = \overline{AF} = 9$ $\triangle ABE$ 와 $\triangle ADB$ 에서 $\overline{AB}:\overline{BD}=12:16=3:4$

 $\overline{AE}:\overline{AB}=9:12=3:4$ 이고 $\angle ABD$ 는 공통이므로 △ABE ∽ △DBA (SAS 닮음)

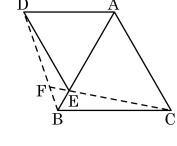
9 : 12 = 3 : 4 이고 ∠CAD 는 공통.

 $\triangle AED$ 와 $\triangle ADC$ 에서 $\overline{AD}:\overline{AC}=12:16=3:4$, $\overline{AE}:\overline{AD}=$

△AED ∽ △ADC (SAS 닮음)


 $\overline{\mathrm{DE}}:\overline{\mathrm{CD}}=3:4$ 이므로 $7:\overline{\mathrm{CD}}=3:4$ 따라서 $\overline{\text{CD}} = \frac{28}{3}$ 이므로

 $\overline{\mathrm{AD}} imes \overline{\mathrm{CD}} = 12 imes rac{28}{3} = 4 imes 28 = 112$ 이다.


34. 가로, 세로의 길이가 각각 10, 8 인 직사각형 ABCD 의 긴 변 중 윗변 \overline{AD} 위에 한 점 P, 아랫변 \overline{BC} 위에 한 점 Q를 $\overline{AQ}+\overline{PQ}+\overline{PC}$ 의 값이 최소가 되도록 정한다. 이때, 사다리꼴 PDCQ 의 넓이를 구하여라.

답:▷ 정답: 40

-11 23

35. 다음 그림에서 $\triangle ABC$ 와 $\triangle ADE$ 는 정삼각형이다. $\overline{AC}=20$, $\overline{AD}=16$ 일 때, $\overline{FB} \times \overline{EC}$ 를 구하여라.

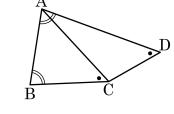
▷ 정답: 80

▶ 답:

△ABD 와 △ACE 에서

또 AFBE 와 AACE 에서

∠FEB = ∠AEC (∵ 맞꼭지각) ∠FBE = ∠ACE (∵ △ABD ≡ △ACE)

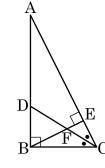

∴ ΔFBE ∽ ΔACE (AA 닮음)

 $\overline{FB} : \overline{AC} = \overline{BE} : \overline{EC}$

 $(\overline{BE} = \overline{AB} - \overline{AE} = 20 - 16 = 4)$ $\overline{FB} : 20 = 4 : \overline{EC}$

 $\therefore \overline{FB} \times \overline{EC} = 80$

36. 다음 그림과 같은 $\square ABCD$ 에서 $\overline{AC}=5$, $\overline{BC}=4$, $\overline{CD}=3$ 이고, $\angle A=\angle B$, $\angle ACB=\angle ADC$ 일 때, \overline{AD} 의 길이를 구하여라.

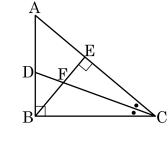


답:

ightharpoonup 정답: $\frac{32}{5}$

해설 다음 그림과 같이 $\overline{\mathrm{AD}}$ 의 연장선과 $\overline{\mathrm{BC}}$ 의 연장선이 만나는 점을 P 라 하면 $\angle A = \angle B$ 이므로 $\overline{PA} = \overline{PB}$ ΔPDC 와 ΔPCA 에서 $\angle P$ 는 공통 $\angle PDC = 180^{\circ} - \angle ADC = 180^{\circ} - \angle BCA = \angle PCA$ 따라서 △PDC ∽ △PCA (AA 닮음) $\overline{\mathrm{PD}}:\overline{\mathrm{PC}}=\overline{\mathrm{DC}}:\overline{\mathrm{CA}}=\overline{\mathrm{PC}}:\overline{\mathrm{PA}}$ $\overline{PA} = \overline{PB} = (\overline{PC} + 4)$ $\overline{\mathrm{DC}}:\overline{\mathrm{CA}}=\overline{\mathrm{PC}}:\overline{\mathrm{PA}}$ 에 대입하여 계산하면 $3:5=\overline{PC}:(\overline{PC}+4)$ $5\overline{\mathrm{PC}} = 3\overline{\mathrm{PC}} + 12$ $2\overline{PC} = 12$ $\overline{\mathrm{PC}}=6$ $\overline{\mathrm{PA}} = \overline{\mathrm{PB}} = \overline{\mathrm{PC}} + \overline{\mathrm{CB}} = 6 + 4 = 10$ $\overline{\mathrm{PD}}:\overline{\mathrm{PC}}=\overline{\mathrm{DC}}:\overline{\mathrm{CA}}$ $\overline{\text{PD}}:6=3:5$ $\overline{PD} = \frac{18}{5}$ $\therefore \overline{AD} = \overline{PA} - \overline{PD} = 10 - \frac{18}{5} = \frac{32}{5}$

37. 다음 그림에서 ∠BFD와 크기가 같은 것은?

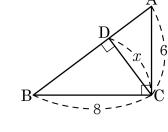

① ∠ADC ④ ∠BDC ② ∠EBC⑤ ∠ABE

③ ∠BAC

 $\angle BFD = \angle CFE = 180^{\circ} - (\angle FEC + \angle FCE) = 180^{\circ} - (\angle DBC + \angle FCE) = 180^{\circ} - (\angle$

 $\angle DCB) = \angle BDC$

38. 다음 그림에서 $\angle A = 30$ °일 때, $\angle BFD$ 의 크기와 크기가 같은 각은?



- ④60°, ∠BDC
- ① 55°, $\angle ADC$ ② 50°, $\angle EBC$ ⑤ 70°, ∠ABE
- ③ 65°, ∠BAC

 ${\it \angle} BFD = {\it \angle} CFE = 180\,^{\circ} - \left({\it \angle} FEC + {\it \angle} FCE\right) = 180\,^{\circ} - \left({\it \angle} DBC + {\it \angle} FCE\right) = 180\,^{\circ} - \left({\it \angle} DBC + {\it \angle} FCE\right) = 180\,^{\circ} - \left({\it \angle} DBC\right) = 180\,^{\circ} - \left($

 $\angle DCB) = \angle BDC = 60^{\circ}$

39. 다음 그림에서 $\triangle ABC$ 는 직각삼각형이다. $\overline{AB} \bot \overline{CD}$ 일 때, x의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $rac{24}{5}$

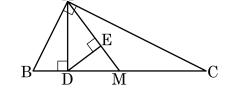
 $\overline{\mathrm{BD}}=a,\ \overline{\mathrm{DA}}=b$ 라 하면

6² = b(a+b) ··· ①, 8² = a(a+b) ··· ② ①, ②식을 (a+b)로 정리하면

$$(a+b) = \frac{6^2}{b} \cdots 3, (a+b) = \frac{8^2}{a} \cdots 4$$

$$\frac{6^2}{b} = \frac{8^2}{2}$$
 이므로 $a = \frac{16}{b} + \cdots$

$$\frac{6^2}{b} = \frac{8^2}{a}$$
이므로 $a = \frac{16}{9}b$ …⑤


⑤ 식을 ① 식에 대입하면
$$b = \frac{18}{5}$$
 ···⑥ ⑥ 식을 ⑤ 식에 대입하면 $a = \frac{32}{5}$

$$\frac{\overline{AB} = 10}{\overline{AC} \times \overline{BC} = \overline{AB} \times \overline{CD}}$$

 $48 = 10 \times x$

 $\therefore \ x = \frac{24}{5}$

40. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{BM}=\overline{CM}$ 이고, 점 A 에서 내린 \overline{BC} 에 내린 수선의 발을 D , 점 D 에서 \overline{AM} 에 내린 수선의 발을 E 라 하고, $\overline{\mathrm{BD}}=6,\ \overline{\mathrm{DC}}=24$ 일 때 $\overline{\mathrm{DE}}$ 의 길이를 구하여라.

답:

ightharpoonup 정답: $rac{36}{5}$

조건에서 ∠ADB = 90°, ∠BAD = ∠ACD 이므로 △ABD ∽ △CAD (AA 닮음) 따라서 $\overline{AB}:\overline{CA}=\overline{BD}:\overline{AD}=\overline{AD}:\overline{CD}$ 를 이용하여 \overline{AD} 를

구하면 $6:\overline{\mathrm{AD}}=\overline{\mathrm{AD}}:24$

 $\overline{AD} = 12 \ (\because \overline{AD} > 0)$

 $\angle A$ 가 90° 이므로 $\triangle ABC$ 는 직각삼각형이다. $\triangle ABC$ 의 빗변의 중심 M 은 곧 \triangle ABC 의 외심이므로

 $\overline{\mathrm{AM}} = \overline{\mathrm{BM}} = \overline{\mathrm{CM}} = 15$

 $\overline{\mathrm{DM}} = \overline{\mathrm{BM}} - \overline{\mathrm{BD}} = 15 - 6 = 9$ $\angle AED = 90^{\circ}$, $\angle AMD = \angle ADE$ 이므로 $\triangle ADE$ \bigcirc $\triangle AMD$ (AA

따라서 $\overline{AD}:\overline{AM}=\overline{DE}:\overline{MD}=\overline{AE}:\overline{AD}$ 를 이용하여 \overline{DE} 를

구하면 $12:15 = \overline{DE}:9$ 이므로 $\overline{DE} = \frac{12 \times 9}{15} = \frac{36}{5}$ 이다.

41. 다음 그림의 $\triangle ABC$ 에서 $\angle B=\angle ADB=90^\circ$, $\overline{AM}=\overline{CM}$, $\overline{BM}\bot\overline{DE}$, $\overline{AB}=5$, $\overline{BC}=12$, $\overline{AC}=13$ 일 때, \overline{DE} 를 구하여라.

답:

ightharpoonup 정답: $rac{7140}{2197}$

△ABC 의 넓이를 구하는 방법을 이용하면 $\overline{\mathrm{AB}} \times \overline{\mathrm{BC}} \times \frac{1}{2} = \overline{\mathrm{AC}} \times \overline{\mathrm{BD}} \times \frac{1}{2}$

 $5 \times 12 = 13 \times \overline{BD}$

 $\therefore \ \overline{\mathrm{BD}} = \frac{60}{13}$

 $\angle ABD = \angle C$, $\angle ADB = 90^\circ$ 이므로 $\triangle ABC$ $\bigcirc \triangle ADB$ (AA 닮

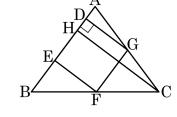
따라서 $\overline{AB}:\overline{AD}=\overline{BC}:\overline{DB}=\overline{AC}:\overline{AB}$ 를 이용하여 \overline{AD} 를

구하면

 $5: \overline{\mathrm{AD}} = 12: \frac{60}{13}$ $\overline{\rm AD} = \frac{25}{13}$

M 은 직각삼각형의 빗변의 중심에 있으므로 ΔABC 의 외심과

 $\overline{AM} = \overline{BM} = \overline{CM} = \frac{13}{2}$


 $\overline{\mathrm{MD}} = \overline{\mathrm{AM}} - \overline{\mathrm{AD}} = \frac{13}{2} - \frac{25}{13} = \frac{119}{26}$ △BMD 의 넓이는 구하는 방법을 이용하면

 $\overline{\mathrm{MD}} imes \overline{\mathrm{BD}} imes \frac{1}{2} = \overline{\mathrm{BM}} imes \overline{\mathrm{DE}} imes \frac{1}{2}$ 이므로

 $\frac{119}{26} \times \frac{60}{13} = \overline{DE} \times \frac{13}{2}$

 $\therefore \ \overline{\rm DE} = \frac{7140}{2197}$

42. 다음 그림과 같이 $\overline{AB}=\overline{AC}=5$, $\overline{BC}=6$ 인 ΔABC 의 꼭짓점 C에서 \overline{AB} 에 내린 수선의 발을 H 라 하자. $\triangle ABC$ 의 넓이가 12 이고, $\triangle ABC$ 의 내부에 정사각형 DEFG 가 내접하고 있을 때, BF 의 길이를 구하여라.

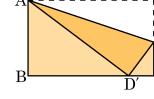
답:

 $\frac{150}{49}$ ▷ 정답:

주어진 $\triangle ABC$ 의 넓이를 이용하여 \overline{CH} 를 구하면 $\frac{1}{2} \times \overline{CH} \times 5 = 12$ $\therefore \overline{CH} = \frac{24}{5}$

 $\overline{\mathrm{CH}}$ 와 $\overline{\mathrm{FG}}$ 가 만나는 점을 H'라 하고, 정사각형 DEFG 의 한 변의 길이를 y 라 하면 $\Delta \mathrm{CFG} \odot \Delta \mathrm{CBA}$ (AA 닮음) 이므로 $\overline{\mathrm{CH'}}: \overline{\mathrm{CH}} = \overline{\mathrm{FG}}: \overline{\mathrm{BA}}$

 $(\frac{24}{5}) - y : \frac{24}{5} = y : 5$


 $\therefore y = \frac{120}{49}$

 $\overline{\mathrm{CF}}:\overline{\mathrm{CB}}=\overline{\mathrm{FG}}:\overline{\mathrm{AB}}$ 를 이용하여 $\overline{\mathrm{CF}}$ 를 구하면 $\overline{\mathrm{CF}}:6=\frac{120}{49}:$

5 $\therefore \overline{CF} = \frac{144}{49}$

따라서 $\overline{\mathrm{BF}}=\overline{\mathrm{BC}}-\overline{\mathrm{CF}}=6-\frac{144}{49}=\frac{150}{49}$ 이다.

43. 다음 그림과 같은 직사각형 ABCD 에서 \overline{AE} 를 접는 선으로 하여 꼭짓점 D 가 \overline{BC} 에 오도록 접었을 때, $\overline{AD'}$ 의 길이를 구하여라. (단, $\overline{AB}=9$, $\overline{CD}'=3$, $\overline{CE}=4,$ $\overline{D'E}=5$)

▶ 답: ▷ 정답: 15

 $\angle D = \angle D' = 90^{\circ}$ 이므로 $\angle ABD' = \angle D'CE$,

 $\angle B = \angle C = 90^\circ$ 이므로 $\triangle AD'B \hookrightarrow \triangle D'EC$ (AA 닮음) $\overline{AB}:\overline{D'C}=\overline{AD'}:\overline{D'E}$

 $9:3=\overline{\mathrm{AD'}}:5$

 $\therefore \overline{\mathrm{AD'}} = 15$

44. 다음 그림과 같은 직각삼각형 ABC 에서 $y^2 - x^2$ 의 값을 구하여라.

▶ 답:

▷ 정답: 14

 $\overline{AB}^2 = \overline{BD} \times \overline{BC}$ $12^2 = 9(9+x)$

144 = 81 + 9x, 9x = 63, x = 7 $\overline{\mathrm{AD}}^2 = \overline{\mathrm{BD}} \times \overline{\mathrm{CD}}$

 $y^{2} = 9 \times 7 = 63$ $\therefore y^{2} - x^{2} = 63 - 49 = 14$

45. 다음 그림은 $\overline{AB}=6,\ \overline{BC}=8,\ \overline{BD}=10$ 인 직사각형 ABCD 에서 대각선 BD 를 접는 선으로 하여 점 $\mathbb C$ 가 점 $\mathbb E$ 에 오도록 접은 것이다. \overline{AD} 와 \overline{BE} 의 교점 P 에서 \overline{BD} 에 내린 수선의 발을 Q 라 할 때, ΔBQP 의 둘레의 길이를 구하여라.

▶ 답: ▷ 정답: 15

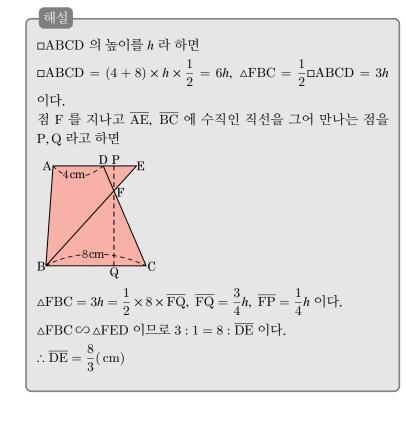
해설

 $\angle PBQ = \angle QBC$ (접었으므로)

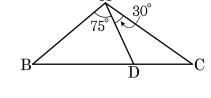
 $\angle QBC = \angle PDQ$ (엇각) :. ΔPBD 는 이등변삼각형

점 P 에서 $\overline{\mathrm{BD}}$ 에 내린 수선은 $\overline{\mathrm{BD}}$ 를 이등분하므로 $\overline{\mathrm{BQ}}=5$ $\angle BQP = \angle BED = 90^{\circ}$, $\angle PBQ = \angle DBE$ (공통)

 $\Delta \mathrm{BQP} \,{}^{\mbox{\tiny\sc O}} \, \Delta \mathrm{BED} \,\,(\mathrm{AA}\,\, \mathrm{I}\!\mathrm{s}\mathrm{i}\mathrm{e}\mathrm{e})$ 따라서 두 삼각형의 닮음비는 $\overline{\mathrm{BQ}}$: $\overline{\mathrm{BE}} = 5:8$


 ΔBED 의 둘레의 길이는 6+8+10=24,

 Δ BQP 의 둘레의 길이를 x 라 하면


x: 24 = 5:8 $\therefore \ x = \frac{24 \times 5}{8} = 15$

따라서 ΔBQP 의 둘레의 길이는 15 이다.

- 46. 다음 사다리꼴 ABCD 에서 $\overline{\mathrm{AD}}$ = $4\,\mathrm{cm},\;\overline{\mathrm{BC}}=8\,\mathrm{cm}$ 이다. $\overline{\mathrm{AD}}$ 의 연장선 위의 점 E 에 대하여 BE가 □ABCD 의 넓이를 이등분할 때, $\overline{\mathrm{DE}}$ 의 길이를 구하면?
 - ① $\frac{12}{7}$ cm ② $\frac{13}{5}$ cm ③ $\frac{9}{2}$ cm ④ $\frac{11}{4}$ cm ⑤ $\frac{8}{3}$ cm

47. 다음 그림과 같은 $\triangle ABC$ 에서 점 D 는 \overline{BC} 를 꼭짓점 B 로부터 7:3 로 나누는 점이다.

 $\overline{\mathrm{AD}} = 14\mathrm{cm}$ 일 때, $\overline{\mathrm{AC}}$ 의 길이를 구하여라.

 답:
 cm

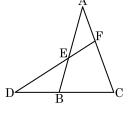
 ▷ 정답:
 20 cm

- 해설 저 C르

점 C를 지나고 \overline{AD} 에 평행한 직선을 그어 직선 AB의 연장선과 만나는 점을 E라 한다.

B D C $\overline{AD}//\overline{EC}$ 이므로 $\angle BAD = \angle AEC = 75^{\circ}$ (동위각)

∠CAE = 180° - (75° + 30°) = 75° 따라서 △CAE는 이등변삼각형이다.


∴ $\overline{\mathrm{CA}} = \overline{\mathrm{CE}} \cdots \bigcirc$ 또, △BCE에서 $\overline{\mathrm{AD}}//\overline{\mathrm{EC}}$ 이므로

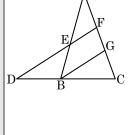
 $\overline{AD} : \overline{EC} = \overline{BD} : \overline{BC}$ $14 : \overline{EC} = 7 : 10$

 $\therefore \overline{CE} = 20 \text{ cm}$

따라서 \bigcirc 에 의해 $\overline{\mathrm{AC}} = 20 (\,\mathrm{cm})$ 이다.

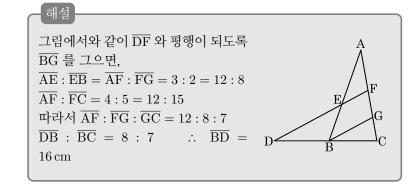
48. 다음 그림에서 \overline{AE} : $\overline{EB} = 3$: 2, \overline{AF} : $\overline{FC} =$ 2:3 이다. $\overline{BC}=18\,\mathrm{cm}$ 일 때, \overline{BD} 의 길이 를 구하여라.

▶ 답:

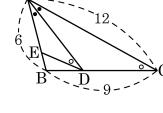

해설

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\frac{72}{5}$ $\underline{\mathrm{cm}}$


 $\overline{\mathrm{EF}} \ /\!/ \ \overline{\mathrm{BG}}$ 인 $\overline{\mathrm{BG}}$ 를 그으면 $\overline{\mathrm{AE}} : \overline{\mathrm{EB}} = \overline{\mathrm{AF}} : \overline{\mathrm{FG}} = 3 : 2 = 6 : 4$ $\overline{\rm AF}:\overline{\rm FC}=2:3=6:9$

즉 $\overline{\mathrm{AF}}:\overline{\mathrm{FG}}:\overline{\mathrm{GC}}=6:4:5$ $\overline{BC} : \overline{BD} = \overline{CG} : \overline{GF} = 5 : 4$ $18 : \overline{BD} = 5 : 4$ $\therefore \overline{DB} = \frac{72}{5} \text{ (cm)}$



49. 다음 그림에서 ĀĒ : ĒB = 3 : 2 , ĀF :
FC = 4 : 5 이다. BC = 14 cm 일 때, BD
의 길이를 구하면?

① 10 cm ② 12 cm ③ 14 cm
④ 16 cm ⑤ 18 cm

50. 다음 그림과 같이 $\overline{AB}=6,\ \overline{BC}=9,\ \overline{AC}=12$ 인 $\triangle ABC$ 에서 $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D 라 하고, \overline{AB} 위에 $\angle ADE = \angle ACB$ 가 되도록 점 E 를 잡는다. 이 때, $\triangle BDE$ 는 $\triangle ADE$ 의 몇 배인지 구하여라.

배

▶ 답:

ightharpoonup 정답: $rac{1}{3}$ 배

 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ 이므로

 $6:12=\overline{BD}:(9-\overline{BD})$

 $\therefore \overline{BD} = 3, \overline{CD} = 9 - 3 = 6$

△BDE ∽ △BAD (AA 닮음)이므로 $\overline{\mathrm{BD}}:\overline{\mathrm{BA}}=\overline{\mathrm{BE}}:\overline{\mathrm{BD}}$

 $3:6 = \overline{BE}:3$ $\therefore \overline{BE} = \frac{3}{2}, \ \overline{AE} = 6 - \frac{3}{2} = \frac{9}{2}$

이 때, $\triangle BDE = a$ 라 하면 $\triangle BDE : \triangle ADE = \overline{BE} : \overline{AE}$ 에서

 $a : \triangle ADE = \frac{3}{2} : \frac{9}{2} = 1 : 3$ ∴ $\triangle ADE = 3a$ 따라서 $\triangle BDE \vdash \triangle ADE$ 의 $\frac{1}{3}$ 배이다.