$\frac{3}{2}i, \frac{5}{4}i, (), \frac{9}{8}i, \frac{11}{10}i, \cdots$

 $\bigcirc 5_i \qquad \bigcirc i$

② $n - (-1)^n$

 $(-1)^n + n$

① $(-1)^{n+1} \times n$

 $(4) (-1)^n \times n$

3. 다음 중 옳은 것은?

① $1+4+7+\cdots+(3n-5) = \sum_{k=1}^{n} (3k-5)$ ② $2+4+6+\cdots+2(n+1) = \sum_{k=1}^{n} 2(k+1)$

③
$$3+5+7+\cdots+(2n-1) = \sum_{k=1}^{n} (2k+1)$$

④ $4+5+6+\cdots+(n+3) = \sum_{k=1}^{n} (k+3)$

 $\bigcirc 3 + 4 + 5 + \dots + n = \sum_{k=1}^{n} k$

4.
$$\sum_{k=1}^{n} a_k = 10n, \sum_{k=1}^{n} b_k = 5n 일 때, \sum_{n=1}^{10} \left\{ \sum_{k=1}^{n} (2a_k - 3b_k + 5) \right\}$$
 의 값은?

① 250 ② 300 ③ 450 ④ 550 ⑤ 650

 $a_1=1,\ a_{n+1}-a_n=3(n=1,\ 2,\ 3,\ \cdots)$ 으로 정의된 수열 $\{a_n\}$ 에서 $\sum_{k=1}^{20} a_k$ 의 값은?

6. 양의 실수 a에 대하여 $\frac{\sqrt[5]{a}}{\sqrt[3]{a}} \times \sqrt[5]{\frac{\sqrt[3]{a}}{\sqrt{a}}} \div \sqrt[3]{\frac{\sqrt[5]{a}}{\sqrt{a}}}$ 의 값은?(단, $a \neq 1$)

① $\sqrt[10]{a}$ ② $\frac{1}{\sqrt[10]{a}}$ ③ 1 ④ $\frac{1}{\sqrt[10]{a}}$ ⑤ $\sqrt[10]{a}$

 $\sqrt{a\sqrt{a\sqrt{a}}}$ 을 간단히 하면 $a^{\frac{n}{m}}$ 이다. 이때, m-n의 값을 구하여라. (단, *m*, *n* 은 서로소인 자연수)

. 답:

- 다음 중 계산 결과가 다른 하나는?
- ① $(-100)^0$ ② $a^2 \times a \div a^3$ ③ $\frac{3^3 \div 3^2}{3}$ ④ $a^{-\sqrt{3}} \times (a^3)^{\sqrt{3}} \times \frac{1}{a^{2\sqrt{3}}}$

9. $(3-\sqrt{2})^{-1} \times (11+6\sqrt{2})^{-\frac{1}{2}} = a$ 일 때, $\frac{1}{a}$ 의 값을 구하여라.

> 답:

II.	표의 민간에 6개의 사연구들 하나씩 써 넣어 가도, 세	0		77
	그 레카지 바탕스크 카카 드카스션 이 시크트로 첫 때	3		_7_
	표의 민간에 6개의 자연수들 하나씩 써 넣어 가로, 세로, 대각선 방향으로 각각 등차수열을 이루도록 할 때,			
	빈칸에 써 넣을 6개의 수의 합을 구하여라.	\vdash		-
	전전에 까 등을 0계의 무의 집을 무어하다.		11	

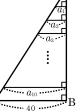
교사 미리 계속계사 리사치를 입니까 이 다리 되고 게

> 답:

12. -3과 11사이에 n개의 수를 나열한 수열 -3, a_1 , a_2 , a_3 , \cdots , a_n , 11 이 등차수열을 이루고 그 합이 32일 때 공차 d와 항수 n을 구하면?

① d = 2, n = 4 ② d = 2, n = 5 ③ d = 2, n = 6

4 d = 3, n = 4 5 d = 3, n = 6


- **13.** 어떤 등차수열의 첫째항부터 10까지의 합이 100이고, 11 항부터 20 항까지의 합이 300일 때 21 항부터 30 항까지의 합을 구하여라.
 - 🔰 답:

14. 등차수열 $\{a_n\}$ 에 대하여 $a_3 = 11$, $a_{14} = -11$ 일 때, 첫째항부터 제 n항까지의 합 S_n 의 최댓값은? ⁽²⁾ 62 ③ 64 (4) 68 (1) 56

15. 두 수열 $\{a_n\}$ 과 $\{b_n\}$ 의 첫째항부터 제n항까지의 합이 각각 n^2+kn , $2n^2-2n+1$ 일 때, $a_{10}=b_{10}$ 을 만족하는 상수 k의 값을 구하여라.

▶ 답:

16. 오른쪽 그림과 같이 밑변 AB의 길이가 40인 직 각삼각형 ABC가 있다. 변 AC를 11 등분하여 변 AB와 평행한 10개의 선분을 그려 그 길이를 각각 $a_1, a_2, a_3, \cdots, a_{10}$ 이라 할 때, $a_1 + a_2 + a_3 + \cdots + a_{10}$ *a*₁₀ 의 값을 구하여라.

ᆸ.

17. 9와 144 사이에 세 자연수를 넣어서 이들 5개의 수가 등비수열을 이루도록 할 때, 사이에 들어갈 세 수 중 가장 큰 수는? ① 36 (2) 45 (3) 54 (4) 63 (5) 72

18. 서로 다른 두 실수 a, b에 대하여 b, $\frac{a}{5}$, 7이 이 순서대로 등차수열을 이루고, a, a, a, b가 이 순서대로 등비수열을 이룰 때, $a^2 + b^2$ 의 값은?

19. 두 수열 $\{a_n\}$ 과 $\{b_n\}$ 의 첫째항부터 제 n 항까지의 합을 각각 S_n, T_n 이라 하면 $S_n = n^2 + kn, \log_3(T_n - 1) = n$ 이 성립한다. 두 수열의 제3항이 서로

▶ 답:

같을 때. k의 값을 구하여라.

20. 수열 $1 \cdot 2 \cdot 4$, $2 \cdot 4 \cdot 8$, $3 \cdot 6 \cdot 12$, $4 \cdot 8 \cdot 16$, ... 의 제 10 항까지의 합은? \bigcirc 400 ② 1100 ③ 12100

(5) 48400

(4) 24200

21. 수열 1, 2, 5, 10, 17, 26, · · · 의 제 20항을 구하여라.

▶ 답:

22.
$$a_n = 1 + 2 + 2^2 + 2^3 + \cdots + 2^{n-1}$$
이라 할 때, 수열
$$\frac{1}{1+a_1}, \frac{3}{3+a_2}, \frac{7}{1+a_3}, \frac{15}{1+a_4}, \cdots$$
의 첫째항부터 제20 항까지의 함은?

 $19 - \left(\frac{1}{2}\right)^{20}$ ② $20 - \left(\frac{1}{2}\right)^{20}$ ③ $19 + \left(\frac{1}{2}\right)^{20}$ ④ $20 + \left(\frac{1}{2}\right)^{19}$ ⑤ $21 + \left(\frac{1}{2}\right)^{20}$

23. 수열 $\{a_n\}$ 에서 $a_1=1,\ a_{n+1}=\frac{1}{2}a_n+1(n=1,\ 2,\ 3,\cdots)$ 일 때, 일반항 a_n 은?

①
$$\left(\frac{1}{2}\right)^{n-1}$$
 ② $2 - \left(\frac{1}{2}\right)^{n-1}$ ③ $\left(\frac{1}{2}\right)^n + \frac{1}{2}$ ④ 2^{n-1} ⑤ $2^n - 1$

- **24.** $a_1=3,\ a_2=2,\ a_{n+2}=\frac{a_{n+1}+1}{a_n}(n=1,\ 2,\ 3,\ \cdots)$ 로 정의되는 수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{66} a_n$ 의 값을 구하여라.

> 답:

25. 다음은 $\sum_{k=1}^{n} k^3 = \left\{ \frac{n(n+1)}{2} \right\}^2$ 이 성립함을 수학적 귀납법으로 증

명한 것이다.

(i)
$$n=1$$
일 때, $1^3=\left(\frac{1\cdot 2}{2}\right)^2$ 이므로 주어진 명제는 참이다.
(ii) $n=m$ 일 때 주어진 명제가 성립한다고 가정하면,
$$\sum_{k=1}^m k^3 = \left\{\frac{m(m+1)}{2}\right\}^2$$
양변에 $(\bigcirc)^3$ 을 더하면
$$\sum_{k=1}^m k^3 + (\bigcirc)^3 = \left\{\frac{m(m+1)}{2}\right\}^2 + (\bigcirc)^3$$

$$\sum_{k=1}^{m+1} k^3 = \left\{\frac{m(m+1)}{2}\right\}^2 + (\bigcirc)^3$$

$$= \frac{(m+1)^2(\bigcirc)^2}{4}$$

$$= \left\{\frac{(m+1)(\bigcirc)}{2}\right\}^2$$
따라서 $n=m+1$ 일 때도 주어진 명제가 성립한다.
(i),(ii) 에 의하여 모든 자연수 n 에 대하여
$$\sum_{k=1}^n k^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$
이 성립한다.

위의 증명 과정에서 \bigcirc 에 들어갈 식을 f(m), \bigcirc 에 들어갈 식을 g(m)이라 할 때, f(5)+g(6)의 값을 구하여라.

▶ 답:

- **26.** $\sqrt[3]{a} = 81$, $\sqrt{\sqrt{b}} = 125$ 일 때, $\sqrt[3]{\sqrt{ab}}$ 의 값을 구하여라.
 - ▶ 답:

27. $\log_{1-x}(-x^2-2x+15)$ 의 값이 정의되도록 하는 모든 정수 x의 값의 합은?

① -15 ② -10 ③ -6 ④ 2 ⑤ 4

28.
$$x = \sqrt{7 + \sqrt{33}}$$
, $y = \sqrt{7 - \sqrt{33}}$ 일 때, $\log_2 x + \log_2 y$ 의 값은?

③ 3

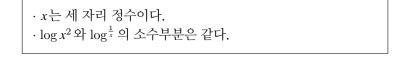
(4) 4

② 2

 $m = \log_a \alpha$, $n = \log_a \beta$ 일 때, $a^{\frac{m-n}{2}}$ 을 α , β 에 관한 식으로 나타내면? $(단, a > 0, a \neq 1, \alpha > 0, \beta > 0)$

①
$$\sqrt{\frac{\alpha - \beta}{2}}$$
 ② $\frac{\alpha - \beta}{2}$ ③ $\alpha^2 - \beta^2$

30. 실수 a, b가 $(201.4)^a = (0.02014)^b = 10000$ 을 만족할 때, $\frac{1}{a} - \frac{1}{b}$ 의 값은?


① -1 ② 0 ③ 1 ④ 2 ⑤ 3

31. 다음 상용로그표를 이용하여 log ³√0.138 의 소수 부분을 구하여라.

수	0	1	2	3	4	5	6	7	8	9
1.0	.0000	.0043	.0086	.0128	.0170	.0212	.0253	.0294	.0334	.0374
1.1	.0414	.0453	.0492	.0531	.0569	.0607	.0645	.0682	.0719	.0755
1.2	.0792	.0828	.0864	.0899	.0934	.0969	.1004	.1038	.1072	.1106
1.3	.1139	.1173	.1206	.1239	.1271	.1303	.1335	.1367	.1399	.1430
1.4	1461	1/102	1593	1553	1584	1614	1644	1673	1703	1739

32. 다음 두 조건을 만족하는 양수 x의 값을 모두 곱하면 10^k 이다. 이때, k의 값은?

1) 5 2 6 3 7 4 8 5 9

33. $\log_{10} 2 = 0.3010, \log_{10} 3 = 0.4771$ 일 때, 12^{30} 은 몇 자리 수인가?

① 31 ② 32 ③ 33 ④ 34 ⑤ 35