- ① 4×5
 - $3.5 \times 5 \times 5 \times 5$

 $4 \times 4 \times 4 \times 4 \times 4 = 4^5$ 이다.

⑤ 5×4

- 24+4+4+4+4 $4\times4\times4\times4\times4$

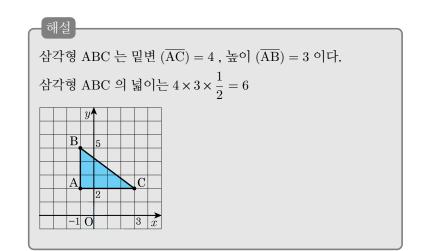
2. 다음 수를 수직선 위에 나타내었을 때, 왼쪽에서 두 번째에 있는 수와 오른쪽에서 두 번째에 있는 수의 합을 구하면?

$$\bigcirc +21$$
 $\bigcirc 12$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc -5$ $\bigcirc -\frac{14}{7}$

 \bigcirc 2

(1) -2

3. 좌표평면 위의 세 점 A(-1, 2), B(-1, 5), C(3, 2) 를 꼭짓점으로 하는 삼각형 ABC 의 넓이는?


1)6

② 9

③ 10

4 8

⑤ 12

4. 다음은 민경이네 반 학생 50 명이 방학동안 읽은 책의 수를 나타낸 도수분포표이다. 6 권 미만을 읽은 학생은 전체의 몇 % 인가?

책의 수(권)	학생 수(명)
0 ^{이상} ~ 2 ^{미만}	10
2 ^{이상} ~ 4 ^{미만}	8
4이상 ~ 6미만	
6 ^{이상} ~ 8 ^{미만}	7
8 ^{이상} ~ 10 ^{미만}	9
합계	50

③ 32%

45%

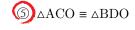
② 20%

(6권 미만을 읽은 학생수)= 50 - (7 + 9) = 34 따라서 6권 미만을 읽은 학생수는 34 명이다.

$$\therefore \ \frac{34}{50} \times 100 = 68(\%)$$

① 15%

5. 다음 그림에서 서로 합동이 될 수 $\frac{\text{없는}}{\text{COL}}$ 것은?


②
$$\triangle ADB \equiv \triangle ADC$$

$$\textcircled{4} \ \triangle ABE \equiv \triangle ACD$$

해설

⑤ $\overline{\mathrm{CO}} = \overline{\mathrm{OD}}, \ \angle \mathrm{AOC} = \angle \mathrm{BOD}$ 의 조건으로 합동이라고 말할 수 없다.

6. 다음 입체도형 중 모서리의 수가 가장 많은 입체도형은? ① 정사면체 ② 정사각뿔 ③ 삼각기둥 ④ 사각뿔대 ⑤ 정오각뿔 해설 ① 6 개 ② 8 개 ③ 9 개 ④ 12 개

⑤ 10 개

$$2x^6 \times 3x^2 = 6x^8$$

$$3 -2x^3 \times 3y^2 = -6xy^6$$

$$(3a^2)^3 = 9a^6$$

$$48a^2x^3 \div 8ax^2 = 6ax$$

$$(3a^2)^3 = 3^3(a^2)^3 = 27a^6$$

$$3 -2x^3 \times 3y^2 = -2 \times 3 \times x^3 \times y^2 = -6x^3y^2$$

8. 다음 등식을 y 에 관하여 풀면?

$$x - 2y = 2x + 3y + 5$$

①
$$y = -\frac{2}{3}x + \frac{7}{3}$$
 ② $y = -\frac{1}{5}x - 1$ ③ $y = 3x - 1$
④ $y = -2x - \frac{3}{2}$ ⑤ $y = x + \frac{5}{3}$

$$x - 2y = 2x + 3y + 5$$

$$-5y = x + 5$$

$$\therefore y = -\frac{1}{5}x - 1$$

9. 각 자리의 숫자의 합이 13 인 두 자리의 자연수가 있다. 일의 자리의 숫자와 십의 자리의 숫자를 바꾸면 처음 수보다 45 만큼 더 작다고 할 때, 처음 수를 구하여라.

십의 자리의 숫자를
$$x$$
 라 하면 일의 자리의 숫자는 $(13-x)$ 이므로 $10x + (13-x) = 10(13-x) + x + 45$

9x + 13 = -9x + 175 $18x = 162 \quad \therefore \quad x = 9$

따라서 처음 수는 94 이다.

10. 다음 중 부등식이 <u>아닌</u> 것을 모두 고르면?

①
$$3x - 5 < 0$$

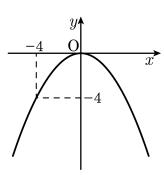
 $(3x-4)3 \le 2$

②
$$3 \times 2 - 4 = 2$$
 ③ $6a < 0$

 $(5a-2)3 \neq 4$

- ① 부등호 < 를 사용한 부등식이다.
- ③ 부등호 < 를 사용한 부등식이다.
- ④ 부등호 ≤ 를 사용한 부등식이다.

11. 숫자 1, 2, 3, ···, 20 을 각각 써 놓은 카드 중에서 임의로 한 장을 뽑을 때, 4의 배수 또는 7의 배수가 나오는 경우는 모두 몇 가지인지 구하여라.


가지

▷ 정답: 7가지

▶ 답:

해설
4의 배수는 4, 8, 12, 16, 20로 5가지이고, 7의 배수는 7, 14로 2가지이다. 따라서 4의 배수 또는 7의 배수가 나오는 경우의수는 5+2=7(가지)이다.

12. 다음 그림의 이차함수의 그래프와 x 축 대칭인 그래프의 이차함수의 식은?

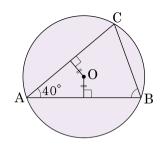
①
$$y = -3x^2$$
 ② $y = \frac{1}{4}x^2$ ③ $y = -\frac{1}{3}x^2$
④ $y = -2x^2$ ⑤ $y = -\frac{1}{4}x^2$

해설
$$y = ax^2 \text{ 에 } (-4, -4) 를 대입하면 $a = -\frac{1}{4}$ 따라서 $y = -\frac{1}{4}x^2$ 이므로 이 함수와 x 축 대칭인 이차함수는 $y = \frac{1}{4}x^2$ 이다.$$

13. 다음 이차함수의 그래프 중 폭이 가장 좁은 것은?

①
$$y = \frac{1}{2}x^2 - 1$$

②
$$y = 3x^2$$


$$3 y = -\frac{1}{2}x^2 + 5$$

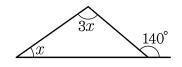
(5)
$$v = x^2 + 4x - 1$$

 x^2 의 계수의 절댓값이 클수록 폭이 좁다. 따라서 절댓값이 가장 큰 것은 ②이다.

14. 모선의 길이가 8 cm 인 원뿔의 밑면의 둘레의 길이가 $6\pi \text{ cm}$ 일 때, 원뿔의 높이를 구하여라.

밑면의 둘레가 6π cm 이므로 반지름의 길이는 3 cm 가 된다. 높이 = $\sqrt{8^2 - 3^2} = \sqrt{55}$ (cm) **15.** 다음 그림과 같이 ∠A = 40°일 때, ∠ABC 의 크기는?

중심에서 현에 내린 수선의 길이가 같으므로
$$\overline{AC} = \overline{AB}$$
 이고 $\triangle ABC$ 는 이등변삼각형
 $\therefore \angle ABC = (180\degree - 40\degree) \times \frac{1}{2} = 70\degree$


315 에 자연수를 곱하여 어떤 수의 제곱이 되도록 하려고 한다. 제곱이 되도록 하기 위해서 곱하는 수 중 첫 번째로 작은 수와 세 번째로 작은 수를 구하여라.
 답:

$$315 = 3^2 \times 5 \times 7$$

 $315 \times n = 3^2 \times 5 \times 7 \times n = x^2$ 에서

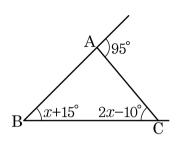
 $n = 5 \times 7 \times k^2$ 꼴이므로

n 을 작은 순으로 3 개 써 보면 $n = 5 \times 7 \times 1^2 = 35$

 $n = 5 \times 7 \times 2^2 = 140$ $n = 5 \times 7 \times 3^2 = 315$ $\therefore 35, 315$ **17.** 다음 그림에서 ∠x 의 크기는?

- ①35°
- ② 38°
- ③ 40°
- 42°

⑤ 46°


해설

삼각형의 한 외각의 크기는 이와 이웃하지 않는 두 내각의 크기의 합과 같다.

$$\angle x + 3 \angle x = 140^{\circ}$$

$$\therefore \angle x = 35^{\circ}$$

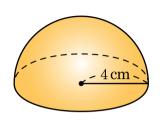
18. 다음 그림의 $\triangle ABC$ 에서 \overline{AC} 의 대각의 크기를 구하여라.

삼각형의 한 외각의 크기는 이와 이웃하지 않는 두 내각의 크기의

답:

정답: 45°

해설


합과 같으므로 $95^{\circ} = (x + 15^{\circ}) + (2x - 10^{\circ})$

 $\therefore x = 30^{\circ}$

 $\triangle ABC$ 에서 \overline{AC} 의 대각은 $\angle B$ 이다.

 $\therefore \angle B = x + 15^{\circ} = 30^{\circ} + 15^{\circ} = 45^{\circ}$

19. 다음 그림과 같이 반지름의 길이가 4cm 인 반구의 겉넓이와 부피를 차례대로 구하면?

$$1348\pi\text{cm}^2$$
, $\frac{128}{3}\pi\text{cm}^3$

③
$$47\pi \text{cm}^2$$
, $\frac{128}{3}\pi \text{cm}^3$
⑤ $49\pi \text{cm}^2$, $\frac{128}{3}\pi \text{cm}^3$

②
$$48\pi\text{cm}^2$$
, $\frac{128}{5}\pi\text{cm}^3$
④ $47\pi\text{cm}^2$, $\frac{128}{5}\pi\text{cm}^3$

(겉넓이) =
$$\pi \times 4^2 + 4\pi \times 4^2 \times \frac{1}{2} = 16\pi + 32\pi = 48\pi \text{(cm}^2\text{)}$$

(부피) = $\frac{4}{3}\pi \times 4^3 \times \frac{1}{2} = \frac{128}{3}\pi \text{(cm}^3\text{)}$

20. 다음 \bigcirc 안에 >, <, = 중 알맞은 기호를 써 넣어라.

$\frac{7}{2} \boxed{} 3.49$

$$3.49 = \frac{349 - 34}{90} = \frac{315}{90} = \frac{7}{2}$$
 이므로

___ 안에는 = 가 들어가야 한다.

21. 다음 식을 만족하는 a, b 에 대하여 a - b 의 값은?

$$0.\dot{5} = a \times 0.\dot{1}, \ 0.\dot{1}\dot{5} = b \times 0.\dot{0}\dot{1}$$

$$0.\dot{5} = \frac{5}{9} = 5 \times \frac{1}{9} = 5 \times 0.\dot{1}$$
 , $0.\dot{1}\dot{5} = \frac{15}{99} = 15 \times \frac{1}{99} = 15 \times 0.\dot{0}\dot{1}$
따라서, $a = 5$, $b = 15$ 이므로 $a - b = 5 - 15 = -10$

22.
$$1 \le \left(\frac{n}{4}\right)^{200} \le \left(\frac{27}{16}\right)^{100}$$
 을 만족하는 자연수 n 의 값을 모두 구하여라.

- 답:
- 다:
- ▷ 정답: 4
- ➢ 정답: 5

각 항의 지수를 통일하면

$$1^{100} \le \left(\frac{n^2}{16}\right)^{100} \le \left(\frac{27}{16}\right)^{100}$$
$$1 \le \frac{n^2}{16} \le \frac{27}{16}$$

 $16 < n^2 < 27$

따라서 $16 \le n^2 \le 27$ 를 만족하는 자연수 n = 4, 5 이다.

23. 연립방정식 $\begin{cases} 4(x-y) + 2x = 10 & \cdots & \text{①} \\ ax + 4y = 2 & \cdots & \text{②} \end{cases}$ 의 해가 x = 3, y = b 일 때,

해설
① 의 양변을 ÷2 하고 간단히 하면
$$3x - 2y = 5$$
 이고,
여기에 $(3, b)$ 를 대입하면 $y = 2 = b$ 이고,
② 에 $(3, 2)$ 를 대입하면 $a = -2$ 이다.
따라서 $a + b = 2 + (-2) = 0$ 이다.

24. 현재 아버지와 딸의 나이의 합이 54세 이고, 3 년 후의 아버지의 나이는 딸의 나이의 3 배가 된다고 할 때, 현재 아버지의 나이를 구하여라.

세

▷ 정답: 42 세

현재 아버지의 나이를
$$x$$
세, 딸의 나이를 y 세라 하면
$$\begin{cases} x+y=54 \\ x+3=3(y+3) \end{cases} \Rightarrow \begin{cases} x+y=54 & \cdots (1) \\ x=3y+6 & \cdots (2) \end{cases}$$

y = 12, x = 3y + 6 = 42 따라서 아버지의 나이는 42세이다.

(2)를 (1)에 대입하면 3y + 6 + y = 54

25. 연립부등식
$$\begin{cases} \frac{x+3}{4} - \frac{1-x}{2} < 2 \\ 0.4x + 1.3 < 0.5x + 1.7 \end{cases}$$
 를 푼 것은?

①
$$-6 < x < \frac{3}{2}$$
 ② $-4 < x < \frac{7}{3}$ ③ $-\frac{4}{3} < x < 3$ ④ $-\frac{1}{3} < x < 5$ ⑤ $2 < x < \frac{11}{4}$

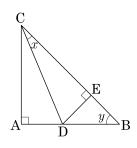
해설
$$\begin{cases} \frac{x+3}{4} - \frac{1-x}{2} < 2 & \cdots \\ 0.4x + 1.3 < 0.5x + 1.7 & \cdots \\ ①식을 정리하면 \\ x+3-2(1-x) < 8 \\ x+3-2+2x < 8 \end{cases}$$

$$x < \frac{7}{3}$$

②식을 정리하면
 $4x + 13 < 5x + 17$
 $x > -4$

3x < 7

$$\therefore -4 < x < \frac{7}{3}$$


26. 1 에서 9 까지의 숫자가 적힌 아홉 장의 카드에서 동시에 두 장의 카드를 뽑아 각각의 카드에 적힌 수를 곱했을 때, 짝수가 되는 경우의 수는?

⑤ 32 가지

④ 26 가지

과 생물 공학 수가 홀수가 되는 경우는 홀수끼리 곱한 경우밖에 없으므로 전체 경우의 수에서 홀수가 나오는 경우의 수를 빼 주면 된다.
$$\therefore \frac{9\times 8}{2} - \frac{5\times 4}{2} = 26(7)$$

27. 다음 그림과 같이 $\overline{AC} = \overline{AB}$ 인 직각이등변 삼각형 \overline{ABC} 에서 $\overline{AD} = \overline{DE}$ 일 때, $\angle x + \angle y$ 의 크기를 구하여라.

▶ 답:

➢ 정답 : 67.5°

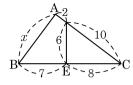
해설

 $\triangle ADC$ 와 $\triangle EDC$ 에서 \overline{CD} 는 공통, $\angle CAD = \angle CED = 90^{\circ}$, $\overline{DE} = \overline{AD}$ 이므로

△ADC ≡ △EDC 는 RHS 합동이다.

 \triangle ABC 가 직각 이등변삼각형이므로 $\angle y = 45^\circ$, \angle ACB = $\angle y = 45^\circ$ 에서 \angle DCB = $\angle x = \frac{1}{2} \times 45^\circ = 22.5^\circ$ 이다.

따라서 $\angle x + \angle y = 22.5 + 45 = 67.5^{\circ}$ 이다.


28. 다음 그림에서 닮음을 이용하여 *x* 의 값을 구하면?

① 7 ② 8

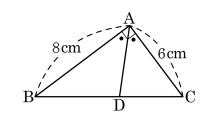
4 10

`

(5) 12

△CDE 와 △CBA 에서

 $\overline{CD} : \overline{CB} = \overline{CE} : \overline{CA} = 2 : 3$


∠C 는 공통

∴ △CDE∽△CBA(SAS닮음)

 $\overline{CD} : \overline{CB} = \overline{DE} : \overline{BA}$ 10 : 15 = 6 : x

x = 9

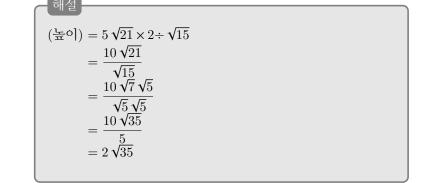
29. 다음 그림과 같은 △ABC 에서 ∠BAD = ∠CAD = 45° 일 때, △ABD 의 넓이를 구하여라.

 $\underline{\mathrm{cm}}^2$

ightharpoonup 정답: $\frac{96}{7}$ cm^2

 \triangle ABC 는 직각삼각형이므로 넓이는 $6\times 8\times \frac{1}{2}=24$ 이다. \triangle ABD 와 \triangle ACD 의 밑변의 길이의 비는 8:6=4:3 이고 높이는 서로 같으므로 넓이의 비도 4:3 이다. 따라서 \triangle ABD 의 넓이는 $\frac{96}{7}$ cm² 이다.

30. 부등식 $\sqrt{5} < 2x - 1 < \sqrt{27}$ 을 만족하는 자연수 x 를 모두 구하면?



해결
$$(\sqrt{5}+1) \div 2 < x < (\sqrt{27}+1) \div 2$$
 $1. \times \times \times < x < 3. \times \times \times$ $\therefore x = 2.3$

31. 삼각형의 넓이가
$$5\sqrt{21}$$
 이고, 밑변의 길이가 $\sqrt{15}$ 일 때, 높이를 구하면?

①
$$\sqrt{35}$$
 ② $2\sqrt{35}$ ③ $3\sqrt{35}$ ④ $4\sqrt{35}$ ⑤ $5\sqrt{35}$

32. 가로가 2a + 3, 넓이가 $6a^2 - a - 15$ 인 직사각형의 둘레의 길이를 구하여라.

$$6a^2 - a - 15 = (2a + 3)(3a - 5)$$
이므로
(세로) = $3a - 5$

∴ (둘레의 길이) =
$$(2a + 3 + 3a - 5) \times 2$$

= $(5a - 2) \times 2$
= $10a - 4$

33. 이차방정식 $3x^2 - (2k+3)x - 3 = 0$ 의 두 근 중 한 근을 a 라고 한다.

$$a$$
가 주어진 방정식의 근이므로 $x = a$ 에 대입하면 $3a^2 - (2k + 3)a - 3 = 0$

 $a - \frac{1}{k} = k$ 일 때, $(k-1)^2$ 의 값은?

양변을
$$a$$
 로 나누면, $3a - (2k+3) - \frac{3}{a} = 0$
 $3\left(a - \frac{1}{a}\right) = 2k + 3$, $3k = 2k + 3$ $\therefore k = 3$

$$\therefore (k-1)^2 = 4$$

34. 이차방정식 $x^2 + 4x + a^2 - 3a - 5 = 0$ 의 한 해가 $-2 + \sqrt{5}$ 일 때. a 의 값은? (단, a 는 음의 유리수)

한 근이
$$-2 + \sqrt{5}$$
이므로 다른 한 근은 $-2 - \sqrt{5}$
근과 계수와의 관계에서

$$a^2 - 3a - 5 = (-2 + \sqrt{5})(-2 - \sqrt{5}) = -1$$

 $a^2 - 3a - 4 = 0, (a - 4)(a + 1) = 0$

 $\therefore a = -1(a < 0)$

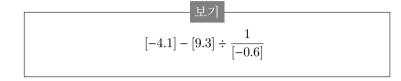
$$+ \sqrt{5})(-2 - \sqrt{5}) = -1$$

$$-4)(a+1) = 0$$

다음은 올림픽 국가대표 선발전에서 준결승을 치른 양궁 선수 4명의 점수를 나타낸 것이다. 네 선수 중 표준 편차가 가장 큰 선수를 구하 여라. 10 9 8 8 8 8 9 10 10

10	10, 0, 0, 0, 0, 0, 0, 10, 10
	10, 10, 10, 9, 9, 9, 8, 8, 8
민혁	10, 9, 9, 9, 8, 8, 9, 9, 10
동현	8, 10, 7, 8, 10, 7, 9, 10, 7

답:


35.

정답: 동현

해설

표준편차는 자료가 흩어진 정도를 나타내므로 주어진 자료들 중에서 표준편차가 가장 큰 선수는 동현이다.

36. [x] 는 x 를 넘지 않는 최대 정수를 나타내기로 한다. 예를 들어 [2.5] 에서 2.5를 넘지 않는 최대 정수는 2이므로 [2.5] = 2 이다. 이때, 다음 식의 값을 구하여라.

$$[-4.1] = -5, [9.3] = 9, [-0.6] = -1$$
$$[-4.1] - [9.3] \div \frac{1}{[-0.6]}$$
$$= (-5) - 9 \div (-1)$$

= (-5) + 9

= 4

37. 어떤 일을 완성하는 데 아버지는 14 일, 아들은 28 일이 걸린다고 한다. 이 일을 아들이 4 일 동안 한 후에 나머지를 아버지가 해서 완성하려고 할 때. 아버지는 며칠 동안 일을 해야 하는가?

해설

 $\therefore x = 12$

아버지가 하루 동안 하는 일의 양은
$$\frac{1}{14}$$
, 아들이 하루 동안 하는 일의 양은 $\frac{1}{28}$ 이다. 아들이 4 일동안 일을 하는 양은 $\frac{1}{28} \times 4 = \frac{1}{7}$ 이고, 남은 일의 양은 $\frac{6}{7}$ 이다.

그러므로 아버지가 일해야 하는 날수를 x 라고 하면 $\frac{1}{14} \times x = \frac{6}{7}$

에 완전히 들어가 25 초 동안 보이지 않았다. 이 기차가 반대 방향에서 초속 2 m 로 마주 오는 자전거 옆을 지나칠 때, 몇 초 동안 지나치게 되는가?

38.

② 2.1 え

길이가 120 m 이고, 일정한 속력으로 운행하는 기차가 1320 m 의 터널

③ 2.2 え

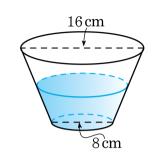
48t + 2t = 120

(기차의 속력) =
$$\frac{1320 - 120}{25}$$
 = 48(m/초)
자전거 옆을 t 초 동안 지나친다면

39. 일차함수 y = -3x - 4의 그래프는 y = -3x의 그래프를 y축의 방향으로 얼마만큼 평행이동시킨 것인가?

40.
$$2x - 5y + 3 = 0$$
의 그래프에 대한 설명 중 옳지 않은 것은?

- ① 직선의 기울기는 $\frac{2}{5}$ 이다.
- ② x 절편은 $-\frac{3}{2}$, y 절편은 $\frac{3}{5}$ 이다.
- ③ $y = \frac{2}{5}x$ 의 그래프와 평행이다.
- ④ 제2 사분면을 지나지 않는다.
- ⑤ 점 (6, 3)을 지난다.


 $y = \frac{2}{5}x + \frac{3}{5}$ 의 그래프는 제4 사분면을 지나지 않는다.

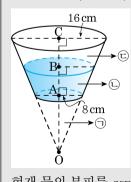
41. A, B, C, D, E 5 명의 학생들을 일렬로 세우는 데 A, C, E 3 명이 함께 이웃할 확률은?

①
$$\frac{1}{5}$$
 ② $\frac{3}{10}$ ③ $\frac{2}{5}$ ④ $\frac{1}{2}$ ⑤ $\frac{3}{5}$

따라서 확률은
$$\frac{36}{120} = \frac{3}{10}$$

42. 다음 그림과 같이 그릇의 안이 원뿔대 모양인 그릇에 물을 부어서 높이가 절반이 되도록 하였다. 들어갈 수 있는 물의 최대 부피가 504cm^3 일 때, 현재 물의 부피를 구하면 $a \text{cm}^3$ 이다. 이때, a의 값을 구하여라.

▶ 답:


▷ 정답: 171

다음 그림과 같이 원뿔대를 연장하고, ①, ⑥, ⑥은 각각의 부피를

나타낸다고 하면

 $\overline{OA}:\overline{OC}=1:2$, $\overline{AB}:\overline{BC}=1:1$ 이므로 \overline{OA} , \overline{OB} , \overline{OC} 를 각각 축으로 하는 원뿔의 닮음비는 2:3:4, 부피 비는 8:27:64이므로 $\bigcirc:(\bigcirc+\bigcirc)=19:56$

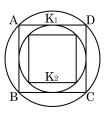
현재 물의 부피를 acm 3 라 할 때 a:504=19:56

 $\therefore a = 171$

43. 세 자리 자연수가 있다 각 자리의 수의 합은 9이고, 일의 자리의 수의 2배는 다른 두 자리의 수의 합과 같다.또, 이 자연수의 각 자리수를 거꾸로 늘어놓아 얻은 자연수는 처음

또, 이 자연구의 각 자리구들 거꾸도 들어놓아 얻은 자연구는 처음 자연수보다 99만큼 크다. 처음 자연수를 구하여라.

➢ 정답: 243


일의 자리, 십의 자리, 백의 자리의 수를 각각 p, q, r라 하면, q 수 0이상 10미만의 저스이고

p,q는 0이상 10미만의 정수이고 r은 1이상 10미만의 자연수이다.

$$\begin{cases} p+q+r=9 & \cdots \\ 2p=q+r & \cdots \\ \end{cases}$$

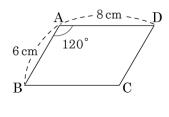
 \bigcirc , 으에서 p = 3 $(100r + 10q + 3) + 99 = 100 \times 3 + 10q + r$

44. 그림과 같이 지름의 길이가 $20 \, \mathrm{cm}$ 인 원에 내접하는 정사각형을 K_1 이라 할 때, K_1 에 내접하는 원에 또 다시 내접하는 정사각형 K_2 의 한 변의 길이는 얼마인가?

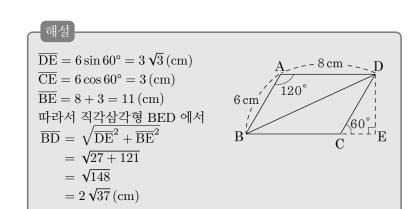
▶ 답:

 $\underline{\mathrm{cm}}$

▷ 정답: 10cm


해설

지름의 길이가 $20\,\mathrm{cm}$ 이므로 사각형 ABCD 의 대각선의 길이는 $20\,\mathrm{cm}$ 이므로 정사각형 ABCD 의 한 변의 길이는 $10\,\sqrt{2}\,\mathrm{cm}$ 이다.

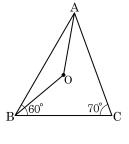

정사각형 ABCD 의 한 변의 길이는 안에 내접하는 작은 원의 지름이므로 작은 원의 지름은 $10\sqrt{2}\,\mathrm{cm}$ 이고, 작은 원의 지름은 K_2 의 대각선의 길이와 같다.

따라서 K_2 는 대각선의 길이가 $10\sqrt{2}$ cm 인 정사각형이므로 K_2 의 한 변의 길이는 10 cm 이다.

45. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 의 길이를 구하여라.

<u>cm</u>

- 46. 다음 중에서 참이 되는 문장을 모두 고르면?(단, 일치하는 경우는 생각하지 않는다.)
 - ① 한 평면에 평행한 두 직선은 평행이다.
 ② 한 평면에 평행한 두 평면은 평행이다.
 - ③ 한 직선에 평행인 두 평면은 평행이다.
 - ④ 한 직선에 수직인 두 직선은 평행이다.
 - ③ 한 직선에 수직인 두 평면은 평행이다.


① 만날 수도 있다.

해설

- ③ 만날 수도 있다.
- ④ 만날 수도, 꼬인 위치일 수도 있다.

47. 다음 그림에서 점 O는 △ABC의 외심이다 ∠B = 60°, ∠C = 70°일 때, ∠OAC의 크기 는?

a+c=50°, a+b=70°, b+c=60°이므로 세 식을 전부 더하면 2(a+b+c)=180°, a+b+c=90° 그런데 b+c=60°이므로 a=30°이다.

 $(3) 20^{\circ}$

48. 다음 그림의 마름모 ABCD 에서 \overline{BP} : $\overline{PC} = 2:3$ 이고, $\overline{AC} = 10 \mathrm{cm}$, $\overline{BD} = 20 \mathrm{cm}$ 일 때, $\triangle APC$ 의 넓이를 구하여라. (단, 단 위는 생략한다.)

답: <u>cm²</u>

$$\Box ABCD = \frac{1}{2} \times 10 \times 20 = 100 (cm^{2})$$

$$\triangle ABC = \frac{1}{2} \Box ABCD = \frac{1}{2} \times 100 = 50 (cm^{2})$$

$$\triangle ABP : \triangle APC = \overline{BP} : \overline{PC} = 2 : 3$$

 $\therefore \triangle APC = \frac{3}{5} \times 50 = 30 (cm^2)$ 이다.

49. 정수
$$n$$
에 대하여 $f(n) = \sqrt{(2n-2)(2n+2)+4}$ 이라고 할 때, $f(-5)+f(-4)+\cdots+f(4)+f(5)$ 의 값을 구하여라.

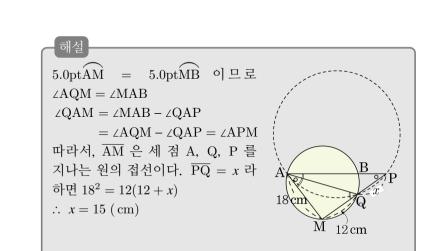
$$f(-4) = \sqrt{(-10) \times (-6) + 4} = 8 = 2 \times 4$$

$$\vdots$$

$$f(0) = \sqrt{(-4) + 4} = 0 = 2 \times 0$$

$$\vdots$$

$$f(5) = \sqrt{8 \times 12 + 4} = 10 = 2 \times 5$$


 $= 2 \times 30 = 60$

 $f(-5) = \sqrt{(-12) \times (-8) + 4} = 10 = 2 \times 5$

 $f(-5) + f(-4) + \dots + f(0) + \dots + f(5)$ = 2(5 + 4 + \dots + 0 + 1 + \dots + 5)

50. 다음 그림에서 점 M은 5.0ptAB 의 중점이고, AM = 18 cm, MQ = 12 cm 일 때, PQ 의 길이는? ① 14 cm ② 15 cm ③ 16 cm ④ 17 cm M

 \bigcirc 18 cm

