
다음 그림의 원 O 에서 5.0pt $\widehat{AB} = 5.0$ pt \widehat{BC} 이고, ∠AOB = 45° 일 1. 때, 옳은 것을 모두 골라라.

 $\widehat{ \bigcirc } \ 5.0 pt \widehat{AC} = 5.0 pt \widehat{AB} + 5.0 pt \widehat{BC}$

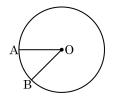
© $5.0 \mathrm{pt} 24.88 pt$ ABC 의 중심각의 크기는 90° 이다. @ $\Delta AOC = 2 \Delta AOB$

답:

답:

답:

▷ 정답: ⑤


▷ 정답: 心 ▷ 정답 : □

 \bigcirc \bigcirc $\overline{AB} = \overline{BC}$ (호의 길이가 같으므로 같은 부채꼴이고 그러

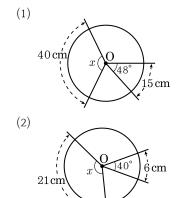
므로 현의 길이도 같다.) ⓒ ○ 5.0ptAC = 5.0ptAB + 5.0ptBC (a) $\triangle 5.0 \mathrm{pt} 24.88 \mathrm{pta}$ (b) 중심각의 크기는 90° 이다. (a) $\times \triangle AOC = 2\triangle AOB$ (현의 길이는 중심각의 크기에 비례하지

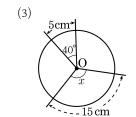
않는다.)

2. 다음 $\angle AOB$ 를 3 배 증가 시켰다고 할 때 옳지 <u>않은</u> 것을 모두 고르면?

- ① 삼각형 AOB 의 넓이는 3배로 증가한다. ② 5.0ptAB 는 3배 증가한다.
- ④ $\overline{OA} = \overline{OB}$ 이다.
- ⑤ 전체 원의 넓이는 그대로이다.

① x : 부채꼴의 넓이와 중심각의 크기가 비례한다.


해설


② ○ : 호의 길이와 중심각의 크기는 비례한다. ③ x : OA 는 변하지 않는다.

④ ○ : ∠AOB 를 변화시켜도 반지름의 길이는 변하지 않는다.

⑤ ○ : 전체 원의 넓이는 변하지 않는다.

3. 다음 그림에서 $\angle x$ 의 크기를 구하여라.

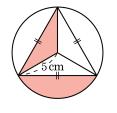
답:답:

달:▷ 정답: (1) 128°

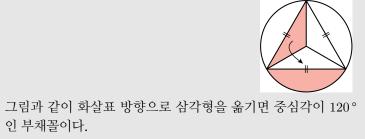
 ▷ 정답: (2) 140°

 ▷ 정답: (3) 120°

(1) $\angle x:48^{\circ}=40:15$


 $15 \angle x = 1920^{\circ}$ $\angle x = 128^{\circ}$

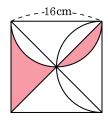
 $(2) \ \angle x : 40^{\circ} = 21 : 6$ $6 \angle x = 840^{\circ}$


 $\therefore \ \angle x = 140^{\circ}$ (3) $\angle x : 40^{\circ} = 15 : 5$

 $5\angle x = 600^{\circ}$ $\therefore \ \angle x = 120^{\circ}$

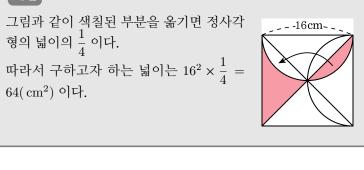
4. 다음 그림과 같은 도형에서 색칠한 부분의 넓이를 구하여라.

▶ 답: ightharpoonup 정답: $rac{25}{3}\pi ext{cm}^2$

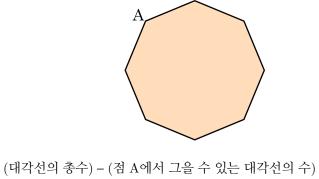


따라서 색칠된 부분의 넓이는 $5^2\pi \times \frac{120\,^\circ}{360\,^\circ} = \frac{25\pi}{3}(\,\mathrm{cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$


5. 다음 정사각형에서 색칠된 부분의 넓이를 구하여

 $\underline{\mathrm{cm}^2}$



▷ 정답: 64<u>cm²</u>

▶ 답:

6. 다음 그림의 팔각형에 대하여 다음을 구하면?

① 11 ② 12 ③ 13 ④ 14

⑤15

 $\frac{8(8-3)}{2} - 5 = 20 - 5 = 15(7)$

- 7. 다음 다각형에서 한 꼭짓점에서 그을 수 있는 대각선의 개수를 a, 대각선의 총 개수를 b라고 할 때, a+b의 값을 구하여라.
 - (1) 사각형 (2) 육각형
 - (3) 칠각형
 - (4) 팔각형
 - ▶ 답:

▶ 답:

- 답:
- ▶ 답:
- ▷ 정답: (1) 3

▷ 정답: (4) 25

- ▶ 정답: (2) 12
- ▷ 정답: (3) 18
- n각형의 한 꼭짓점에서 그을 수 있는 대각선의 개수는 (n-3)(단, $n \ge 4$) n각형의 대각선의 총 개수는 $\frac{n(n-3)}{2}$ (단, $n \ge 4$)
 - (1) a = 4 3 = 1
 - $b = \frac{4(4-3)}{2} = 2$ $\therefore a+b = 1+2 = 3$
 - (2) a = 6 3 = 3 $b = \frac{6(6-3)}{2} = 9$
 - $b = \frac{7(7-3)}{2} = 14$ $\therefore a+b=4+14=18$ (4) a = 8-3=5
 - $b = \frac{8(8-3)}{2} = 20$ $\therefore a+b = 5+20 = 25$

 $\therefore a+b=3+9=12$

(3) a = 7 - 3 = 4

- 8. 다음 다각형에서 한 꼭지점에서 그을 수 있는 대각선의 개수를 a, 대각선의 총 개수를 b라고 할 때, b-a의 값을 구하여라.
 - (1) 칠각형 (2) 십이각형
 - (3) 육각형
 - (4) 구각형
 - 답:
 - ▶ 답:
 - ▶ 답:

▶ 답:

- ▷ 정답: (1) 10
- ▶ 정답 : (2) 45
- ▷ 정답: (3) 6

 ▷ 정답: (4) 21

(1) a = 7 - 3 = 4

(2) a = 12 - 3 = 9

(3) a = 6 - 3 = 3

 $b = \frac{6(6-3)}{2} = 9$

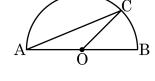
b - a = 9 - 3 = 6(4) a = 9 - 3 = 6

 $b = \frac{9(9-3)}{2} = 27$

b - a = 27 - 6 = 21

 $b = \frac{7(7-3)}{2} = 14$

b - a = 14 - 4 = 10

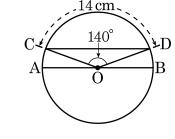

 $b = \frac{12(12-3)}{2} = 54$

 $\therefore b - a = 54 - 9 = 45$

n각형의 한 꼭짓점에서 그을 수 있는 대각선의 개수는 (n-3)(단, $n\geq 4)$

n각형의 대각선의 총 개수는 $\frac{n(n-3)}{2}($ 단, $n \ge 4)$

 $5.0 \widehat{\mathrm{ptAB}} = 45.0 \widehat{\mathrm{ptBC}}$ 일 때, $\angle \mathrm{OAC}$ 의 크기를 구하여라. 9.


▶ 답:

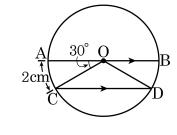
 ▶ 정답:
 22.5 °

 $5.0 ext{ptBC} = \frac{1}{4} 5.0 ext{ptAB}$ 이므로, $\angle BOC = 180^\circ imes \frac{1}{4} = 45^\circ$ $\triangle OAC$ 는 이등변삼각형이므로, $\angle OAC = \angle OCA$ $\therefore \angle BOC = \angle OAC + \angle OCA = 45^\circ$

 $\therefore \angle OAC = \frac{45}{2} = 22.5^{\circ}$

10. 다음 그림에서 \overline{AB} $/\!/\!/\,\overline{CD}$ 이고 $5.0 \mathrm{ptCD}$ = $14 \mathrm{cm}$, $\angle COD$ = 140° 일 때, $5.0 \mathrm{ptAC} + 5.0 \mathrm{ptBD}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

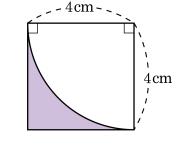

▷ 정답: 4<u>cm</u>

답:

 $\Delta {
m COD}$ 는 이등변삼각형이고 $\overline{
m AB} \, / \! / \, \overline{
m CD}$ 이므로 $\angle DCO = 20^{\circ} = \angle COA$ 이고

∠CDO = 20° = ∠DOB 이다. 5.0ptAC = 5.0ptDB 이고, 20° : 140° = 5.0ptAC : 14, 5.0ptAC = 2 이다. 따라서 5.0ptAC + 5.0ptDB = 2 + 2 = 4 이다.

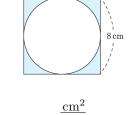
11. 다음 그림에서 \overline{AB} $/\!/\!/\,\overline{CD}$ 이고 $\angle AOC=30^\circ$, $5.0 pt \widehat{AC}=2 cm$ 일 때, $5.0 pt \widehat{CD}$ 의 길이는?


① 4cm ② 6cm ③ 8cm ④ 10cm ⑤ 12cm

 $\Delta {
m COD}$ 는 이등변삼각형이고, $\overline{
m AB}$ // $\overline{
m CD}$ 이므로 $\angle {
m AOC}=30^\circ=\angle {
m OCD}$ 이다.

∠COD = 180° - 30° - 30° = 120° 이므로 30°: 120° = 2: 5.0ptCD, 5.0ptCD = 8 이다.

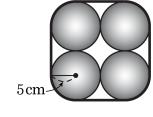
00 : 120 = 2 : 0.0ptcD, 0.0ptcD = 0 |


12. 다음 그림과 같은 도형에서 빗금 친 부분의 넓이는? (단, 단위는 생략한다.)

- ① $16 2\pi$ ② $16 4\pi$ ③ $20\pi 16$ (4) $40\pi - 16$ (5) $12 + 2\pi$

정사각형의 넓이에서 부채꼴의 넓이를 빼면 된다. $S = (4 \times 4) - \left(\pi \times 4^2 \times \frac{1}{4}\right) = 16 - 4\pi$

13. 다음 그림과 같은 정사각형 ABCD 에서 색칠한 부분의 넓이를 구하여라.


정답: 16 (4 − π) cm²

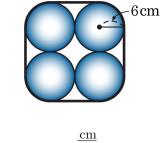
정사각형의 넓이에서 원의 넓이를 뺀다.

▶ 답:

 $8^2 - 4^2\pi = 16(4 - \pi)(\text{cm}^2)$

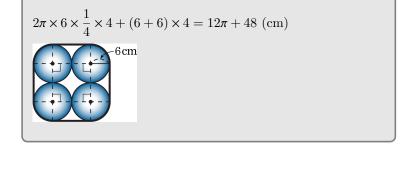
14. 다음 그림과 같이 밑면의 반지름의 길이가 5 cm 인 네 개의 원기둥을 묶을 때, 필요한 최소한의 끈의 길이는?

(40 + 25 π) cm (50 + 10 π) cm

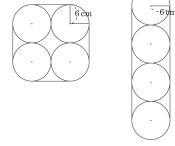

① $(20 + 10\pi)$ cm ② $(20 + 25\pi)$ cm

 $(3)(40+10\pi)$ cm

해설


 $5 \times 8 + 2\pi \times 5 = 40 + 10\pi \text{ (cm)}$

15. 다음 그림과 같이 반지름의 길이가 6cm 인 원기둥 4 개를 끈으로 한 바퀴 돌려서 묶었다. 끈의 길이는 몇 cm 이상 필요한지 구하여라.



정답: 12π + 48 cm

▶ 답:

16. 반지름이 6cm 인 4개의 두루마리 화장지를 하나의 끈으로 묶으려고 한다. 아래의 방법 중 끈을 가능한 짧게 하려면 어느 방법으로 묶어야 하는지 선택하고 그 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▶ 답:

▶ 답:

▷ 정답 : 첫 번째 방법

▷ 정답: (48 + 12π) <u>cm</u>

첫 번째 방법 $12 \times 4 + 6 \times 2 \times \pi = 48 + 12\pi$ (cm)

두 번째 방법 $12 \times 6 + 6 \times 2 \times \pi = 72 + 12\pi$ (cm)