
다음 그림의 원 O 에서 5.0pt $\widehat{AB} = 5.0$ pt \widehat{BC} 이고, ∠AOB = 45° 일 1. 때, 옳은 것을 모두 골라라.

 $\widehat{ \bigcirc } \ 5.0 pt \widehat{AC} = 5.0 pt \widehat{AB} + 5.0 pt \widehat{BC}$

© $5.0 \mathrm{pt} 24.88 pt$ ABC 의 중심각의 크기는 90° 이다. @ $\Delta AOC = 2 \Delta AOB$

답:

답:

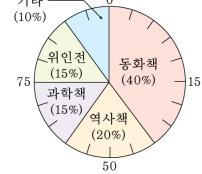
답:

▷ 정답: ⑤

▷ 정답: 心 ▷ 정답 : □

 \bigcirc \bigcirc $\overline{AB} = \overline{BC}$ (호의 길이가 같으므로 같은 부채꼴이고 그러

므로 현의 길이도 같다.) ⓒ ○ 5.0ptAC = 5.0ptAB + 5.0ptBC (a) $\triangle 5.0 \mathrm{pt} 24.88 \mathrm{pta}$ (b) 중심각의 크기는 90° 이다. (a) $\times \triangle AOC = 2\triangle AOB$ (현의 길이는 중심각의 크기에 비례하지

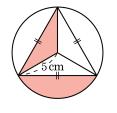

않는다.)

2. 부채꼴의 호의 길이가 원 둘레의 길이의 $\frac{1}{8}$ 일 때, 이 부채꼴의 중심각의 크기를 구하여라.

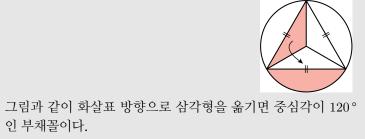
▷ 정답: 45_°

호의 길이가 원 둘레의 길이의 $\frac{1}{8}$ 이면 중심각의 크기도 360°의 $\frac{1}{8}$ 이다. 따라서, 360°× $\frac{1}{8}$ = 45°

3. 다음은 현진이네 반 학급 문고 학급 문고의 종류별 책의 수 의 종류별 책의 수를 조사하여 나타낸 원그래프이다. 역사책 기타 (10%) 을 나타내는 부채꼴의 호의 길 이는 동화책을 나타내는 부채꼴 의 호의 길이의 몇 배인지 구하 위인전 (15%) 동화책 여라. (40%)


ightharpoonup 정답: $rac{1}{2}$ 배

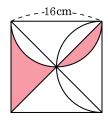
▶ 답:


역사책이 차지하는 비율이 20% 이고 동화책이 차지하는 비율이

40% 이므로 역사책 수는 동화책 수의 $\frac{1}{2}$ 배이다. 중심각의 크기 가 $\frac{1}{2}$ 배이고 호의 길이는 그에 비례하므로 $\frac{1}{2}$ 배이다.

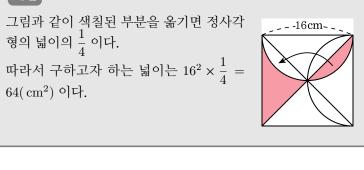
4. 다음 그림과 같은 도형에서 색칠한 부분의 넓이를 구하여라.

▶ 답: ightharpoonup 정답: $rac{25}{3}\pi ext{cm}^2$

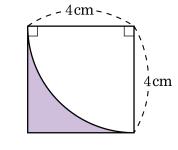


따라서 색칠된 부분의 넓이는 $5^2\pi \times \frac{120\,^\circ}{360\,^\circ} = \frac{25\pi}{3}(\,\mathrm{cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$


5. 다음 정사각형에서 색칠된 부분의 넓이를 구하여

 $\underline{\mathrm{cm}^2}$



▷ 정답: 64<u>cm²</u>

▶ 답:

6. 다음 그림과 같은 도형에서 빗금 친 부분의 넓이는? (단, 단위는 생략

- ① $16 2\pi$ ② $16 4\pi$ ③ $20\pi 16$ (4) $40\pi - 16$ (5) $12 + 2\pi$

정사각형의 넓이에서 부채꼴의 넓이를 빼면 된다. $S = (4 \times 4) - \left(\pi \times 4^2 \times \frac{1}{4}\right) = 16 - 4\pi$

7. 다음 그림과 같은 정사각형 ABCD 에서 색칠한 부분의 넓이를 구하여라.

8 cm

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $16(4-\pi)$ $\underline{\mathrm{cm}^2}$

정사각형의 넓이에서 원의 넓이를 뺀다.

▶ 답:

 $8^2 - 4^2 \pi = 16 (4 - \pi) (\text{cm}^2)$

8. 삼각기둥의 꼭짓점, 모서리, 면의 개수의 합을 구하여라.

<u>개</u>

▷ 정답: 20 <u>개</u>

꼭짓점 : 6 개, 모서리 : 9 개, 면 : 5 개

 $\therefore 6 + 9 + 5 = 20$

9. 다음 보기에서 다면체인 것의 개수를 구하여라.

보기
① 삼각뿔 ① 사각기둥 ② 원뿔
② 삼각형 ② 원기둥 ② 오각형
③ 정육면체 ③ 사각뿔

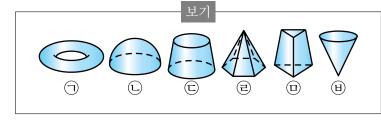
<u>개</u>

정답: 4 <u>개</u>

V 01: 1 <u>"</u>

▶ 답:

-해설 다각형(


다각형인 면으로 둘러싸인 도형을 다면체라 한다. ⓒ 원뿔 -회전체이다.

(a) 삼각형-다각형이다.(평면도형) (a) 원기둥-회전체이다.

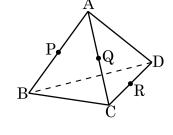
● 연기 8-되는제 기의.● 오각형-다각형이다.(평면도형)

.: ¬, □, ⊗, ⊚

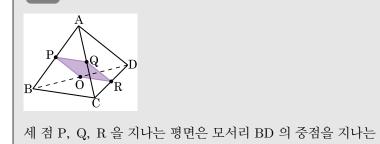
10. 다음 보기에서 다면체를 모두 골라라.

▶ 답: ▶ 답:

▷ 정답: ② ▷ 정답: □


다면체는 다각형인 면으로만 둘러싸인 입체도형이다. 따라서

해설


보기의 ②, ②이 다면체이다 ② 육각뿔

◎ 삼각뿔대

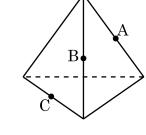
11. 다음 그림과 같은 정사면체에서 각 모서리의 중점 P, Q, R을 지나는 평면으로 자를 때, 단면의 모양을 말하여라.

■ 답:□ 정답: 정사각형

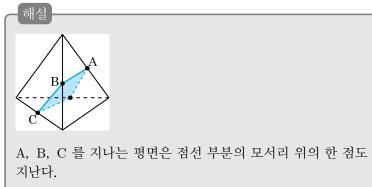
평면이다. 모서리BD 의 중점을 O 라고 할 때, $\overline{PQ} = \overline{QR} = \overline{RO} = \overline{PO}$ 이다.

즉, □PQRO 는 네 변의 길이가 같고, 대각선의 길이도 같으므로

정사각형이다.


- 12. 다음 중 정육면체를 평면으로 잘랐을 때 나타날 수 있는 단면이 $\frac{\text{아닌}}{\text{것은}}$?
 - ① 정삼각형
 ② 육각형
 ③ 직사각형

 ④ 직각삼각형
 ⑤ 오각형

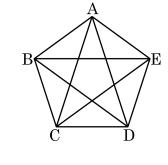

해설 정육면체를 평면으로 잘랐을 때 나올 수 있는 단면은 정삼각형,

이등변삼각형, 등변사다리꼴, 평행사변형, 마름모, 오각형, 육각형, 사다리꼴, 사각형이다.

13. 다음 그림과 같이 정사면체의 모서리 위에 점 A, B, C 가 있다. 세점 A, B, C 를 지나는 평면으로 자를 때, 그 잘린 면은 어떤 도형인지 써라.

답:▷ 정답: 사각형

14. 어떤 정다각형의 한 꼭짓점에서 그을 수 있는 대각선을 모두 그었더니 정다각형이 15 개의 삼각형으로 나누어졌다. 이 정다각형의 내부에 그을 수 있는 대각선 중 길이가 가장 긴 것의 개수를 구하여라.


 ■ 답:
 개

 □ 정답:
 17 개

 $\frac{\text{ond}}{\text{ond}}$ 구하는 다각형을 n 각형이라 하면 n 각형의 한 꼭짓점에서 대각선

을 모두 그었을 때 만들어지는 삼각형의 개수는 (*n*−2) 개이므로 *n*−2 = 15 ∴∴ *n* = 17 정십칠각형의 한 꼭짓점에서 내부에 그을 수 있는 대각선 중 가장 길이가 긴 것은 두 개이다.
그런데 대각선은 두 개씩 겹쳐지므로 $\frac{17 \times 2}{2} = 17$ (개)

15. 다음 그림과 같이 정오각형의 대각선을 그었을 때, 정오각형의 꼭짓 점들로 만들어지는 이등변삼각형의 개수는?

③10개

① 6 개 ② 7개 ③ 8 개 ④ 9 개

정오각형이므로 변의 길이는 모두 같고, 대각선의 길이도 모두

해설

같다. 따라서 만들어 지는 이등변삼각형은 \triangle ABC, \triangle ABD, \triangle ABE, \triangle ACD, \triangle ACE, \triangle ADE, \triangle BCD, \triangle BCE, \triangle BDE, \triangle CDE의 모두

10 개이다.

16. 어떤 다각형의 한 꼭짓점에서 대각선을 그었을 때 생기는 삼각형의 개수를 a 개, 이때 생기는 대각선의 개수를 b 개라고 할 때, a-b 의 값을 구하여라.

 답:

 ▷ 정답: 1

-

a = n - 2, b = n - 3 이므로 $\therefore a - b = (n - 2) - (n - 3) = n - 2 - n + 3 = 1$