1. 등식
$$x^3 + x - 1 = (x - a)(x - b)(x - c)$$
가 항등식일 때, $a^3 + b^3 + c^3$ 의 값을 구하면?

$$= (x-a)(x-b)(x-c)$$

$$= x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc$$

$$\therefore a+b+c = 0, \ ab+bc+ca = 1, \ abc = 1$$

$$a^3 + b^3 + c^3 - 3abc$$

$$= (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

$$\therefore a^3 + b^3 + c^3 = 3$$

 $x^3 + x - 1$

2. $f(x) = x^3 - 3x^2 + 2x + 5$ 에 대하여 $f(x-1) = x^3 + Ax^2 + Bx + C$ 일 때, 상수 $A \times B \times C$ 의 값을 구하여라.

$$f(x-1) = (x-1)^3 - 3(x-1)^2 + 2(x-1) + 5$$
$$= x^3 + Ax^2 + Bx + C \cdots \bigcirc$$
①은 x에 대한 항등심이므로

양변에
$$x = 0$$
, 1, 2를 차례로 대입하면,
 $x = 0$ 일 때. $-1 = C$

$$A = -6, B = 11, C = -1$$

3. 등식 $2x^2 - 3x - 1 = a(x - 1)(x - 2) + bx(x - 1) + cx(x - 2)$ 이 x에 관한 항등식이 되도록 할 때, a + b + c의 값은?

$$x = 2$$
 대임, $b = \frac{1}{2}$
 $x = 1$ 대임, $c = 2$
 $\therefore a + b + c = -\frac{1}{2} + \frac{1}{2} + 2 = 2$

수치대입법을 이용한다.

x = 0 대입, $a = -\frac{1}{2}$

4. f(x)가 x의 다항식일 때 $(x^2-2)(x^4+1)f(x)=x^8+ax^4+b$ 가 x에 대한 항등식이 될 때 a+b의 값을 구하여라.

▷ 정답 : _7

$$(x^2-2)(x^4+1)f(x) = x^8 + ax^4 + b$$
에서
 $x^2=2$ 를 대입하면 $0=16+4a+b\cdots$ ①

$$x^4 = -1$$
을 대입하면 $0 = 1 - a + b \cdots ②$
①, ②를 연립하여 풀면 $a = -3$, $b = -4$

$$\therefore a+b=-7$$

6.
$$f(x)$$
가 x 의 다항식일 때, $(x^2-2)(x^4+1)f(x)=x^8+ax^4+b$ 가 x 에 대한 항등식이 될 때, $2a-b$ 의 값을 구하면?

①
$$-6$$
 ② -5 ③ -4 ④ -3 ⑤ -2

준 식의 양변에
$$x^2 = 2$$
를 대입하면 $4a + b = -16$
 $x^4 = -1$ 을 대입하면 $-a + b = -1$
∴ $a = -3$, $b = -4$
∴ $2a - b = -2$

6. $\frac{2x+3a}{4x+1}$ 가 x에 관계없이 일정한 값을 가질 때, 12a의 값을 구하시오.

$$ightharpoonup$$
 정답: $12a = 2$

- $\frac{2x+3a}{4x+1}=k$ (일정값 = k) 라 놓으면 2x+3a=k(4x+1) 에서 (2-4k)x+3a-k=0 이 식은 x에 대한 항등식이므로,
- 2-4k=0, 3a-k=0 $k=\frac{1}{2}$ 이므로 3a=k에서 $a=\frac{1}{6}$
 - $\therefore 12a = 2$

7. k의 값에 관계없이 $(2k^2 - 3k)x - (k + 2)y - (k^2 - 4)z = 28$ 이 항상 성립하도록 x, y, z의 값을 정할 때, 3x + y + z의 값은?

① 1 ② 2 ③ 3 ④
$$4$$

 $\therefore 3x + y + z = 4$

8. $\frac{2x + ay - b}{x - y - 1}$ 가 $x - y - 1 \neq 0$ 인 어떤 x, y의 값에 대하여도 항상 일정한 값을 가질 때, a - b의 값을 구하여라.

$$\frac{2x + ay - b}{x - y - 1} = k$$
라 놓으면

$$2x + ay - b = k(x - y - 1)$$

x, y에 대하여 정리하면.

$$(2-k)x + (a+k)y - b + k = 0$$

위의 식이 x , y 에 대한 항등식이어야 하므로 $2-k=0$. $a+k=0$. $-b+k=0$

$$\therefore k = 2, a = -2, b = 2$$

$$\therefore a - b = -4$$

세 실수 a, b, c 에 대하여 (a, b, c) = ab + bc 로 정의한다. 이때, 등식 (x, a, y) - (2x, b, y) = (x, 2, y) 이 임의의 실수 x, y에 대하여 성립하도록 a, b의 값을 정하면?
 ① a = 1, b = 2
 ② a = 2, b = 2
 ③ a = 2, b = 0

9.

①
$$a = 1, b = 2$$
 ② $a = 2, b = 2$ ③ $a = 2, b = 0$
④ $a = 0, b = 2$ ⑤ $a = 0, b = 0$

기호의 정의에 따라서 주어진 식을 다시 쓰면
$$(ax + ay) - (2bx + by) = 2x + 2y$$
 이 식을 x , y 에 대하여 정리하면 $(a - 2b - 2)x + (a - b - 2)y = 0$ 이 등식이 임의의 x , y 에 대하여 성립하므로 $a - 2b - 2 = 0$, $a - b - 2 = 0$ 위의 두 식을 연립하여 풀면 $a = 2$, $b = 0$

10. x에 대한 다항식 $x^3 + ax^2 + bx + 3$ 을 $(x-1)^2$ 을 나누었을 때 나머지가 2x + 1이 되도록 상수 a - b의 값을 구하여라.

최고차항의 계수가 1이므로
$$x^3 + ax^2 + bx + 3$$

$$(x+k) + 2x +$$

$$= (x-1)^{2} (x+k) + 2x + 1$$

= $x^{3} + (k-2)x^{2} + (3-2k)x + k + 1$

$$a = k - 2, \ b = 3 - 2k, \ 3 = k + 1$$

 $k - 20$

$$k = 2$$
이므로 $a = 0, b = -1$
 $\therefore a - b = 0 - (-1) = 1$

양변의 계수를 비교하면

11. x에 대한 다항식 $x^3 + ax^2 + bx + 3$ 이 $x^2 + 1$ 로 나누어떨어질 때, 상수 a, b의 값을 정하면?

(4) a = -3, b = -1

①
$$a = -1, b = 3$$
 ② $a = 1, b = 3$

$$\bigcirc a = 3, \ b = 1$$

③ a = 3, b = -1

해설

$$x^3 + ax^2 + bx + 3$$

 $= (x^2 + 1)(x + c)$
 $= x^3 + cx^2 + x + c$
 $\therefore a = c, b = 1, c = 3$
따라서 $a = 3, b = 1$

12. x의 다항식 $x^3 + ax + b = x^2 - 3x + 2$ 로 나눌 때, 나머지가 2x + 1이 되도록 상수 a, b의 값의 합을 구하여라.

▶ 답:

▷ 정답: 2

$$x^3 + ax + b = x^2 - 3x + 2$$
로 나눌 때,
몫을 $x+q$ 라 하면 (일반적으로 $px+q$ 로 해야겠지만 x^3 의 계수가
1이므로 $x+q$)

$$\therefore x^3 + ax + b = (x - 2)(x - 1)(x + q) + 2x + 1$$

이 등식은 x 에 관한 항등식이므로

$$x = 1$$
을 대입하면 $1 + a + b = 2 + 1 \cdots$ ① $x = 2$ 를 대입하면 $8 + 2a + b = 4 + 1 \cdots$ ② ①. ②에서 $a = -5$. $b = 7$

 $x^{3} + ax + b = (x^{2} - 3x + 2)(x + q) + 2x + 1$

$$\therefore a+b=2$$

13. 다항식
$$4x^3 - 2x^2 - 21x + \frac{45}{2}$$
 가 $(x - r)^2$ 으로 나누어 떨어질 때, 양수 r 의 값은?

 $f(x) = 4x^3 - 2x^2 - 21x + \frac{45}{2} \cdots \bigcirc$

 $f(x) = (x - r)^2 (4x - \alpha)$

- **14.** 등식 $x^3 + ax^2 + 2x + b = (x^2 + x + 1)Q(x) + 2x + 1$ 이 x에 대한 항등식일 때, a + b의 값은?
 - $\bigcirc 1 2 \qquad \bigcirc 2 1 \qquad \bigcirc 3 \bigcirc 0 \qquad \bigcirc 4 \bigcirc 1 \qquad \bigcirc 5 \bigcirc 2$

해설
$$Q(x) = x + c$$
라고 두고 전개하여 계수를 비교하면 $a = 0, b = 0, c = -1$ 이므로 $a + b = 0$

해설
$$x^3 + ax^2 + 2x + b \stackrel{=}{=} x^2 + x + 1 로 직접 나눗셈을 하면,$$

$$x + (a - 1)$$

$$x^2 + x + 1) x^3 + ax^2 + 2x + b$$

$$- \left[x^3 + x^2 + x + b \right]$$

$$- \left[(a - 1)x^2 + x + b \right]$$

$$- \left[(a - 1)x^2 + (a - 1)x + (a - 1) \right]$$

$$(2 - a)x + b - a + 1$$

2-a=2, b-a+1=1

a = 0, b = 0

5. 다항식 f(x)를 다항식 g(x)로 나눈 몫을 Q(x), 나머지를 R(x)라 할 때 f(x)를 $\frac{g(x)}{n}$ 로 나눈 몫과 나머지를 나타낸 것은?

① 몫 :
$$nQ(x)$$
 , 나머지 $R(x)$ ② 몫 : $\frac{Q(x)}{n}$, 나머지 $R(x)$ ③ 몫 : $\frac{Q(x)}{n}$, 나머지 $\frac{R(x)}{n}$ ④ 몫 : $Q(x)$, 나머지 $\frac{R(x)}{x}$ ⑤ 몫 : $nQ(x)$, 나머지 $nR(x)$

$$f(x) = g(x)Q(x) + R(x) \cdots \bigcirc$$

$$f(x) = \frac{g(x)}{n}Q'(x) + R'(x) \cdots \bigcirc$$

$$\bigcirc \bowtie A f(x) = nQ(x)\frac{g(x)}{n} + R(x),$$

$$\frac{Q'(x)}{n} = Q(x), R'(x) = R(x)$$

$$\therefore Q'(x) = n \cdot Q(x), R'(x) = R(x)$$

16. x에 대한 삼차식 $x^3 + ax^2 + bx + 3$ 이 $x^2 + 1$ 로 나누어떨어질 때, 상수 a, b의 값을 정하면?

①
$$a = -1, b = 3$$
 ② $a = 1, b = 3$ ③ $a = 3, b = -1$ ④ $a = -3, b = -1$

$$\bigcirc a = 3, \ b = 1$$

$$x^{3} + ax^{2} + bx + 3 = (x^{2} + 1)(x + c)$$

$$= x^{3} + cx^{2} + x + c$$

$$\therefore a = c, b = 1, c = 3$$

$$\therefore a = 3, b = 1$$

17. 다항식 $x^3 + ax^2 + bx + 3$ 을 $x^2 - x - 12$ 로 나눈 나머지가 14x - 9일 때. a + b의 값은?

1

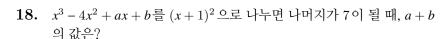
2 2

3

(4)

(3)

해설


몫을
$$Q(x)$$
라 하면 $x^3 + ax^2 + bx + 3$

$$= (x^2 - x - 12)Q(x) + 14x - 9$$

= $(x - 4)(x + 3)Q(x) + 14x - 9$

$$x = 4, x = -3$$
을 각각 대입하면 $16a + 4b + 67 = 47 \cdots$

$$9a - 3b - 24 = -51 \cdots \bigcirc$$

$$\bigcirc$$
, \bigcirc 을 연립하여 풀면 $a=-2$, $b=3$
 $\therefore a+b=1$

해설

직접 나눠본다.
$$\frac{x-6}{x^2+2x+1} \frac{x-6}{x^3-4x^2+} \frac{ax+b}{ax+b} \\
-\frac{x^3+2x^2+}{x} \frac{x}{-6x^2+(a-1)x+b} \\
-\frac{-6x^2-}{(a+11)x+b+6}$$
나머지가 7 이므로 $a+11=0$, $b+6=7$

$$\therefore a=-11, b=1$$

$$\therefore a+b=-10$$

해설
$$x^{3} - 4x^{2} + ax + b$$

$$= (x+1)^{2}(x+k) + 7$$

$$= x^{3} + (k+2)x^{2} + (2k+1)x + k + 7$$
계수를 비교하면
$$k+2 = -4, 2k+1 = a, k+7 = b$$

$$k = -6 \circ \Box \Box \exists \ a = -11, b = 1$$

$$\therefore a+b = -10$$

19. 모든 실수
$$x$$
에 대하여 $2x^3-3x^2-x+1=a(x-1)^3+b(x-1)^2+c(x-1)+d$ 이라 할 때, $a+b+c+d$ 의 값은?

해설
$$2x^3 - 3x^2 - x + 1 = a(x-1)^3 + b(x-1)^2 + c(x-1) + d$$

$$x = 2 를 대입하면,$$

$$\left\{2 \times (2)^3\right\} - (3 \times 2^2) - 2 + 1 = a + b + c + d$$

$$\therefore a + b + c + d = 3$$

20. x에 대한 다항식 $(ax-1)^3$ 의 전개식에서 모든 항의 계수의 합이 125일 때, 실수 a의 값은?

① 2 ② 3 ③ 4 ④ 5 ⑤ 6

21. $(x^3 + 2x^2 - 3x + 2)^4 (2x - 1)^7$ 을 전개했을 때, 모든 계수들의 합을 구하여라.

에로
$$(x^3+2x^2-3x+2)^4\cdot(2x-1)^7$$
 = $a_0x^{19}+a_1x^{18}+a_2x^{17}+\cdots+a_{19}$ 로 놓으면 계수들의 총합 $a_0+a_1+\cdots+a_{19}$ 는 양변에 $x=1$ 을 대입한 결과와 같으므로 항등식의 성질에서

 $(1+2-3+2)^4 \cdot (2-1)^7 = 2^4 = 16$

22. 다항식 $(x^3+x^2-2x-1)^5$ 을 전개한 식이 $a_0+a_1x+a_2x^2+a_3x^3+\cdots+a_{14}x^{14}+a_{15}x^{15}$ 일 때, $a_0-a_1+a_2-a_3+\cdots+a_{14}-a_{15}$ 의 값을 구하면?

① 0 ② 1 ③ 2 ④ 3 ⑤ 5

해설
$$(x^3 + x^2 - 2x - 1)^5$$

$$= a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{14}x^{14} + a_{15}x^{15}$$
양변에 $x = -1$ 을 대입하면
$$(-1 + 1 + 2 - 1)^5 = a_0 - a_1 + a_2 - a_3 + \dots + a_{14} - a_{15} = 1$$

23. 다항식 $f(x) = x^3 + mx^2 + nx + 2$ 를 x - 1 로 나누면 나누어떨어지고, x + 1 로 나누면 나머지가 x + 1 로 나누면 나머지가 x + 1 라고 한다. x + 1 로 나누면 나머지가 x + 1 라고 한다. x + 1 로 나누면 나머지가 x + 1 라고 한다. x + 1 로 나누면 나머지가 x + 1 라고 한다. x + 1 로 나누면 나머지가 x + 1 라고 한다.

$$f(1) = 1 + m + n + 2 = 0, m + n = -3$$

 $f(-1) = -1 + m - n + 2 = 2, m - n = 1$
두 식을 연립하여 풀면 $m = -1, n = -2$
 $mn = 2$

24. x에 관한 삼차식 $x^3 + mx^2 + nx + 1$ 을 x + 1로 나누면 나머지가 -5이고, x - 2로 나누면 나머지가 1이라고 한다. 이 때, 상수 m,n에 대하여 m + n은?

$$f(x) = x^3 + mx^2 + nx + 1$$
이라하면,
 $f(x) = (x+1)Q_1(x) - 5$
 $f(x) = (x-2)Q_2(x) + 1$
 $\therefore f(-1) = -1 + m - n + 1 = -5$

따라서 m+n=-1이다.

f(2) = 8 + 4m + 2n + 1 = 1

m = -3, n = 2

25. x에 관한 삼차식 $x^3 + mx^2 + nx + 1$ 을 x + 1로 나누면 나머지가 5이고, x - 2로 나누면 나누어 떨어진다고 한다. 이 때, m + n의 값은?

①
$$-\frac{19}{3}$$
 ② $-\frac{25}{6}$ ③ $-\frac{29}{6}$ ④ $-\frac{14}{3}$ ⑤ $-\frac{7}{2}$

$$f(x) = (x+1)Q1(x) + 5으로 놓으면 f(-1) = 5$$

$$f(x) = (x-2)Q'(x)으로 놓으면 f(2) = 0$$
따라서, $f(-1) = -1 + m - n + 1 = 5$

$$f(2) = 8 + 4m + 2n + 1 = 0$$
두 식을 연립하여 풀면 $m = \frac{1}{6}, \quad n = -\frac{29}{6}$

$$\therefore m + n = -\frac{28}{6} = -\frac{14}{3}$$

 $f(x) = x^3 + mx^2 + nx + 1$

- **26.** 다항식 f(x)에 대하여, $f\left(\frac{1}{2}\right) = 3$, $f\left(\frac{1}{3}\right) = 1$ 일 때, f(x) 를 (2x-1)(3x-1)로 나는 나머지를 구하시오.
 - ▶ 답:

정답: 12x - 3

구하는 나머지를
$$ax + b$$
라 하면
$$f(x) = (2x - 1)(3x - 1)Q(x) + ax + b$$

$$x = \frac{1}{2}, \ x = \frac{1}{3}$$
을 각각 양변에 대입하면

$$f\left(\frac{1}{2}\right) = \frac{1}{2}a + b = 3, \ f\left(\frac{1}{3}\right) = \frac{1}{3}a + b = 1$$
 두 식을 연립하여 풀면 $\frac{1}{6}a = 2 \Rightarrow a = 12, b = -3$

∴구하는 나머지는 12*x* − 3

27. 다항식 f(x)를 x-1로 나눈 나머지가 3이고, x+1로 나눈 나머지가 -1일 때, $(x^2+x+2)f(x)$ 를 x^2-1 로 나눈 나머지를 R(x)라 할 때, R(1)구하시오.

해설

나머지 정리에 의해
$$f(1) = 3$$
, $f(-1) = -1$
 $(x^2 + x + 2)f(x) = (x^2 - 1)Q(x) + ax + b$
 $x = 1$, $x = -1$ 을 대입한다.
 $4f(1) = 12 = a + b \cdots$

 $2f(-1) = -2 = -a + b \cdots$ (그). (그)을 연립하여 풀면,

28. x^3 의 계수가 1 인 삼차다항식 f(x) 를x-1,x-2,x-3 으로 나눈 나머지가 각각 2,4,6 일 때, f(x) 를 x-4 로 나눈 나머지를 구하면?

$$f(1) = 2, f(2) = 4, f(3) = 6$$

$$f(x) = (x-1)(x-2)(x-3) + ax^2 + bx + c$$

$$a+b+c = 2, 4a+2b+c = 4, 9a+3b+c = 6$$

$$a = 0, b = 2, c = 0$$

$$f(x) = (x-1)(x-2)(x-3) + 2x$$

$$f(4) = 3 \times 2 \times 1 + 8 = 14$$

29. 다항식 f(x)를 $x^2 - x$ 로 나누면 3이 남고 $x^2 + x - 6$ 로 나누면 x - 1이 남을 때, f(x)를 $x^2 - 3x + 2$ 로 나눌 때의 나머지를 R(x)라 할 때, R(1)의 값을 구하면?

① 1 ② 2 ③ 3 ④
$$-2$$
 ⑤ -3

$$f(x) = x(x-1)Q_1(x) + 3$$

$$f(x) = (x-2)(x+3)Q_2(x) + x - 1$$

$$f(x) = (x-1)(x-2)Q(x) + ax + b$$

$$f(1) = 3, \ f(2) = 1 \ \mathrm{이므로}$$

$$a+b=3, \ 2a+b=1$$
연립하여 풀면, $a=-2, \ b=5$

$$\therefore (구하는 나머지)R(x) = -2x + 5$$

$$\therefore R(1) = 3$$

30. x에 다항식 f(x)를 x-2로 나누면 나머지가 5이고, x-3으로 나누면 나머지가 9이다. 이 다항식을 (x-2)(x-3)으로 나눌 때의 나머지를 구하면?

(2) 2x + 3

4x - 3

$$4x + 3$$
 $3x - 1$

(1) x - 1

나머지 정리에서
$$f(2) = 5$$
, $f(3) = 9$
 $f(x) = (x - 2)(x - 3)Q(x) + ax + b$ 라 놓으면,
 $f(2) = 2a + b = 5$, $f(3) = 3a + b = 9$ 을
연립하여 풀면 $a = 4$, $b = -3$
∴ 나머지는 $4x - 3$

31. 다항식 f(x)를 x-1, x-2로 나눈 나머지가 각각 1, 2일 때, f(x)를 x^2-3x+2 로 나눈 나머지를 구하면?

①
$$x-1$$
 ② $x+1$ ③ $-x+1$

$$f(x) = (x-1)Q_1(x) + 1 \Rightarrow f(1) = 1$$

 $f(x) = (x-2)Q_2(x) + 2 \Rightarrow f(2) = 2$
 $f(x) = (x-1)(x-2)Q_3(x) + ax + b$ 라 하면,
 $f(1) = a + b = 1$, $f(2) = 2a + b = 2$ 이다.
 $\therefore a = 1$, $b = 0$ 이므로 나머지는 x

32. 다항식 P(x)를 x+1로 나누면 떨어지고, x-2로 나누면 나머지가 3이다. 이때, P(x)를 (x+1)(x-2)로 나누었을 때 나머지는?

①
$$x$$
 ② $-x+1$ ③ $x+1$ ④ $-2x+2$ ⑤ $2x+2$

이 시설
$$P(x) = (x+1)Q(x)$$

$$P(x) = (x-2)Q'(x) + 3$$

$$P(x) = (x+1)(x-2)Q''(x) + ax + b$$

$$P(-1) = 0, \quad P(2) = 3 \circ | 므로,$$

$$-a+b=0, \quad 2a+b=3$$

$$\therefore \quad a=1, \ b=1$$
따라서 나머지는 $x+1 \circ |$ 다.

33. 다항식 f(x)를 x+1로 나눈 나머지가 -2이고, x-2로 나눈 나머지가 1일 때, f(x)를 (x+1)(x-2)로 나눈 나머지는?

①
$$2x + 1$$
 ② $x + 1$ ③ $x - 1$ ④ $2x - 1$ ⑤ $3x + 2$

$$f(x) = (x+1) Q_1(x) - 2$$

$$f(x) = (x-2)Q_2(x) + 1$$

$$f(x) = (x+1) (x-2) Q_3(x) + ax + b$$

$$f(-1) = -a + b = -2, \ f(2) = 2a + b = 1$$

$$\therefore a = 1, \ b = -1$$
구하는 나머지는 $x - 1$

해섴

34. 다항식 *f*(*x*)를 *x* − 1로 나눌 때의 나머지는 3이고, *x* − 2로 나눌 때의 나머지는 1이다. 이 다항식을 (*x* − 1)(*x* − 2)로 나눌 때의 나머지를 구하면?

(3) -2x + 3

(2) -2x - 1

$$f(x) = (x-1)(x-2)Q(x) + ax + b$$
 라 하면, $f(1) = 3$, $f(2) = 1$ 이므로 $f(1) = a + b = 3$, $f(2) = 2a + b = 1$ 연립하면 $a = -2$, $b = 5$: 나머지는 $-2x + 5$ 이다.

(1) -2x + 1

35. 다항식 f(x)를 x+1로 나눌 때의 나머지가 3이고, x-2로 나누어서 떨어진다. 이 다항식을(x+1)(x-2)로 나눌 때의 나머지를 구하면?

(3) x - 1

(2) -x + 2

(5) 3

해설
$$R(x) = ax + b$$
라 두면

R(-1) = -a + b = 3, R(2) = 2a + b = 0a = -1, b = 2 $\supseteq \exists R(x) = -x + 2$

① 2x + 1

(4) 2

36. 다항식 f(x) 를 x-1 로 나누었을 때, 나머지가 3 이고, 다항식 f(x+2) 를 $(x+1)^2$ 으로 나누었을 때의 나머지는 ax+4 이다. 이때, 상수 a 의 값을 구하는 과정을 나타낸 것이다. () 안에 알맞지 않은 것을 고르면?

풀이)f(x) 를 x-1 로 나누었을 때의 나머지가 3 이므로 (@)이다.

f(x+2) 를 $(x+1)^2$ 으로 나누었을 때의 몫을 Q(x) 라 하면 (ⓑ) \cdots (숙)

(\bigcirc)은 x 에 대한 항등식이므로 x = -1 을 대입하면 (\bigcirc)이다.

따라서 (@)에서 (@)이다.

- ① ⓐ f(1) = 3
- ② ⑤ $f(x+2) = (x+1)^2 Q(x) + ax + 4$
- (3) © f(-1) = -a + 4
- $\textcircled{4} \ \textcircled{d} a + 4 = 3$
- ⑤ @ a = 1

 \bigcirc 에 x = -1 를 대입하면 f(1) = -a + 4

37. 다항식 f(x)를 x-2, x+3으로 나누었을 때의 나머지가 각각 1, -4이다. f(x)를 x^2+x-6 으로 나누었을 때의 나머지를 R(x)라 할 때, R(5)의 값을 구하면?

$$f(2) = 1, \ f(-3) = -4$$

 $R(x) = ax + b$ 라 하면
 $f(x) = (x+3)(x-2)Q(x) + ax + b$
 $2a + b = 1, \ -3a + b = -4$
 $\therefore a = 1, b = -1$

R(x) = x - 1R(5) = 5 - 1 = 4 **38.** 다항식 f(x)를 x+1, x+2로 나누었을 때의 나머지가 각각 3, -1이다. 이때, f(x)를 x^2+3x+2 로 나눌 때의 나머지는?

①
$$2x + 5$$

$$\bigcirc$$
 $-3x$

$$3x + 6$$

$$4x + 7$$

$$5x + 8$$

다항식
$$f(x)$$
를 $x^2 + 3x + 2$, 즉 $(x+1)(x+2)$ 로 나눌 때의 몫을 $Q(x)$, 나머지를 $ax + b$ 라고 하면

$$Q(x)$$
, 나머시들 $ax + b$ 다고 하면
$$f(x) = (x+1)(x+2)Q(x) + ax + b$$
로 놓을 수 있다.

문제의 조건에서
$$f(-1) = 3$$
, $f(-2) = -1$ 이므로 $f(-1) = -a + b = 3$

$$f(-2) = -2a + b = -1$$

이것을 풀면 $a = 4, b = 7$

따라서, 구하는 나머지는
$$4x + 7$$

39. x에 대한 다항식 f(x)를 x+1로 나눈 나머지는 -5이고, x-1로 나눈 나머지는 -1이다. 이때, f(x)를 (x+1)(x-1)로 나눈 나머지를 구하면?

①
$$2x + 1$$
 ② $2x + 3$ ③ $2x - 1$
④ $2x$

해설
$$f(x) = (x+1)(x-1) 로 나누었을 때의 몫을 $Q(x)$, 나머지를 $ax+b$ 라 하면
$$f(x) = (x+1)(x-1)Q(x) + ax+b$$
한편, $f(x) = x+1$, $x-1$ 로 나눈 나머지가 각각 -5 , -1 이므로 $f(-1) = -a+b = -5$, $f(1) = a+b = -1$ 이것을 연립하여 풀면 $a=2$, $b=-3$ 따라서 구하는 나머지는 $2x-3$ 이다.$$

40. x의 다항식 f(x)를 x-2로 나누면 -3이 남고, x+3으로 나누면 27이 남는다. 이 f(x)를 (x-2)(x+3)으로 나눌 때, 그 나머지는?

①
$$6x - 9$$
 ② $-6x + 9$ ③ $2x + 3$ ④ $-2x - 3$

해설

$$f(x)$$
를 $(x-2)(x+3)$ 으로 나눈 몫을 $Q(x)$, 나머지를 $ax+b$ 라 하면
$$f(x) = (x-2)(x+3)Q(x) + ax+b$$
문제의 조건으로부터
$$f(2) = -3, \ f(-3) = 27$$
이므로

2a + b = -3, -3a + b = 27

따라서 구하는 나머지는 -6x + 9이다.

a = -6, b = 9

41. f(x)를 x-1, x-2로 나눈 나머지가 각각 3, 5일 때, f(x)를 x^2-3x+2 로 나눈 나머지를 구하면?

a = 2, b = 1

따라서 구하는 나머지는 2x + 1

⑤
$$2x - 3$$

(3) 2x - 1

(2) 2x + 3

해설
$$x^2 - 3x + 2 로 나는 몫을 Q(x), 나머지를 $ax + b$ 라 하면 $f(x) = (x^2 - 3x + 2)Q(x) + ax + b$ 그런데 $f(1) = 3$, $f(2) = 5$ 이므로 $a + b = 3$, $2a + b = 5$$$

42. 다항식 $2x^{30} + 2x^{28} - x$ 를 x + 1로 나누었을 때의 몫을 Q(x)라 할 때, Q(x)를 x - 1로 나누었을 때의 나머지는?

$$\bigcirc -2$$
 $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 4$ 1 $\bigcirc 2$

$$2x^{30} + 2x^{28} - x = (x+1)Q(x) + R$$

양변에 $x = -1$ 을 대입 하면,
 $2 + 2 + 1 = R$: $R = 5$
양변에 $x = 1$ 을 대입 하면,
 $2 + 2 - 1 = 2Q(1) + 5$

O(1) = -1

43. 다항식 f(x)를 x-3으로 나누었을 때의 몫이 Q(x), 나머지가 1이고, 또 Q(x)를 x-2로 나누었을 때의 나머지가 -2이다. f(x)를 x-2로 나누었을 때의 나머지를 구하면?

$$f(x) = (x-3)Q(x) + 1$$

 $Q(2) = -2$
 $f(x) 를 x - 2$ 로 나눈 나머지는 $f(2)$ 이다.
 $f(2) = (2-3)Q(2) + 1$
 $= -1 \times (-2) + 1 = 3$

44. x의 다항식 f(x)를 x + 1로 나눌 때, 나머지가 2이다. 이 때, $(x^2 - x + 3) f(x)$ 를 x + 1로 나눈 나머지를 구하면?

$$f(-1) = 2$$

 $(x^2 - x + 3) f(x) = (x + 1)Q(x) + R$
 $x = -1$ 대일
 $\therefore R = 5f(-1) = 5 \times 2 = 10$

45. 다항식 f(x)를 (x-1)(x-2)로 나눈 나머지가 4x+3일 때 f(2x)를 x-1로 나눈 나머지는?

$$f(x) = (x-1)(x-2)Q(x) + 4x + 3$$
 $x = 2$ 를 대입하면 $f(2) = 11$
 $f(2x)$ 를 $x - 1$ 로 나눈 나머지를 R 이라 하면

 $f(2x) = (x-1)Q'(x) + R$
 $x = 1$ 을 대입하면 $f(2) = R$

 $\therefore R = 11$

46. 다항식 f(x)를 (3x+2)(x-4)로 나눈 나머지가 -2x+1일 때, $f(x^2+3)$ 을 x-1로 나눈 나머지는?

$$f(x) = (3x + 2)(x - 4)Q(x) - 2x + 1 \cdots ①$$

$$f(x^3 + 3) = (x - 1)Q'(x) + R \cdots ②$$
① 의 양변에 $x = 4$ 를 대입하면 $f(4) = -7$
② 의 양변에 $x = 1$ 을 대입하면 $f(4) = R$

$$\therefore R = -7$$

47. 다항식 f(x)를 x^2-4 로 나누었을 때의 나머지가 -x+4이다. 다항식 f(x+1)을 x^2+2x-3 으로 나누었을 때의 나머지를 구하면?

①
$$2x + 1$$
 ② $-x + 3$ ③ $x - 1$ ④ $2x$ ⑤ $2x - 3$

$$f(x) = (x^2 - 4)P(x) - x + 4$$

$$= (x + 2)(x - 2)P(x) - x + 4$$

$$\therefore f(-2) = 6, \ f(2) = 2$$

$$f(x + 1) = (x^2 + 2x - 3)Q(x) + ax + b$$

$$= (x + 3)(x - 1)Q(x) + ax + b$$

$$x = -3 을 대입하면 f(-2) = -3a + b = 6$$

$$x = 1 을 대입하면 f(2) = a + b = 2$$

$$\therefore a = -1, b = 3$$

따라서 나머지는 -x+3

- **48.** 다항식 f(x)를 일차식 $ax + b(a \neq 0)$ 으로 나누었을 때의 몫을 Q(x), 나머지를 R이라 할 때. xf(x)를 ax + b로 나는 나머지를 구하면?
 - $\odot bR$

 \bigcirc aR

 \bigcirc R

해설
$$f(x) = (ax + b)Q(x) + R \quad \therefore R = f(-\frac{b}{a})$$

$$g(x) = xf(x) \stackrel{=}{=} ax + b$$
로 나는 나머지는
$$g(-\frac{b}{a}) = -\frac{b}{a}f(-\frac{b}{a}) = -\frac{b}{a}R$$

49. 다항식 $x^3 + ax^2 + bx + c$ 를 x + 2로 나누면 3이 남고, $x^2 - 1$ 로 나누면 떨어진다. 이 때, abc의 값을 구하면?

▷ 정답: 9

해설
$$x^3 + ax^2 + bx + c = (x+2)Q_{1}(x) + 3$$

 $\therefore abc = 9$

$$= (x+1)(x-1)Q_2(x)$$

$$f(-2) = 3 \quad f(1) = 0 \quad f(-1) = 0$$

$$x = -2 \text{ Then } -8 + 4a - 2b + c = 3$$

x = 1 대입, 1 + a + b + c = 0세 식을 연립해서 구하면

x = -1 대입, -1 + a - b + c = 0

$$a = 3, b = -1, c = -3$$

50. x에 대한 다항식 $x^3 + ax^2 - x + b$ 를 x - 3로 나누었을 때 몫과 나머지를 다음과 같은 조립제법으로 구하려고 한다. a + b + c + d + k의 값을 구하면?

① 19 ② 20 ③ 21 ④ 22 ⑤ 23