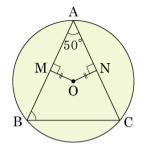

1. 다음 그림에서 a+b 의 합을 구하여라.



답:


 $\underline{\mathrm{cm}}$ 

 $\triangleright$  정답:  $a+b=9\underline{\mathrm{cm}}$ 

해설

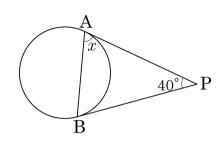
- (1) 한 원이나 합동인 원에서 현의 길이가 같으면 중심에서 현에 내린 수선의 길이도 같다. a = 3
- (2) 중심에서 현에 내린 수선의 길이가 같으면 그 현의 길이도 같다. b=6

다음 그림에서  $\overline{OM} = \overline{ON}$ ,  $\angle A = 50^{\circ}$  일 때, ∠B 의 크기는?



해설

중심에서 현에 이르는 거리가 같으므로 
$$\overline{\mathrm{AB}} = \overline{\mathrm{AC}}$$
  
 $\Delta \mathrm{ABC}$  가 이등변삼각형


3. 다음 그림에서 직선 PA, PB는 원의 접선 이고 점A, B는 접점이다. ∠PAB = 60° 일 때, AB 의 길이는? P

① 
$$12\sqrt{3}$$
cm ②  $6\sqrt{3}$ cm ②  $9$ cm ③  $12$ cm

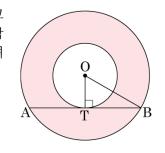
③ 6cm

 $\overline{\rm PA}=\overline{\rm PB}$  이므로  $\triangle {\rm ABC}$  는 이등변삼각형이다. 그런데  $\angle {\rm PAB}=60\,^{\circ}$  인 이등변삼각형은 정삼각형이므로  $\overline{\rm AB}=12{\rm cm}$  이다.

4. 다음 그림에서  $\overline{PA}$  와  $\overline{PB}$  는 점 A,B 를 각각 접점으로 하는 원의 접선이다.  $\angle APB$  의 크기가  $40^\circ$  일 때,  $\angle x$  의 크기를 구하여라.



▶ 답:


해설

70.0

➢ 정답: 70°

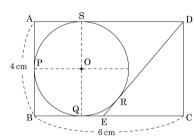
 $\triangle ABP \leftarrow \overline{AP} = \overline{BP}$  인 이등변삼각형이다.  $\angle x = (180^{\circ} - 40^{\circ}) \div 2 = 70^{\circ}$ 

 다음 그림과 같이 두 원의 중심은 O 이고 색칠한 부분의 넓이가 100πcm² 일 때, 작 은 원에 접하는 현 AB 의 길이를 구하여 라. (단, T 는 접점)



답:

➢ 정답: 20 cm


해설

큰 원의 반지름: R, 작은 원의 반지름: r

 $R^2\pi - r^2\pi = 100\pi$ ,  $R^2 - r^2 = 100$   $\triangle \text{OTB}$  에서  $R^2 - r^2 = \overline{\text{BT}^2} = 100$  이므로  $\overline{\text{BT}} = 10$  $\overline{\text{AB}} = 2\overline{\text{BT}} = 20 \text{ cm}$ 

cm

6. 다음 그림과 같은 직사각형 ABCD 안에 원 O 와 ΔCDE 가 접하고 있다. ΔCDE 의 둘레의 길이를 구할 때, 다음 번호에 알맞게 쓴 것이 <u>아닌</u> 것은?



$$\overline{AP} = \overline{AS} = 2$$

$$\overline{DS} = \overline{DA} - \overline{AS} = 4$$

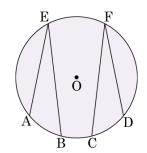
$$(\triangle CDE \ \supseteq \ \overline{\Xi} \ \dashv) = \overline{CD} + \overline{DE} + \overline{EC}$$

$$= \overline{CD} + (\overline{DR} + \overline{RE}) + (\overline{1})$$

$$= \overline{CD} + \overline{DR} + (\overline{2}) + \overline{EC}$$

$$= \overline{CD} + \overline{DR} + (\overline{3}) + \overline{EC}$$

$$= \overline{CD} + \overline{DR} + (\overline{4})$$


$$= \overline{CD} + \overline{DR} + (\overline{4})$$

$$= \overline{CD} = \overline{CD} + \overline{DR} + (\overline{4})$$

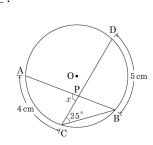
① 
$$\overline{\text{EC}}$$
 ②  $\overline{\text{RE}}$  ③  $\overline{\text{EQ}}$  ④  $\overline{\text{CQ}}$  ⑤ 16cm



7. 다음 \_\_\_\_\_\_안에 알맞은 것을 써넣어라 다음 그림에서 5.0ptAB = 5.0ptCD 이면 ∠AEB = \_\_\_\_



답:


▷ 정답: ∠ CFD

같은 길이의 호에 대한 원주각의 크기는 서로 같으므로 ∠AEB = ∠CFD

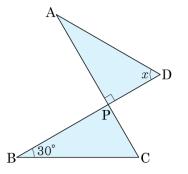
8. 다음 그림과 같이 두 현 AD, BC 의 연장선의 교점을 P 라 하자. ∠ACB = 20°, ∠CBD = 50°일 때, ∠P의 크기를 구하여라. (단, 단위는 생략)



**10.** 다음 그림에서 5.0ptAC = 4 cm , 5.0ptBD = 5 cm , ∠DCB = 25° 일 때, ∠APC 의 크기는?

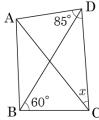


$$5.0$$
pt $\overrightarrow{AC}$ :  $5.0$ pt $\overrightarrow{BD}$  =  $\angle ABC$ :  $\angle BCD$   
 $4:5 = \angle ABC: 25^{\circ}$ 


해설

$$\therefore \angle ABC = 20^{\circ}$$

$$\therefore \angle ABC = \angle DBC + \angle DCB = 20^{\circ} + 25^{\circ} = 20^{\circ}$$

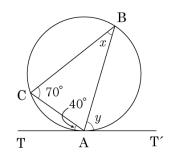

 $\therefore \angle APC = \angle PBC + \angle PCB = 20^{\circ} + 25^{\circ} = 45^{\circ}$ 

## 11. 다음 그림의 네 점 A, B, C, D 가 한 원 위에 있도록 ∠x 의 크기를 구하면?



$$\angle CBP = \angle DAP = 30^{\circ}$$
  
 $\therefore \angle x = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$ 

**12.** 다음 사각형 ABCD 가 원 위에 있을 때, *x* 의 크기를 구하여라.




원에 내접하는 사각형은 대각의 크기의 합이 180° 이므로

$$\angle DBC = \angle DAC = 60^{\circ}$$

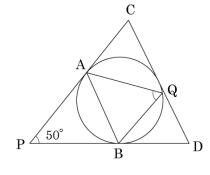
$$\therefore x = 180 \,^{\circ} - (60 \,^{\circ} + 85 \,^{\circ}) = 35 \,^{\circ}$$

**13.** ★ ○ 원 O 의 접선일 때, ∠x + ∠y = ( )° 이다. ( )에 알맞은 수를 구하여라.

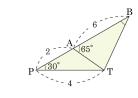


▶ 답:

➢ 정답: 110

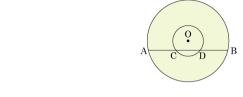

원의 접선과 그 접점을 지나는 현이 이루는 각의 크기는 그 현에 대한 원주각의 크기와 같다.  $\Delta y = 70^{\circ}, \, \Delta x = 40^{\circ}$ 

$$\angle y = 70^{\circ}, \ \angle x = 40^{\circ}$$

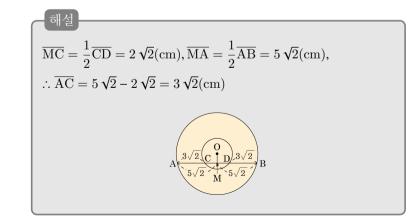

$$\therefore \ \angle x + \angle y = 110^{\circ}$$

**14.** 다음 그림에서 PA, PB 가 접선 일 때, ∠AQB 의 크기는?

 $\angle ABP = \angle AQB = 65$  ° 이다.



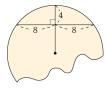

**15.** 다음 그림에서  $\overline{PA} = 2$ ,  $\overline{AB} = 6$ ,  $\overline{PT} = 4$  이고 ∠APT = 30°, ∠BAT = 65° 이다. 이 때, ∠PBT 의 크기는?



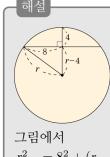

$$\overline{PT}^2 = \overline{PA} \times \overline{PB} \implies 4^2 = 2 \times 8$$
 이 성립하므로  $\overline{PT}$  는 원의 접선이다.  
따라서,  $\angle ABT = \angle ATP = 65^\circ - 30^\circ = 35^\circ$  이다.

16. 다음 그림과 같이 중심이 점 O 이고 반지름의 길이가 다른 두 개의 원이 있다.  $\overline{AB} = 10\sqrt{2} \text{cm}$ ,  $\overline{CD} = 4\sqrt{2} \text{cm}$  일 때,  $\overline{AC}$  의 길이는?




- ①  $5\sqrt{2}$ cm ②  $4\sqrt{2}$ cm ②  $\sqrt{2}$ cm
- © 2 **v**2cm




 $3\sqrt{2}$ cm

길이는?

17. 다음 그림과 같이 원모양의 토기 파편이 있을 때, 이 토기의 지름의

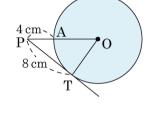


① 18 ② 19 ③ 20 ④ 21 ⑤ 22



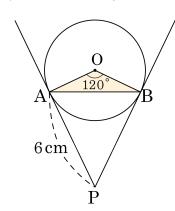
 $r^2 = 8^2 + (r - 4)^2$   $r^2 = 64 + r^2 - 8r + 16$ 8r = 80

 $\therefore r = 10$ 


따라서 토기의 지름의 길이는 2 × 10 = 20 이다.

**18.** 다음 그림에서  $\overrightarrow{PT}$ 는 원  $\overrightarrow{O}$  의 접선이고 점 T는 접점이다.  $\overline{PT} = 8 \text{ cm}$ ,  $\overline{PA} = 4 \text{ cm}$ 일 때, 원 O 의 넓이는?

① 
$$24\pi \,\mathrm{cm}^2$$
 ②  $36\pi \,\mathrm{cm}^2$ 

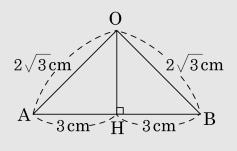

③ 
$$49\pi \,\mathrm{cm}^2$$
 ④  $60\pi \,\mathrm{cm}^2$   
⑤  $65\pi \,\mathrm{cm}^2$ 

(3)  $49\pi \, \text{cm}^2$ 



해설  $\overline{AO} = \overline{TO} = r$  이라 하면.  $\overline{OP}^2 = \overline{PT}^2 + \overline{OT}^2$  에 의하여  $(r+4)^2 = 64 + r^2$  $\therefore r = 6$ 따라서 원의 넓이는  $\pi r^2 = 36\pi \,\mathrm{cm}^2$  이다.

**19.** 다음 그림에 두 직선 PA, PB 는 원 O 의 접선이고 점 A, B 는 접점 이다. ∠APB = 60°,  $\overline{AP}$  = 6cm 일 때, △AOB 의 넓이는?




- $\bigcirc$  4cm<sup>2</sup>
  - (4)  $12\sqrt{2}$ cm<sup>2</sup>

라할때,

②  $3\sqrt{3}$ cm<sup>2</sup> ③ 10cm<sup>2</sup>

⑤  $12\sqrt{3}$ cm<sup>2</sup>



 $\overline{PO}$  를 그으면  $\triangle OAP$  에서  $\angle OPA = 30^\circ$ ,  $\angle AOP = 60^\circ$   $\overline{AO}: \overline{AP} = 1: \sqrt{3} = \overline{AO}: 6$   $\therefore \overline{AO} = 2\sqrt{3}(\text{cm})$   $\triangle OAB$  는 이등변삼각형이므로 점 O 에서 내린 수선의 발을 H

 $\overline{OH} = \sqrt{(2\sqrt{3})^2 - (3)^2} = \sqrt{3} (\text{cm})$  이다.

 $\therefore \triangle OAB = \frac{1}{2} \times 6 \times \sqrt{3} = 3\sqrt{3} (\text{cm}^2)$ 

 20. 다음 그림에서 PT, PT'이 원 O

 에 접할 때, 색칠한 부분의 넓이

 는?

80°

① 
$$\frac{125}{9}\pi \text{ cm}^2$$
 ②  $\frac{125}{18}\pi \text{ cm}^2$  ③  $\frac{325}{9}\pi \text{ cm}^2$   
④  $\frac{325}{18}\pi \text{ cm}^2$  ⑤  $\frac{225}{18}\pi \text{ cm}^2$ 

- <sup>해설</sup> 원의 밖의 한 점에서 그 원에 그은 두 접선의 길이는 같다.

21. 다음 그림에서 세 점 D, E, F 는 접점이다. 
$$\overline{AB}=7$$
,  $\overline{AC}=6$ ,  $\overline{BC}=5$  일 때,  $\overline{BD}$  의 길이는?

⑤ 3

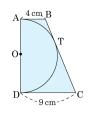
1

② 1.5

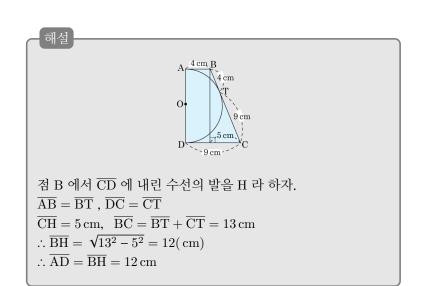
$$\overline{\mathrm{BD}} = \overline{\mathrm{BE}} \; , \; \overline{\mathrm{CE}} = \overline{\mathrm{CF}} \;$$
이므로

 $\overline{AD} + \overline{AF} = (\overline{AB} + \overline{BD}) + (\overline{AC} + \overline{CF})$  $= (\overline{AB} + \overline{BE}) + (\overline{AC} + \overline{CE})$ 

 $= \overline{AB} + (\overline{BE} + \overline{CE}) + \overline{AC}$ 

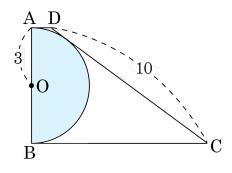

④ 2.5

$$=7+5+6=18$$
 그런데  $\overline{AD}=\overline{AF}$  이므로  $\overline{AD}=18\times\frac{1}{2}=9$ 


$$\therefore \overline{BD} = \overline{AD} - \overline{AB} = 9 - 7 = 2$$

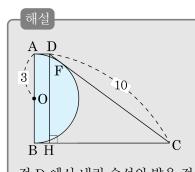
= 7 + 5 + 6 = 18

**22.** 그림에서  $\overline{AD}$  는 반원의 지름이고,  $\overline{AB}$ ,  $\overline{BC}$ ,  $\overline{CD}$  는 반원에 접한다. 이 때,  $\overline{AD}$  의 길이는?




① 11cm ② 12cm ③ 13cm ④ 14cm ⑤ 15cm




**23.** 다음 그림에서  $\overline{AD}$ ,  $\overline{BC}$ ,  $\overline{CD}$  는 반지름의 길이가 6 인 반원 O 에 접하고

 $\overline{AB}$ 는 반원 O 의 지름이다.  $\overline{CD} = 10$  일 때,  $\overline{BC}$  의 길이를 구하여라.



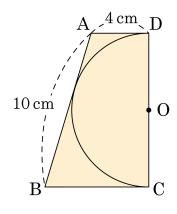
답:

▷ 정답: 9



점 D 에서 내린 수선의 발을 점 H 라 하고, 반원과 접선  $\overline{\text{CD}}$  의 교점을 점 F 라 한다.

 $\triangle DHC$  에서  $\overline{CH} = \sqrt{10^2 - 6^2} = 8$ ,  $\overline{BH} = x$  라 하면  $\overline{BH} =$ 

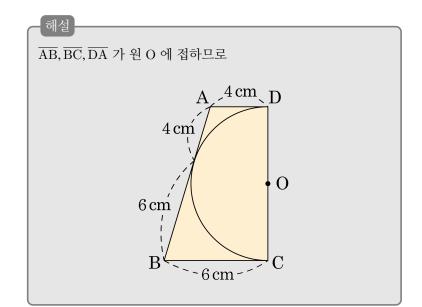

 $\overline{AD} = \overline{DF} = x$ 이다.

또한.  $\overline{CF} = \overline{BC}$  이므로  $\overline{\text{CD}} = \overline{\text{DF}} + \overline{\text{CF}} \Rightarrow 10 = x + (8 + x)$ 

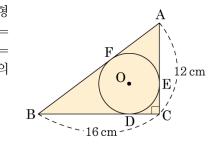
 $\therefore x = 1$ 

따라서  $\overline{BC} = 1 + 8 = 9$ 

 ${f 24.}$  다음 그림에서  ${f AB}$  ,  ${f BC}$  ,  ${f DA}$  가 원 O 의 접선일 때,  ${f BC}$  의 길이는?







② 6cm

 $3 4\sqrt{2}$ cm

4  $2\sqrt{2}$ cm 5  $\sqrt{11}$ cm



**25.** 다음 그림에서 원 O 는 삼각형 ABC 의 내접원이다.  $\overline{BC}$  = 16cm,  $\overline{AC} = 12$ cm 이고  $\angle C =$ 90°일 때, 내접원 O 의 반지름의 길이는?



 $\bigcirc$  2.5cm

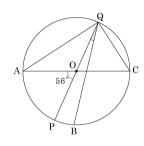
① 1.5cm

해설

- ② 2cm
- ④ 3cm 4cm

$$\square \text{ODCE}$$
 는 정사각형, 원의 반지름을  $x$  라 하면,

 $\overline{AE} = \overline{AF} = 12 - x$ 


$$\overline{BD} = \overline{BF} = 16 - x : \overline{AB} = 28 - 2 x \cdot \cdot \cdot \boxed{1}$$

 $\overline{AB^2} = 16^2 + 12^2 = 400$  $\therefore \overline{AB} = 20 \text{ cm} (\because \overline{AB} > 0) \cdots ②$ 

 $\triangle ABC$ 에서  $\overline{AB^2} = \overline{BC^2} + \overline{CA^2}$ 

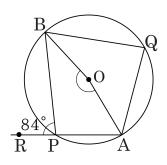
 $\therefore x = 4$ 

**26.** 다음 그림에서  $\overline{AC}$ ,  $\overline{PQ}$  는 원 O 의 지름이고,  $\overline{BQ}$  는  $\angle AQC$  의 이동 분선이다. ∠AOP = 56° 일 때, ∠PQB 의 크기는?



① 13° ② 14° ③ 15° ④ 16°




해설

 $\triangle AOQ$  는 이등변삼각형이므로  $\angle AQO = \frac{1}{2} \times 56^{\circ} = 28^{\circ}$  이다.

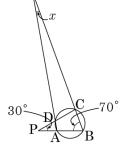
또한, 반원에 대한 원주각  $\angle AQC = 90^{\circ}$  이고  $\overline{BQ}$  의 이등분선이 므로

 $\angle AQB = \angle AQO + \angle PQB$  $45^{\circ} = 28^{\circ} + \angle PQB$ 

**27.** 다음 그림과 같이  $\angle BPR = 84^{\circ}$  일 때,  $\angle AOB$  의 크기는 얼마인가?



① 162° ② 164° ③ 166° ④ 168° ⑤ 170°


∠AQB = 84° 이므로

 $\angle AOB = 2 \times 84^{\circ} = 168^{\circ}$  이다.

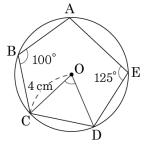
**28.** 다음 그림에서 □ABCD 는 원에 내접하고 ∠BPC = 30°, ∠ABC = 70°일 때, ∠BQA의 값을 구하면?

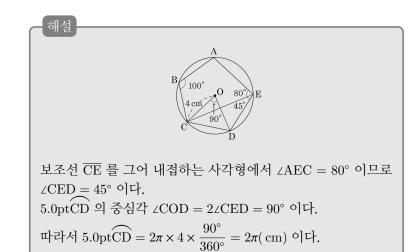


40° 50°

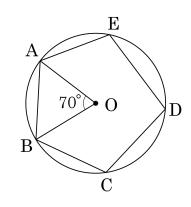


 $\angle ADC = 110$ ° (:  $\angle ABC$  의 대각) 이고,  $\angle PAQ = x + 70$ ° 이다.  $\triangle PAD$  에서 한 외각의 크기의 합은 이웃하지 않는 두 내각의


③ 30°


크기의 합과 같으므로  $110^\circ = 30^\circ + x^\circ + 70^\circ$ 

 $\therefore x^{\circ} = 10^{\circ}$ 


**29.** 다음 그림과 같이 원 O 에 내접하는 오각형 ABCDE 에서 ∠ABC = 100°, ∠AED = 125° 일 때, 5.0ptCD 의 길이는?

- ①  $\pi$ cm ②  $2\pi$ cm
- $3 4\pi \text{cm}$   $4 8\pi \text{cm}$
- $\Im 11\pi cm$

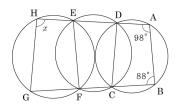




**30.** 다음 그림과 같이 원 O 에 내접하는 오각형 ABCDE 에서  $\angle$ AOB =  $70^{\circ}$  일 때,  $\angle$ C +  $\angle$ E 의 크기를 구하여라.



답:

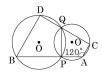

➢ 정답: 215°

 $\angle E + \angle ACD = 180^{\circ}$ 

점 A 와 점 C 를 연결하면  $\angle$ ACB =  $\frac{1}{2} \times 70$ ° = 35° 또  $\Box$ ACDE 는 원에 내접하므로

 $\therefore$   $\angle C + \angle E = 35^{\circ} + 180^{\circ} = 215^{\circ}$ 

**31.** 다음 그림에서  $\angle x$  의 크기를 구하여라.



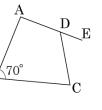

▶ 답:

▷ 정답: 92 º

$$\angle ADC = 92^{\circ}$$
 $\angle x = \angle EFC = \angle ADC = 92^{\circ}$ 

**32.** 다음 그림에서 ∠DBP 의 크기를 구하면?




- ① 80°
- ② 75°
- 3 70°
- 4 65°



해설

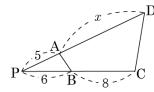
$$\angle PQD = \angle CAP = 120^{\circ}$$
  
 $\angle DBP = 180^{\circ} - 120^{\circ} = 60^{\circ}$ 

**33.** 다음 사각형 ABCD 에서 ∠B = 70°일 때, 이 사각형이 원에 내접하기 위한 조건으로 옳은 것은?



① 
$$\angle A = 110^{\circ}$$

$$\bigcirc$$
  $\angle C = 70^{\circ}$ 


$$\bigcirc$$
  $\angle D = 120^{\circ}$ 

$$\bigcirc$$
  $\angle$ EDC = 70°

해설

원에 내접하는 사각형은 대각의 크기의 합이  $180^\circ$  이므로  $\angle B = \angle EDC = 70^\circ$  이다.

**34.** 다음 그림에서 □ABCD 가 원에 내접할 때, ĀD의 길이를 구하여라.



$$ightharpoonup$$
 정답:  $\frac{59}{5}$ 

해설

□ABCD 가 원에 내접하므로

$$\overline{PA} \times \overline{PD} = \overline{PB} \times \overline{PC}$$
  
 $5 \times (5 + x) = 6 \times 14, 25 + 5x = 84$ 

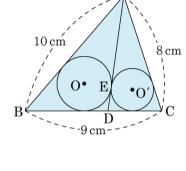
$$5x = 59$$

$$\therefore x = \frac{59}{5}$$

**35.** 직선 *l* 은 두 원 O, O' 의 접선이고 두 원의 교점 A, B 를 이은 선분 AB 의 연장선과 *l* 과의 교점을 P 라 한다.  $\overline{AP} = 2 \text{cm}, \overline{AB} =$ 

파의 교접들 P 다 한다. AP = 2cm, Al 7cm 일 때, TT' 의 길이를 구하여라.

답:
 > 정답: 6√2 cm

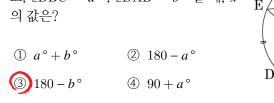

 $\overline{PT}^2 = \overline{PA} \times \overline{PB}, \quad \overline{PT'}^2 = \overline{PA} \times \overline{PB}$   $\overline{PT}^2 = 2 \times 9 = 18$ 

cm

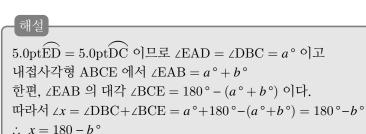
 $\overline{PT} = 3\sqrt{2} \left( :: \overline{PT} > 0 \right)$  $:: \overline{TT}' = 2\overline{PT} = 2 \times 3\sqrt{2} = 6\sqrt{2} \text{ (cm)}$ 

**36.** 그림과 같이  $\overline{AB} = 10 \text{ cm}, \overline{BC} =$  $9 \, \mathrm{cm}, \overline{\mathrm{AC}}$ = 8 cm △ABD, △ADC 의 내접원을 그리면 이 두 원이 한 점 E 에서  $10 \, \mathrm{cm}$ 접할 때.  $\overline{AE} - \overline{ED}$  의 길이는? 0•  $\bigcirc$  2 cm ②  $2.3 \, \text{cm}$ 

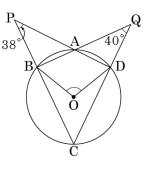
 $4.5\,\mathrm{cm}$ 

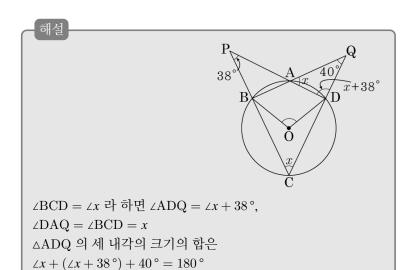



$$10 - \overline{AE} + 8 - \overline{AE} + 2\overline{ED} = 9$$


$$18 - 2\overline{AE} + 2\overline{ED} = 9$$

$$\therefore \overline{AE} - \overline{ED} = \frac{9}{2} = 4.5 \text{ (cm)}$$

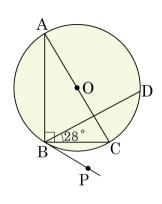

**37.** 다음 그림에서 5.0ptED = 5.0ptDC 이 고,  $\angle DBC = a^{\circ}$ ,  $\angle DAB = b^{\circ}$ 일 때, xЕ




① 
$$a^{\circ} + b^{\circ}$$
 ②  $180 - a^{\circ}$  ③  $180 - b^{\circ}$  ④  $90 + a^{\circ}$  ⑤  $90 + b^{\circ}$ 



**38.** 다음 그림에서 □ABCD 는 원 O 에 내접 하고 ∠DPC = 38°, ∠BQC = 40°일 때, ∠BOD 의 크기는?

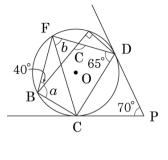





따라서 ∠BOD = 2∠BCD = 2 × 51° = 102°

∴ ∠x = 51° 이다.

**39.** 다음 그림에서  $\overline{AC}$  는 원 O 의 지름이고  $\overrightarrow{BP}$  는 원 O 의 접선이다.  $\overline{BD} = \overline{AB}$  이고,  $\angle DBC = 28^\circ$  일 때,  $\angle CBP$  의 크기를 구하여라.




▶ 답:

정답: 31 º

[해설] ∠ABD = 90° - 28° = 62°

 $\angle BAD = \angle BDA = \frac{1}{2}(180^{\circ} - 62^{\circ}) = 59^{\circ}$  $\angle CBP = \angle DBP - 28^{\circ} = \angle BAD - 28^{\circ} = 31^{\circ}$  **40.** 다음 그림에서 두 반직선은 원 O의 접선이다. ∠BAD = 90°,∠EDC = 65°,∠EBF = 40°,∠CPD = 70° 일 때. ∠a + ∠b + ∠c 의 크기는?



⑤ 320°

① 240° ② 245° ③ 255°

(에르) 1) 사각형 EBCD 가 원에 내접하

2) 접선과 현이 이루는 각의 크기 는 그 내부의 호에 대한 원주각의

므로  $(a + 40^{\circ} + 65^{\circ}) = 180^{\circ}$  :

크기와 같으므로 ∠b = ∠PDC = ∠PCD = 55° (::

해설

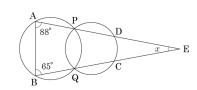
 $\angle a = 75^{\circ}$ 

E A 40°

40° D

C 65° b

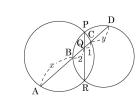
R 0 50°
C


260°

 $\overline{PD} = \overline{PC}$ 

3)  $\triangle ADE$  에서  $\angle c=90^\circ+40^\circ=130^\circ$  (이 때,  $\widehat{AF}$  에 대한 원주각으로  $\angle FBA=\angle ADF=40^\circ$  )

따라서,  $\angle a + \angle b + \angle c = 75^{\circ} + 55^{\circ} + 130^{\circ} = 260^{\circ}$ 이다.


**41.** 다음 그림에서 두 원은 두 점 P, Q 에서 만나고, ∠PAB = 88°, ∠QBA = 65° 일 때, ∠x 의 크기는?

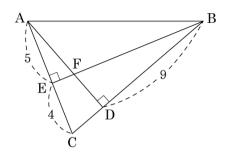


①  $17^{\circ}$  ②  $20^{\circ}$  ③  $27^{\circ}$  ④  $30^{\circ}$  ⑤  $37^{\circ}$ 

**42.** 다음 그림에서  $\overline{BQ} = 2$ ,  $\overline{CQ} = 1$  이고,  $\overline{AB} = x$ ,  $\overline{CD} = y$  라 할 때,

$$\frac{3x^2 + 4y^2}{xy}$$
 의 값은?



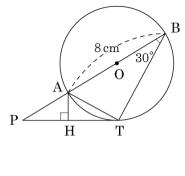

해설
$$\overline{QP} \times \overline{QR} = \overline{QA} \times \overline{QC} = \overline{QB} \times \overline{QD} \text{ 에서}$$

$$(x+2) \times 1 = 2 \times (1+y)$$

$$x+2 = 2+2y$$

$$\therefore x = 2y \frac{3x^2 + 4y^2}{xy} \text{ 에 대입하면 } \frac{12y^2 + 4y^2}{2y^2} = \frac{16y^2}{2y^2} = 8$$

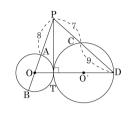
**43.** 다음 그림에 대한 설명 중 옳지 않은 것은?




- ①  $\overline{\text{CD}} = 3$  이다.
- ② □AEDB 는 원 안에 내접한다.
- ③∠CAD ≠ ∠CBE
- ④  $\overline{AB}$  는 원의 지름이다.

**44.** 다음 그림과 같이 PT 는 원 O 의 접선이고 AB = 8 cm , ∠ABT = 30° 일 때, ΔPAT 의 넓이를 구하면?

- ①  $\sqrt{3} \text{ cm}^2$  ②  $2\sqrt{3} \text{ cm}^2$ ③  $3\sqrt{3} \text{ cm}^2$  ④  $4\sqrt{3} \text{ cm}^2$
- ⑤  $5\sqrt{3}\,\mathrm{cm}^2$


해설



∠ATP = ∠ABT = 
$$30^\circ$$
 이므로 ∠BAT =  $60^\circ$   $1:2=\overline{AT}:8:\overline{AT}=4(cm)$  삼각형의 외각의 성질에 따라 ∠APT + ∠PTA = ∠TAB 따라서 ∠APT =  $30^\circ$  이므로  $\triangle$ APT 는 이등변삼각형이다. ∴  $\overline{AT}=\overline{PA}=4cm$  원의 중심을 지나는 할선과 접선 사이의 관계에 따라  $\overline{PT^2}=\overline{PA}\times\overline{PB}=4\times12=48$  따라서  $\overline{PT}=4\sqrt{3}$  cm  $\triangle$ AHT 에서 피타고라스 정리에 따라  $\overline{AH}=2$  cm 이므로

 $\triangle$ PAT 의 넓이는  $\frac{1}{2} \times 4\sqrt{3} \times 2 = 4\sqrt{3} \text{ (cm}^2\text{)}$  이다.

**45.** 다음 그림에서  $\overline{PT}$ 이 원의 접선이고,  $\overline{OT}$ 는 원  $\overline{OT}$ 는 원  $\overline{OT}$ 는 원  $\overline{OT}$ 는 원  $\overline{OT}$ 이 기름이다.  $\overline{OO'}$ 의 길이를 구하여라.



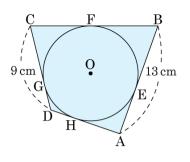
답

➢ 정답: 9

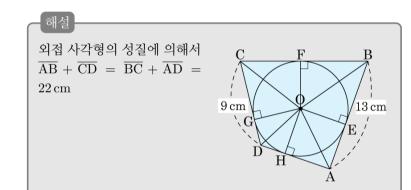
$$8 \times \overline{PB} = 7 \times (7+9)$$
이다.

$$8 \times (2\overline{OA} + 8) = 7 \times 16$$

$$\therefore \overline{OA} = 3$$
$$\therefore \overline{OT} = \overline{OA} = 3$$


또, 원 
$$O$$
에서  $\overline{PT}^2 = 7 \times 16 = 112$ 이므로  $\Delta PTD$ 에서


$$\overline{DT} = \sqrt{\overline{PD}^2 - \overline{PT}^2}$$
$$= \sqrt{16^2 - 112} = 12$$
이다.


따라서 
$$\overline{\mathrm{O'T}} = \frac{1}{2}\overline{\mathrm{DT}} = 6$$
이므로

$$\overline{OO'} = \overline{OT} + \overline{O'T} = 3 + 6 = 9 \, \text{old}.$$

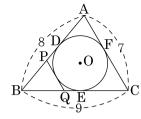
46. 다음 그림과 같이 반지름이 4 cm 인원 O에 외접하는 사각형 ABCD의 각 변과 원 O의 접점을 E, F, G, H라 할 때, 사각형의 넓이를 구하여라.







또한, 원의 반지름과 사각형의 모든 변은 수직으로 만나므로


 $\mathrm{cm}^2$ 

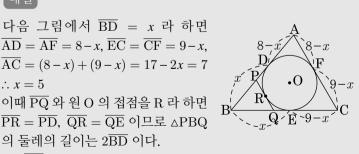
 $= \triangle AOB + \triangle BOC + \triangle COD + \triangle DOA$   $= \frac{1}{2} \times \overline{AB} \times r + \frac{1}{2} \times \overline{BC} \times r + \frac{1}{2} \times \overline{CD} \times r + \frac{1}{2} \times \overline{DA} \times r$   $= \frac{1}{2} \times r \times (\overline{AB} + \overline{BC} + \overline{CD} + \overline{DA})$ 

$$=\frac{1}{2} \times 4 \times 44 = 88 \text{ (cm}^2\text{)}$$

(사각형의 넓이)

47. 다음 그림과 같이 세 변 AB, BC, CA 의 길이가 각각 8, 9, 7 인 △ABC 에 내접하 는 원 O 에 대하여 D, E, F 는 접점이고  $\overline{PQ}$  가 원 O 에 접할 때,  $\triangle PBQ$  의 둘레의 길이를 구하여라.




답:

➢ 정답 : 10

다음 그림에서 
$$\overline{BD}=x$$
라 하면  $\overline{AD}=\overline{AF}=8-x$ ,  $\overline{EC}=\overline{CF}=9-x$ ,  $\overline{AC}=(8-x)+(9-x)=17-2x=7$   $\therefore x=5$ 

 $\overline{PR} = \overline{PD}, \ \overline{QR} = \overline{QE}$  이므로  $\triangle PBQ$ 의 둘레의 길이는 2BD 이다.

 $\therefore 2\overline{BD} = 2x = 2 \times 5 = 10$ 



48.  $\overline{AB} = 9$ ,  $\overline{BC} = 12$  인 삼각형 ABC 의 각 꼭짓점 A, B, C 에서 세 변에 내린 수선의 발을 각각 D, E, F 라 할 때, 점 D 는 변 BC 를 3:5로 내분하고, 점 F 는 변 AB 를 1:2로 내분한다. 이 때, 삼각형 ABC 의 둘레의 길이를 구하여라.

## 답:

$$ightharpoonup$$
 정답:  $21 + 3\sqrt{13}$ 

두 결과의 식을 더해주면

해설 
$$\angle BFC = \angle BEC = 90^\circ$$
 이므로 네 점 B, C, E, F 는 한 원 위에 있다. 그러므로  $\overline{AC} \cdot \overline{AE} = \overline{AB} \cdot \overline{AF} = 9 \times 3 = 27$  같은 방법으로 네 점 A, B, D, E 도 한 원 위에 있으므로  $\overline{CE} \cdot \overline{CA} = \overline{CD} \cdot \overline{CB} = 12 \times \left(12 - \frac{9}{2}\right) = 90$ 

 $\overline{AC} \cdot (\overline{AE} + \overline{CE}) = \overline{AC^2} = 117$  따라서 선분 AC 의 길이는  $3\sqrt{13}$  이므로 삼각형 ABC 의 둘레의 길이는  $21 + 3\sqrt{13}$ 

**49.** 다음 그림에서 점 H는 ΔABC 의두 꼭짓점 A, C 에서 대변에 그은 수선이 만나는 점이다.  $\overline{AE} = 6$ ,  $\overline{EB} = 12$ ,  $\overline{BD} = 10$  일 때,  $\overline{DC}$  의길이는?

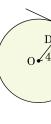
① 10 ② 10.8 ③ 11.2

(5) 12

11.6

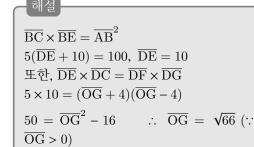
B 12 B

해설


∠AEC = ∠ADC = 90°이므로 네 점 A, E, D, C 는 한원 위에 있다. BE×BA = BD×BC

12×18 = 10(10+DC)

∴ DC = 11.6


12

**50.** 다음 그림과 같이 원 O 위의 한 점 A 에서 접 선 AB를 긋고 원의 내부의 한 점 D와 점 B 를 이은 선분이 원과 만나는 점을 C라 하자.  $\overline{BC} = \overline{DC} = 5$ ,  $\overline{OD} = 4$ ,  $\overline{AB} = 10$  일 때, 원 O의 반지름의 길이를 구하여라.



▶ 답:

> 정답: √66

