다음 그림의 $\square ABCD$ 는 평행사변형이다. $\square ABCD$ 의 각 변의 중점을 각각 L, M, N, P 라 하고 \overline{AM} 과 \overline{CL} 의 교점을 E, \overline{AN} 과 \overline{CP} 되 교점을 F 라고 할 때, $\square AECF$ 는 어떤 사 각형인지 말하여라.

▷ 정답 : 평행사변형

애결

□ALCN 은 평행사변형이므로

AF // EC □AMCP 도 평행사변형이므로

 $\overline{AE}/\overline{FC}$

따라서 □AECF 는 평행사변형이다.

평행사변형 ABCD 에서 대각선 BD 위에 BE = DF 가 되도록 두 점 E,F 를 잡을 때, □AECF 는 평행사변형이다.
 이를 증명하기 위해 사용하기에 가장 적합한 평행사변형의 조건을

A D F

▶ 답:

말하여라.

➢ 정답: 두 대각선이 서로 다른 것을 이등분한다.

해설

(가정) □ABCD 는 평행사변형, BE = DF

(결론) □AECF 는 평행사변형

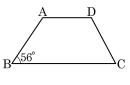
(증명) □ABCD 는 평행사변형이므로

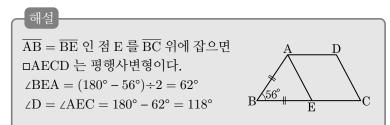
OA = OC

가정에서 BE = DF 이므로 OE = OF

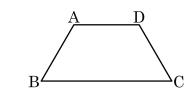
따라서 두 대각선이 서로 다른 것을 이등분하므로 □AECF
는 평행사변형이다.

3. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{BC}=\overline{AB}+\overline{AD}$ 일 때, $\angle D$ 의 크기를 구하 여라.

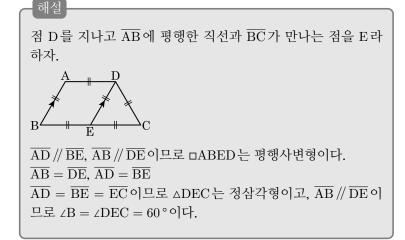




4. 다음 그림의 □ABCD는 \overline{AD} $//\overline{BC}$ 인 사다리꼴이다. $\overline{AB} = \overline{AD} = \overline{DC}$, $\overline{BC} = 2\overline{AD}$ 일 때, ∠B의 크기는?



① 45° ② 50° ③ 55° ④ 60° ⑤ 70°



5. 다음 보기의 사각형 중에서 각 변의 중점을 이어 만든 사각형이 마름 모가 되는 것을 모두 골라라.

 보기

 ③ 평행사변형
 ⑤ 사다리꼴

 ⑥ 당변사다리꼴
 ⑥ 직사각형

 ⑥ 정사각형
 ⑥ 마름모

 ▷ 정답:
 □

 ▷ 정답:
 □

▷ 정답: □

해설

평행사변형의 중점을 이어 만든 사각형은 평행사변형이 된다. 사다리꼴의 중점을 이어 만든 사각형은 평행사변형이 된다. 등변사다리꼴의 중점을 이어 만든 사각형은 <u>마름모</u>가 된다. 직사각형의 중점을 이어 만든 사각형은 <u>마름모</u>가 된다. 정사각형의 중점을 이어 만든 사각형은 정사각형이 된다. 따라서 마름모가 된다.

마름모의 중점을 이어 만든 사각형은 직사각형이 된다.

6. 다음 보기에서 두 대각선이 각각 내각을 이등분하는 사각형을 모두 골라라.

 보기

 ① 사다리꼴
 ⑥ 등변사다리꼴

 ⑥ 직사각형
 @ 정사각형

 ⑩ 마름모
 ⑭ 평행사변형

- ▶ 답:
- 답:
- ▷ 정답: ②
- ▷ 정답: □

해설 두 대각선이 각각 내각을 이등분하는 도형은 마름모이다. 정사 각형도 마름모이다.

- ① 15 cm ② 18 cm ③ 20 cm
- ④ 22 cm ⑤ 24 cm

따라서
$$8 : \overline{BD} = 20 : 8$$
,

BD =
$$\frac{16}{5}$$
 cm 이고 \overline{AC} : $\overline{AD} = 5:2$

$$\overline{5} = \frac{1}{5} \text{ cm 이노 AC : AD = 5 : 2}$$

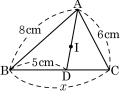
그리고 $\triangle ADC$ 에서 \overline{AE} 가 각의 이등분선이므로 \overline{AD} : \overline{AC} =

따라서
$$\overline{DE} = \frac{2}{7} \left(20 - \frac{16}{5} \right) = \frac{24}{5} \text{ (cm)}$$

$$5\overline{\mathrm{DE}} = 24 \; (\mathrm{cm})$$

다음 그림에서 점 I 는 ΔABC 의 내심이다. x 의 길이를 구하여라.

①
$$\frac{21}{4}$$
 cm ② $\frac{27}{4}$ cm ③ $\frac{31}{4}$ cm ④ $\frac{35}{4}$ cm



점 I 가 내심이므로
$$\overline{AD}$$
 는 $\angle A$ 의 이등분선이다.
 $\therefore \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}$

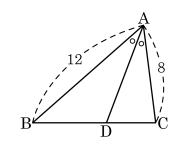
 $8:6=5:\overline{CD}$

$$\frac{15}{4}$$
 (cm)

$$4 \overline{CD} = 15, \overline{CD} = \frac{15}{4} (cm)$$

$$\overline{BC} = \overline{BD} + \overline{CD} = 5 + \frac{15}{4} = \frac{35}{4} (cm)$$

9. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 이등분선이고, $\triangle ABC$ 의 넓이 가 $35 \mathrm{cm}^2$ 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?



 $17cm^2$

- \bigcirc 9cm²
- $4 21 \text{cm}^2$ $5 24 \text{cm}^2$

해설

 \overline{AD} 는 A 의 이등분선이므로 \overline{AB} : \overline{AC} = \overline{BD} : \overline{DC} = 3 : 2 $\triangle ABD$ 와 $\triangle ADC$ 에서 높이는 같고, 밑변이 3 : 2 이므로 $\triangle ABD$:

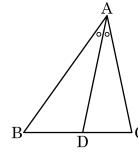
 $(3) 14 \text{cm}^2$

△BDC = 3 : 2 이다.

 $\triangle ABD = \frac{3}{5}\triangle ABC = \frac{3}{5} \times 35 = 21$ $\triangle ACD = \frac{2}{5}\triangle ABC = \frac{2}{5} \times 35 = 14$

 $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는 $21-14=7(\mathrm{cm}^2)$ 이다.

10. 다음 그림의 삼각형 ABC 에서 AD 는 ∠A 의 이등분선이고, AB : AC = 6:5 이다. 삼각형 ACD 의 넓이가 12cm² 일 때, 삼각형 ABD 의 넓이를 구하면?



①
$$14 \text{cm}^2$$
 ② $\frac{72}{5} \text{cm}^2$ ③ $\frac{72}{11} \text{cm}^2$ ④ 10cm^2 ⑤ 22cm^2

행절 BD: DC = 6:5 이므로 △ABD: △ADC = 6:5 △ABD: 12 = 6:5

 $\therefore \triangle ABD = \frac{72}{5} (cm^2)$

11. ∠ABE ∠ACD, ∠BAE 때, ∠CAD 일 다 음 닮 <보 기> 옳 은 도 형 끼 리 것 게 짝 지 은?

 \bigcirc \triangle AEF \bigcirc \triangle DFC

 \bigcirc $\triangle ABF \hookrightarrow \triangle ADE$

∠ABE = ∠ACD, ∠BAE = ∠CAD 이므로 △ABE ∽ △ACD (AA 닮음) ···⑥
 △ABC 와 △AED 에서
 ∠BAC = ∠EAD , ĀB : ĀĒ = ĀC : ĀD
 (∵ △ABE ∽ △ACD) 이므로 SAS 닮음이다.
 △ABC ∽ △AED (SAS 닮음) ···⑤

 \bigcirc $\triangle ABC \hookrightarrow \triangle AED$

 \bigcirc \triangle AFD \bigcirc \triangle CFB

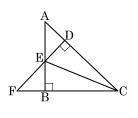
해설

12. 다음 그림에서 서로 닮음인 삼각형이 <u>잘</u>못짝지어진 것은?

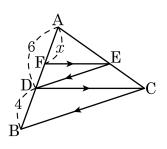
- ① \triangle FDC \bigcirc \triangle ABC
- ② △ADE ∽ △FBE
- ③ △ADE∽△ABC
- ⁽⁴⁾ △EBC ∽ △EDC
 - \bigcirc \triangle FDC \bigcirc \triangle ADE

해설

- ① $\triangle ABC$ 와 $\triangle FDC$ 에서 $\angle C$ 는 공통, $\angle ABC = \angle FDC = 90^\circ$
- ∴ △ABC ∽ △FDC (AA 닮음)
- ② $\triangle ADE$ 와 $\triangle FBE$ 에서 $\angle DAE = \angle BFE$, $\angle EDA = \angle EBF = 90$ °
- ∴ △ADE∽△FBE (AA 닮음)
- ③ $\triangle ADE$ 와 $\triangle ABC$ 에서 $\angle A$ 는 공통, $\angle EDA = \angle CBA = 90^\circ$
- ∴ △ADE ∽ △ABC (AA 닮음)
- ②와 ③ 에 의해 ΔADE ♡ ΔABC ♡ ΔFBE :. ΔABC ♡ ΔFBE
- ⑤ ①,③에 의해 ∴ △FDC ♡ △ADE



13. 다음 그림에서 $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$, $\overline{\mathrm{FE}} / / \overline{\mathrm{DC}}$ 이다. 이때, x 의 길이는?



① 3

② 3.2

3

j

4) 4

⑤ 4.2

해설

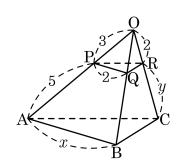
 $\overline{\mathrm{AD}}:\overline{\mathrm{DB}}=\overline{\mathrm{AE}}:\overline{\mathrm{EC}}=3:2$

 $\overline{AF} : \overline{FD} = \overline{AE} : \overline{EC} = 3 : 2 = x : (6 - x)$

 $\therefore x = 3.6$

14. 다음 그림의 삼각뿔 O – ABC 에서 ΔPQR 를 포함하는 평면과 ΔABC

를 포함하는 평면이 서로 평행할 때, x+y 의 값은?



 $3\frac{29}{3}$

4 10

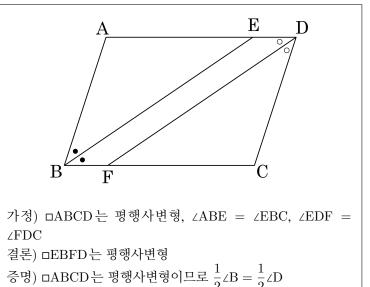
①
$$\frac{26}{3}$$
 ② $\frac{28}{3}$

$$\overline{PQ} /\!\!/ \overline{AB}$$
 이므로 $\triangle OPQ \hookrightarrow \triangle OAB$ $3:8=2:x$ $r=\frac{16}{2}$

$$\overline{\operatorname{PR}} / / \overline{\operatorname{AC}}$$
 이므로 $\triangle \operatorname{OPR} \bigcirc \triangle \operatorname{OAC}$ $3:5=2:y$ $y=\frac{10}{2}$

$$\therefore x + y = \frac{16}{3} + \frac{10}{3} = \frac{26}{3}$$

15. 다음은 평행사변형 ABCD에서 ∠B, ∠D의 이등분선이 ĀD, BC와 만나는 점을 각각 E, F라 할 때, □EBFD가 평행사변형임을 증명하는 과정이다. □ 안에 들어갈 알맞은 것을 차례로 나열하면?



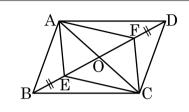
즉, 〈EBF = 〈EDF 〈AEB = 〈EBF, 〈EDF = 〈CFD () 이므로 〈AEB = 〈CFD, 〈DEB = 〈180° - 〈AEB = 따라서 □EBFD는 평행사변형이다.

- ① 동위각, ∠FBD ② 동위각, ∠BDF ③ 동위각, ∠DFB
- ④ 엇각, ∠FBD ⑤ 엇각, ∠DFB

해설

 $\overline{\mathrm{AD}}/\!\!/ \overline{\mathrm{BC}}$ 이므로 $\angle\mathrm{EDF} = \angle\mathrm{CFD}$ 는 엇각으로 같고, $\angle\mathrm{DEB} = \angle\mathrm{DFB}$ 이다.

16. 다음은 평행사변형 ABCD에서 두 대각선의 교점을 O라 하고 대각 선 BD 위에 BE = DF가 되도록 두 점 E, F를 잡을 때, □AECF는 평행사변형임을 증명하는 과정이다. 평행사변형이 되는 어떤 조건을 이용한 것인가?



가정) □ABCD는 평행사변형 BE = DF 결론) □AECF는 평행사변형 증명) □ABCD는 평행사변형이므로

 $\overline{OA} = \overline{OC} \cdots \bigcirc$ $\overline{BE} = \overline{DF}$ 이므로

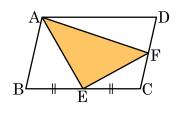
 $\overline{OE} = \overline{OF} \cdots \mathbb{Q}$ \bigcirc , \mathbb{Q} 에 의하여 $\square AECF$ 는 평행사변형이다.

- ① 두 쌍의 대변이 각각 평행하다.
- ② 두 쌍의 대각의 크기가 각각 같다.
- ③ 두 쌍의 대변의 길이가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변이 평행하고 그 길이가 같다.

해설

 $\Box ABCD$ 는 평행사변형이므로 $\overline{OA} = \overline{OC}$ 이고, $\overline{BE} = \overline{DF}$ 이므로 $\overline{OE} = \overline{OF}$ 이다. 따라서 $\Box AECF$ 는 평행사변형이다.

17. 다음의 평행사변형 ABCD에서 점 E, F는 각각 \overline{BC} , \overline{DC} 의 중점이다. $\Box ABCD = 40~\rm cm^2$ 일 때, $\triangle AEF$ 의 넓이를 구하여라.



 cm^2

► 답: ► 정답: 15 cm²

해설

$$\triangle ABE = \frac{1}{4} \square ABCD = \frac{1}{4} \times 40 = 10 \text{ (cm}^2\text{)}$$

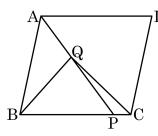
$$\triangle AFD = \frac{1}{4} \square ABCD = 10 \text{ (cm}^2\text{)}$$

$$\triangle FEC = \frac{1}{8} \square ABCD = \frac{1}{8} \times 40 = 5 \text{ (cm}^2\text{)}$$

$$\therefore \triangle AEF$$

=
$$\Box$$
ABCD - (\triangle ABE + \triangle AFD + \triangle FEC)
= $40 - (10 + 10 + 5) = 15 \text{ (cm}^2\text{)}$

18. 다음 그림의 평행사변형 ABCD 에서 \overline{AP} 위의 임의의 점 Q 에 대하여 $\overline{AQ}:\overline{QP}=5:7$, $\Box ABCD=72cm^2$ 일 때, $\triangle QBC$ 의 넓이를 구하여라.



<u>cm²</u>

해설

$$\triangle AQD = \frac{5}{12} \triangle APD$$

$$= \frac{5}{12} \times \frac{1}{2} \square ABCD$$

$$=\frac{5}{24}\Box ABCD$$

$$= \frac{5}{24} \times 72 = 15(\text{cm}^2)$$

따라서 △QBC 의 넓이는 $\frac{1}{2}$ □ABCD - △AQD = 36 - 15 = $21(\text{cm}^2)$ 이다.