
1. $\sin A = \frac{\sqrt{2}}{2} \text{ 인 직각삼각형 ABC 에서 } x+y$ 의 값은? (단, 0° < A < 90°)

- ① $\sqrt{2} + 2$ ② $2\sqrt{2} 2$ ③ $4\sqrt{2}$ ④ $4\sqrt{2} 2$ ⑤ $5\sqrt{2} 2$

sin A =
$$\frac{x}{4} = \frac{\sqrt{2}}{2}$$
 $\Rightarrow x = 2\sqrt{2}$
 $y = \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$
따라서 $x = 2\sqrt{2}$, $y = 2\sqrt{2}$ 이다.

$$y - \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$$

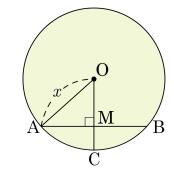
따라서 $x - 2\sqrt{2}$ $y - 2\sqrt{2}$

다음 그림의 □ABCD 에서 ∠BAC = ∠ADC = 90°이고, BC = 12 cm 일 때, CD 2. 의 길이는? $\bigcirc 3\sqrt{6}\,\mathrm{cm}$ ① $2\sqrt{6}$ cm

 $34\sqrt{6}$ cm $\bigcirc 6\sqrt{6}\,\mathrm{cm}$

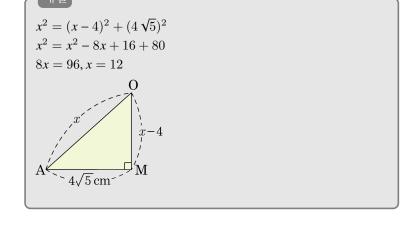
해설

 $\overline{\mathrm{AC}} = 12\cos30\,^{\circ} = 6\,\sqrt{3}\,\,\,\mathrm{(cm)}$ $\triangle\mathrm{ADC}$ 는 직각이등변삼각형이므로


 $\overline{\text{CD}} = 6\sqrt{3}\sin 45^{\circ} = 6\sqrt{3} \times \frac{\sqrt{2}}{2} = 3\sqrt{6} \text{ (cm)}$

다음 삼각형의 넓이를 구하면? 3.

- ① $7\sqrt{2} \, \text{cm}^2$ ② $7\sqrt{3} \, \text{cm}^2$
- $\bigcirc 9\sqrt{2}\,\mathrm{cm}^2$
- $38\sqrt{2} \text{ cm}^2$ $48\sqrt{3} \text{ cm}^2$

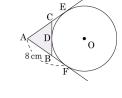

(텔이) $= \frac{1}{2} \times 2 \times 16 \times \sin(180^{\circ} - 135^{\circ})$ $= \frac{1}{2} \times 2 \times 16 \times \sin 45^{\circ}$ $= \frac{1}{2} \times 2 \times 16 \times \frac{\sqrt{2}}{2} = 8\sqrt{2} \text{ (cm}^2)$

4. 다음 그림에서 $\overline{\rm AB} \bot \overline{\rm OC}$, $\overline{\rm MB} = 4\sqrt{5}$, $\overline{\rm MC} = 4$ 일 때, x 의 길이를 구하여라.

답:

▷ 정답: 12

- 다음 그림에서 색칠한 부분의 넓이 **5**. 는?(단, \overline{PA} 는 원 O 의 접선)
 - $\boxed{3}4\sqrt{21}$
- ① $5\sqrt{3}$ ② $3\sqrt{13}$
- ⑤ $9\sqrt{3}$



해설

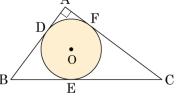
 $\angle A = 90^{\circ}$ 이므로 $10^2 = x^2 + 4^2, \quad x = 2\sqrt{21}$

따라서 $\triangle PAO = \frac{1}{2} \times 2\sqrt{21} \times 4 = 4\sqrt{21}$ 이다.

6. 다음 그림에서 세 점 D, E, F 는 원 O 의 접점일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.

답:

<u>cm</u>

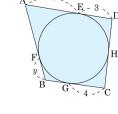

▷ 정답: 16<u>cm</u>

 $\overline{AE} = \overline{AF}$, $\triangle ABC$ 의 둘레 $= \overline{AE} + \overline{AF} = 2\overline{AF}$

해설

∴ △ABC 의 둘레= 2 × 8 = 16(cm)

다음 그림에서 원 O 는 ∠A = 90° 7. 인 직각삼각형 ABC 의 내접원이 고, 점 D, E, F 는 접점이다. \overline{AB} = 12cm, $\overline{BC} = 20$ cm, $\overline{CA} = 16$ cm 일 때, 원 O 의 넓이는?



 $36.5\pi\,\mathrm{cm}^2$

- ① $4\pi \,\mathrm{cm}^2$ $4 12\pi \,\mathrm{cm}^2$
- $2 \frac{9}{2}\pi \,\mathrm{cm}^2$ $3 16\pi \,\mathrm{cm}^2$

내접원의 반지름을 r라 하면 $\frac{1}{2} \times 12 \times 16 = \frac{1}{2} \times (12 + 16 + 20) \times r$ ∴ r = 4(cm) 따라서, 원의 넓이는 16πcm²

다음 그림은 원에 외접하는 사각형 \overline{ABCD} 에서 $\overline{AE}=x$, $\overline{DE}=3$, $\overline{CG}=4$, $\overline{BF}=y$, $\overline{AD}+\overline{BC}+\overline{CD}=22$ 일 때, \overline{AB} 의 길이를 8. 구하여라.

▷ 정답: 8

답:

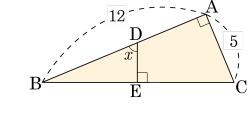
 $\overline{\rm DE} = \overline{\rm DH} = 3, \ \overline{\rm CH} = \overline{\rm CG} = 4, \ \overline{\rm BG} = \overline{\rm BF} = y, \ \overline{\rm AE} = \overline{\rm AF} = x$

이고 $\overline{\rm AD} + \overline{\rm BC} + \overline{\rm CD} = 22$

 $\Rightarrow (x+3) + (y+4) + 7 = 22$ $\Rightarrow x + y = 8$

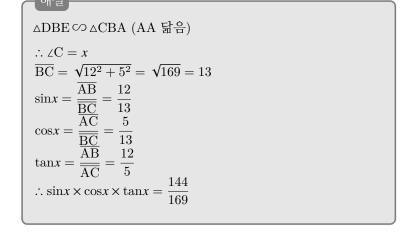
 $\therefore \overline{AB} = x + y = 8$

9. $\sin A : \cos A = 5 : 4$ 일 때, $\frac{\tan A - 2}{\tan A + 2}$ 의 값을 구하여라.

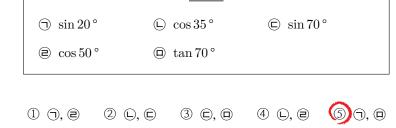

ightharpoonup 정답: $-rac{3}{13}$

따라서
$$\tan A = \frac{\sin A}{\sin A} = \frac{5}{3}$$
 이므로 $\frac{\tan A}{\sin A}$

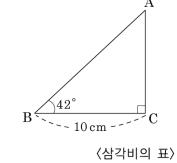
$$\frac{3}{4} = \frac{3}{4} = \frac{3}$$


해설
$$\sin A : \cos A = 5 : 4 \circ | \Box \vec{z} \frac{\sin A}{\cos A} = \frac{5}{4} \circ | \Box \vec{z} .$$
 따라서 $\tan A = \frac{\sin A}{\cos A} = \frac{5}{4} \circ | \Box \vec{z} \frac{\tan A - 2}{\tan A + 2} = \frac{\frac{5}{4} - 2}{\frac{5}{4} + 2} = \frac{\frac{3}{4}}{\frac{13}{4}} = -\frac{3}{13} \circ | \Box \vec{z} .$

10. 다음 그림과 같은 $\triangle ABC$ 에서 $\sin x \times \cos x \times \tan x$ 의 값을 구하여라.

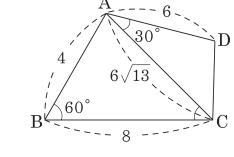

▶ 답:

ightharpoonup 정답: $\frac{1}{1}$


11. 삼각비의 표를 보고, 보기에서 가장 작은 값과 가장 큰 값을 차례대로 짝지은 것을 구하여라.

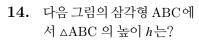
각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
$20\degree$	0.3420	0.9397	0.3640
$35\degree$	0.5736	0.8192	0.7002
45°	0.7071	0.7071	1.0000
$50\degree$	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

(학설)
(①sin 20° = 0.3420)
(②cos 35° = 0.8192)
(②sin 70° = 0.9397)
(②cos 50° = 0.6428)
(②tan 70° = 2.7475)
이므로 가장 작은 값은 ①sin 20°, 가장 큰 값은 @tan 70° = 2.7475


12. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하면?

x	sin x	cos x	tan x
42°	0.66	0.74	0.90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97

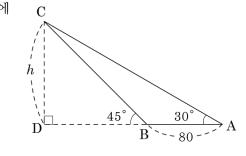
- $4 72 \, \text{cm}^2$ $5 90 \, \text{cm}^2$
- ① $33 \, \text{cm}^2$ ② $37 \, \text{cm}^2$
- $345\,\mathrm{cm}^2$


 $\overline{\mathrm{AC}}=x$ 라 하면 $\angle\mathrm{B}=42^\circ$ 이므로 $x=10 imes an 42^\circ=10 imes 0.9=9$ 따라서 $\triangle ABC$ 의 넓이는 $10 \times 9 \times \frac{1}{2} = 45 \text{(cm}^2)$ 이다. 13. 다음 사각형 ABCD 에서 $\overline{AB}=4$, $\overline{BC}=8$, $\overline{AD}=6$, $\overline{AC}=6\sqrt{13}$, $\angle B=60^\circ$, $\angle DAC=30^\circ$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.

ightharpoonup 정답: $8\sqrt{3} + 9\sqrt{13}$

▶ 답:

 $\Box ABCD$ $= \triangle ABC + \triangle ADC$ $= \frac{1}{2} \times 4 \times 8 \times \sin 60^{\circ} + \frac{1}{2} \times 6 \sqrt{13} \times 6 \times \sin 30^{\circ}$ $= \frac{1}{2} \times 4 \times 8 \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times 6 \sqrt{13} \times 6 \times \frac{1}{2}$ $= 8\sqrt{3} + 9\sqrt{13}$

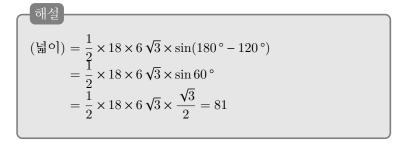

① $30(\sqrt{3}+1)$

② $40(\sqrt{3}+1)$

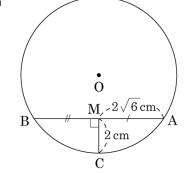
 $3 50(\sqrt{3}+1)$

 $4 60(\sqrt{3}+1)$

 $h = \frac{80}{\tan(90° - 30°) - \tan(90° - 45°)}$ $= \frac{80}{\tan 60° - \tan 45°} = \frac{80}{\sqrt{3} - 1} = \frac{80(\sqrt{3} + 1)}{3 - 1}$ $= 40(\sqrt{3} + 1)$


15. 다음 사각형의 넓이를 바르게 구한 것은?

① 80

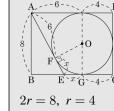


16. 다음을 그림을 참고하여 원 O 의 넓이를 구하면?

- ① $48\pi \,\mathrm{cm}^2$ ④ $51\pi \,\mathrm{cm}^2$
- $249\pi \, \text{cm}^2$ $53\pi \, \text{cm}^2$
- $3 50\pi \,\mathrm{cm}^2$

해설 $r^2 = (2\sqrt{6})^2 + (r-2)^2$ $r^2 = 24 + r^2 - 4r + 4$

4r = 28

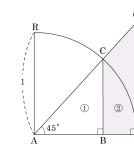

r = 7 (cm)

따라서 원의 넓이는 $\pi \times 7^2 = 49\pi \text{ (cm}^2\text{)}$ 이다.

17. 다음 그림에서 $\Box ABCD$ 는 $\overline{AB}=8,\ \overline{AD}=10$ 인 직사각형이다. 원 O 가 □AECD 에 내접할 때, △ABE 의 넓이를 구하면?

- ① $\frac{38}{3}$ ② $\frac{40}{3}$ ③ 14 ④ $\frac{44}{3}$ ⑤ $\frac{46}{3}$

원 O 의 반지름의 길이를 r 라 하면


 $\overline{\mathrm{FE}} = \overline{\mathrm{EG}} = x(x < 6)$ 라 하면

 $\overline{\mathrm{BE}} + \overline{\mathrm{EC}} = 10$ 이므로 $\overline{\mathrm{BE}} = 6 - x$ 이다. △ABE 에서

$$(6+x)^2 = (6-x)^2 + 64, \ 24x = 64$$

$$\therefore \overline{BE} = 6 - \frac{8}{3} = \frac{10}{3}$$
$$\therefore \triangle ABE = \frac{1}{2} \times 8 \times \frac{10}{3} = \frac{40}{3}$$

18. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. ①과 ② 부분의 넓이를 구한 후 ②- ①의 값은?

- ① -2 ② -1
- **4** 1

⑤ 2

$$\triangle ABC$$
 에서 $\overline{AC}=1, \angle A=45^\circ$ 이므로 $\overline{AB}=\cos 45^\circ=\frac{\sqrt{2}}{2}$, $\overline{BC}=\sin 45^\circ=\frac{\sqrt{2}}{2}$

$$BC = \sin 45^{\circ} = -$$

$$\Delta APQ$$
 에서 $\overline{AP}=1$, $\angle A=45^\circ$ 이므로 $\overline{AQ}=\frac{1}{\cos 45^\circ}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{2}$ $\sqrt{2}$, $\overline{PQ}=\tan 45^\circ=1$ 빗금친 부분의 넓이= ΔAPQ 의 넓이- ΔABC 의 넓이

$$\triangle APQ$$
의 넓이= $\frac{1}{2} \times (1 \times 1) = \frac{1}{2}$

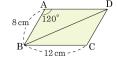
$$\triangle ABC$$
의 넓이= $\frac{1}{2} \times \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}\right) = \frac{1}{4} \cdots ①$

$$\therefore \bigcirc - \bigcirc = \frac{1}{4} - \frac{1}{4} = 0$$

19. 방정식 $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$ 의 두 근을 $\tan a$, $\tan b$ 라고 할 때, b 의 크기는? (단, $\tan a < \tan b$, a, b 는 예각)

 345°

40°


⑤ 80°

해설

② 30°

① 0°

 $x^{2} - (\sqrt{3} + 1)x + \sqrt{3} = 0$ $(x - 1)(x - \sqrt{3}) = 0$ x = 1 또는 $x = \sqrt{3}$ 이다. $\tan a < \tan b$ 이므로 $\tan a = 1$, $\tan b = \sqrt{3}$ 이다. $\therefore b = 60^{\circ}$ ${f 20}$. 다음 그림과 같은 평행사변형에서 $\angle {
m A}=120^{\circ}$ 일 때, 대각선 $\overline{
m BD}$ 의 길이의 제곱의 값을 구하면?

① 108 ② 144

③ 196

4 304

⑤ 340

D 에서 \overline{AB} 의 연장선에 내린 수선의 발을 H 라 하면

△ADH 에서

 $\overline{\rm AH} = \overline{\rm AD} \; \cos 60^{\circ} = 6$

 $\overline{\rm DH} = \overline{\rm AD} \ \sin 60^\circ = 6 \, \sqrt{3}$

△BDH 에서 $\overline{BD} = \sqrt{\overline{BH^2 + \overline{DH^2}}}$

 $= \sqrt{(6+8)^2 + (6\sqrt{3})^2}$

 $=\sqrt{304}$ (cm)

21. 다음 그림과 같은 등변사다리꼴 ABCD 의 넓이는?

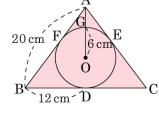
B 60°

① $10\sqrt{2}$ ② $20\sqrt{2}$ ③ $20\sqrt{3}$ ④ $30\sqrt{2}$ ⑤ $30\sqrt{3}$

점 A 와 D 에서 \overline{BC} 에 내린 수선의 발을 각각 H,~G 라 할 때

$$\begin{array}{c}
A & D \\
6 & 3\sqrt{3} \\
8 & 3\sqrt{3} \\
-13 & -7
\end{array}$$

$$\overline{AH} = 6 \times \sin 60^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$$


$$\overline{BH} = 6 \times \cos 60^{\circ} = 6 \times \frac{1}{2} = 3$$

$$\overline{\text{CG}} = 3$$
 이므로 $\overline{\text{HG}} = \overline{\text{AD}} = 7$

$$\square ABCD 넓이 = \frac{1}{2} \times (7+13) \times 3\sqrt{3} = 30\sqrt{3}$$
 이다.

- 22. 다음 그림에서 원 O 는 반지름의 길이가 6cm 인 ΔABC 의 내접원이고, ĀB = 20cm, BD = 12cm 일 때, ĀG 의 길이 는? (단, 점 D, E, F는 접점)

 ① 3cm ② 4cm ③ 5cm
 - ① 3 cm ② 4 cm ③ 5 cm ④ 6 cm ⑤ 7 cm
 - ⊕ ocm ⊚ re

해설 $\overline{BF}=\overline{BD}=12\,\mathrm{cm}$ 이므로 $\overline{AF}=8\,\mathrm{cm}$, $\overline{OF}=6\,\mathrm{cm}$

 $\triangle AOF$ 에서 $\overline{AO} = \sqrt{8^2 + 6^2} = 10 \text{ cm}$ $\therefore \overline{AG} = 10 - 6 = 4 \text{ cm}$ 23. 다음 그림과 같이 크기가 다른 원과 정사각형들이 서로 연이어 접하고 있다. 바깥쪽 큰 원의 반지름이 8cm 일 때, 색칠한 부분의 넓이를 고르면?

 $112\pi - 224$)cm² $(116\pi - 232)$ cm²

② $(114\pi - 228)$ cm² $(118\pi - 236)$ cm²

 \bigcirc $(120\pi - 240)$ cm²

가장 바깥쪽의 원의 반지름부터

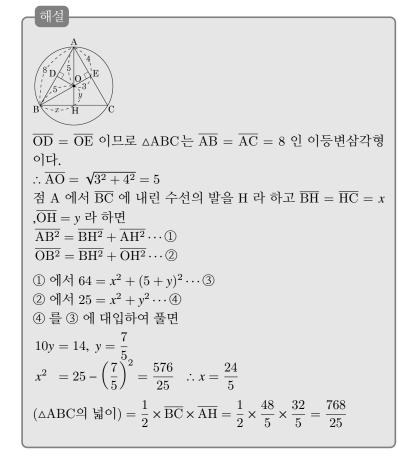
 r_1, r_2, r_3 라 하면

 $r_1=8 ({
m cm})$, $r_2=4\sqrt{2} ({
m cm})$, $r_3=4 ({
m cm})$ 이다. 가장 큰 정사각형의 한 변의 길이부터 순서대로 x_1, x_2, x_3 라

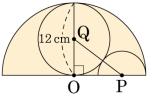
하면 $x_1 = 2r_2 = 8\sqrt{2}(\text{cm})$

 $x_2 = r_1 = 8(\mathrm{cm})$ $x_3 = r_2 = 4\sqrt{2}(\mathrm{cm})$

(색칠한 부분의 넓이) = $(64\pi - 128) + (32\pi - 64) + (16\pi - 32)$ =


 $112\pi - 224 ({\rm cm}^2)$

24. 다음 그림에서 $\overline{\rm OD}=\overline{\rm OE}=3$, $\overline{\rm AC}=8$ 일 때, $\Delta \rm ABC$ 의 넓이를 구하여라.



답:

 \triangleright SGT: $\frac{7}{2}$

25. 다음 그림과 같이 반원 P 와 원 Q 가 외부에서 접하고 원 Q 가 반원 O 의 내 부에서 접하고 있다. 원Q의 지름의 길 이가 12 cm 일 때, 반원 P 의 반지름의 길이는?

④ 3 cm

 \bigcirc 1 cm

 \bigcirc 2 cm

 $32.5\,\mathrm{cm}$

 $34 \, \mathrm{cm}$

해설

작은 반원의 반지름을 $x \, \mathrm{cm}$ 라 하면 $\Delta \mathrm{QOP}$ 에서

 $\overline{PQ} = 6 + x, \overline{OQ} = 6, \overline{OP} = 12 - x$ $(x+6)^2 = 6^2 + (12 - x)^2$

36x = 144

 $\therefore x = 4$