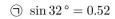

. $\sin(90^\circ - A) = \frac{7}{9}$ 일 때, $\tan A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$)

①
$$\frac{2\sqrt{2}}{7}$$
 ② $\frac{4\sqrt{2}}{7}$ ③ $\frac{2\sqrt{2}}{9}$ ④ $\frac{4\sqrt{2}}{9}$ ⑤ $\frac{7\sqrt{2}}{9}$

가음 보기 중 cos x와 같은 값을 갖는 것을 모두 골라라.



해설

$$\triangle ABC \bigcirc \triangle DBE$$
이므로 $\cos x = \frac{\overline{DE}}{\overline{BD}} = \frac{\overline{AC}}{\overline{AB}}, \sin y = \frac{\overline{DE}}{\overline{BD}} = \frac{\overline{AC}}{\overline{AB}}$ 이다.

따라서 $\cos x$ 와 같은 것은 $\frac{\overline{DE}}{\overline{BD}}$, $\sin y$ 이다.

3. 다음 표는 삼각비의 값을 소수 둘째 자리까지 나타낸 것이다. 다음 중 옳지 않은 것은?

$$\bigcirc$$
 cos 34° = 0.83

$$\bigcirc$$
 tan 36° = 0.73

$$\bigcirc$$
 3 cos 44° = 2.1

각도	사인(sin)	코사인(cos)	탄젠트(tan)
31°	0.51	0.86	0.60
32°	0,52	0.85	0,62
33°	0.54	0.84	0.65
34°	0.56	0.83	0.67
35°	0.57	0.82	0.70
36°	0.59	0.81	0.73
37°	0.60	0.80	0.75
38°	0.62	0.79	0.78
39°	0.63	0.78	0.81
40°	0.64	0.77	0.84
41°	0.66	0.75	0.87
42°	0.67	0.74	0,90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97

해설

 $\cos 44$ ° = 0.72이므로 $3\cos 44$ ° = 2.16이다.

4. 다음 표를 보고 $\cos x = 0.7193$ 을 만족하는 x 에 대하여 $\tan x$ 의 값은?

각도	sin	cos	tan
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6820	1.0724

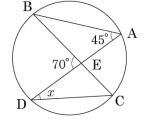
0.9657

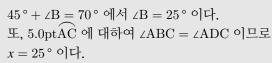
2 1.0000

③ 1.0355

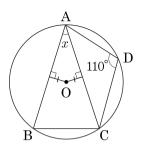
4 1.0724

⑤ 1.9657


해설


 $\cos 44^{\circ} = 0.7193$

 $\therefore x = 44^{\circ}$


따라서 $\tan 44^{\circ} = 0.9657$ 이다.

아래 그림에서 ∠ADC 의 크기는?

6. 다음 그림에서 사각형 ABCD 가 원 O 에 내접하고, 원의 중심에서 두 현 AB, AC 까지의 거리가 서로 같다. ∠ADC = 110°일 때, x 의 값을 구하여라.

답:▷ 정답: 40°

해설

원의 중심에서 두 현 AB, AC 까지의 거리가 서로 같으므로

△ABC 는 이등변삼각형이다. 또한 사각형 ABCD 가 내접하므로 ∠ABC + 110° = 180° ∴

 $\angle ABC = 70^{\circ}$

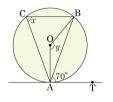
따라서, $x^{\circ} = 180^{\circ} - 70^{\circ} \times 2 = 40^{\circ}$ 이다.

다음 그림에서 사각형이 원에 내접하기 위한 $\angle x$ 의 값으로 바른 것은?

4 121°

⑤ 124°

① 113°


$$= 180$$

$$\angle x + 64^{\circ} = 180^{\circ}$$

$$\therefore \angle x = 116^{\circ}$$

② 116° ③ 119°

8. 다음 그림에서 $\angle x$, $\angle y$ 의 크기를 각각 구하면?

①
$$\angle x = 60^{\circ}, \ \angle y = 110^{\circ}$$

②
$$\angle x = 60^{\circ}, \ \angle y = 120^{\circ}$$

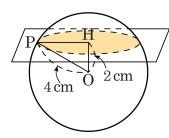
③
$$\angle x = 70^{\circ}, \ \angle y = 120^{\circ}$$

$$4 \ \angle x = 70^{\circ}, \ \angle y = 130^{\circ}$$

$$2x = 70$$

$$2y = 22x = 2 \times 70^{\circ} = 140^{\circ}$$

 다음 그림과 같이 밑면의 둘레가 4π cm 이고 모선의 길이가 3 cm 인 원뿔의 높이는?


- $\sqrt{5}$ cm
- \bigcirc 5 cm
- ③ $5\sqrt{5} \text{ cm}$ ⑤ $10\sqrt{5} \text{ cm}$

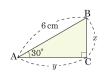
3cm

밑면의 둘레가 $2\pi r=4\pi (\,{\rm cm})$ 이므로 밑면의 반지름은 $2\,{\rm cm}$ 따라서 원뿔의 높이 $h=\sqrt{3^2-2^2}=\sqrt{5}(\,{\rm cm})$ 이다.

 $10\,\mathrm{cm}$

10. 다음 그림과 같이 반지름의 길이가 4 cm 인 구를 중심 O 에서 2 cm 떨어진 평면으로 자를 때 생기는 단면인 원의 넓이는?

①
$$9\pi \,\mathrm{cm}^2$$


$$2$$
 $12\pi \,\mathrm{cm}^2$

③
$$18\pi \, \text{cm}^2$$

$$4 27\pi \, \text{cm}^2$$

$$\Im 36\pi \,\mathrm{cm}^2$$

11. 다음 그림에서 $\overline{AB} = 6 \text{cm}$, $\angle A = 30^{\circ}$ 일 때, x + y는?

①
$$3 + \sqrt{3} \, \text{cm}$$

②
$$3 + 2\sqrt{3}$$
 cm

$$3 + 3\sqrt{3}$$
 cm

4)
$$3 + 4\sqrt{3}$$
 cm

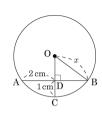
(4)
$$3 + 4\sqrt{3}$$
 cm (5) $3 + 5\sqrt{3}$ cm

$$\sin 30^{\circ} = \frac{x}{6}$$

$$x = 6 \times \sin 30^{\circ} = 6 \times \frac{1}{2} = 3 \text{ cm}$$

$$x = 6 \times \sin 30^{\circ} = 6 \times \frac{1}{2} = 3 \text{ cm}$$
$$\cos 30^{\circ} = \frac{y}{6}$$

$$y = 6 \times \cos 30^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3} \text{ cm}$$

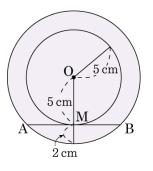

$$\therefore x + y = 3 + 3\sqrt{3} \,\mathrm{cm}$$

①
$$2\sqrt{6} \text{ cm}$$
 ② $3\sqrt{6} \text{ cm}$ ③ $4\sqrt{6} \text{ cm}$ ④ $5\sqrt{6} \text{ cm}$

$$\bigcirc$$
 6 $\sqrt{6}$ cm

$$\overline{\text{CD}} = 6\sqrt{3}\sin 45^{\circ} = 6\sqrt{3} \times \frac{\sqrt{2}}{2} = 3\sqrt{6} \text{ (cm)}$$

13. 다음 그림에서 x 의 값을 구하여라. (분수인 경우 소수로 고칠 것)

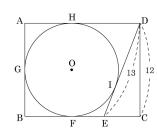


cm

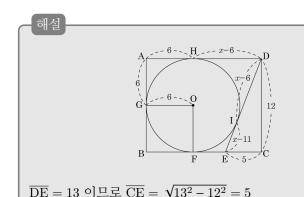
$$\overline{OD} = x - 1, \overline{DB} = 2$$
$$x^2 = (x - 1)^2 + 2^2$$

$$\therefore x = \frac{5}{2} = 2.5 \text{ (cm)}$$

14. 다음 그림과 같이 두 원의 중심이 일치하 고. 반지름의 길이는 각각 5cm, 7cm 이다. 현 AB 가 작은 원의 접선일 때, 현 AB 의 길이는?


①
$$\sqrt{6}$$
cm

②
$$2\sqrt{6}$$
cm


 $4\sqrt{6}$ cm

$$\overline{OA} = 7 \, \text{cm}, \quad \overline{OM} = 5 \, \text{cm}, \quad \overline{AM} = \sqrt{7^2 - 5^2} = 2 \, \sqrt{6} (\, \text{cm})$$

 $\therefore \quad \overline{AB} = 2 \, \sqrt{6} \times 2 = 4 \, \sqrt{6} (\, \text{cm})$

15. 다음 그림과 같이 직사각형 ABCD 의 세 변에 접하는 Θ O 가 있다. \overline{DE} 가 원의 접선이고, $\overline{DE}=13$, $\overline{DC}=12$ 일 때, \overline{AD} 의 길이를 구하여라.

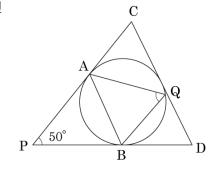
$$\overline{AD} = x$$
 라 하면 $\overline{AG} = \overline{AH} = 6$ 이므로 $\overline{DH} = \overline{DI} = x - 6$

$$\overline{ED} = x - 11 + x - 6 = 13$$

$$\therefore x = 15$$

 $\overline{\text{EF}} = \overline{\text{CF}} - 5 = x - 6 - 5 = x - 11$

16. 다음 그림에서 □ABCD 가 원에 내접할 때, ∠x + ∠y + ∠z의 값은?

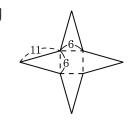

$$\begin{array}{c}
A \\
45^{\circ} \\
\end{array}$$

$$\begin{array}{c}
z \\
D \\
\end{array}$$

$$\begin{array}{c}
00^{\circ} \\
\end{array}$$

$$x = 180^{\circ} - (110^{\circ} + 45^{\circ}) = 25^{\circ}$$

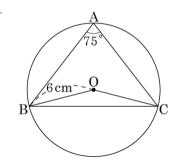
 $y = 180^{\circ} - (60^{\circ} + 45^{\circ} + 25^{\circ}) = 50^{\circ}$
 $z = y + \angle DBC = y + x = 75^{\circ}$
 $\therefore x + y + z = 150^{\circ}$


17. 다음 그림에서 \overline{PA} , \overline{PB} 가 접선 일 때, ∠AQB 의 크기는?

해설
$$\overline{PA} = \overline{PB}$$
 이므로 $\angle ABP = \overline{PB}$

 $\overline{PA} = \overline{PB}$ 이므로 $\angle ABP = 65^{\circ}$ 또한, 접선과 현이 이루는 각의 크기는 그 내부에 있는 호에 대한 원주각의 크기와 같으므로 $\angle ABP = \angle AQB = 65$ ° 이다.

18. 다음 그림과 같은 전개도로 만든 정사각뿔의 부피를 구하여라.

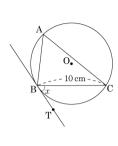


해설

$$ightharpoonup$$
 정답: $12\sqrt{103}$

불이를
$$h$$
, 부피를 V 라 하면
$$h = \sqrt{11^2 - (3\sqrt{2})^2} = \sqrt{121 - 18} = \sqrt{103}$$

$$V = 36 \times \sqrt{103} \times \frac{1}{3} = 12\sqrt{103}$$


19. 다음 그림에서 △OBC 의 넓이를 구하 여라.

해설
$$\angle A = 75 \degree \circ | \Box \Box \angle BOC = 150 \degree \uparrow \Box \Box .$$

$$\triangle OBC = \frac{1}{2} \times 6 \times 6 \times \sin 30 \degree$$

$$= \frac{1}{2} \times 6 \times 6 \times \frac{1}{2}$$

$$= 9 \text{ (cm}^2)$$

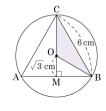
 ${\rm cm}^2$

20. 다음 그림에서 $\triangle ABC$ 는 원 O 에 내접하고 \overrightarrow{BT} 는 원 O 의 접선이다. $\angle CBT = x$ 라 하면 $\sin x = \frac{5}{6}$, $\overrightarrow{BC} = 10$ cm 일 때, 원 O 의 지름의 길이를 구하여라.

cm

답:

▷ 정답:


 $12\underline{\mathrm{cm}}$

লাপ্র
$$\angle A = \angle A' = \angle CBT = x$$

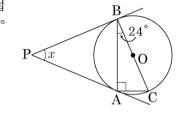
$$\sin x = \frac{10}{A/B} = \frac{5}{6}$$

∴ A'B = 12(cm)
 따라서 원 O 의 지름은 12(cm) 이다.

21. 다음 그림과 같이 $\overline{AB} = \overline{BC}$ 인 이등변삼각형 ABC 에서 $\overline{BC} = 6 \mathrm{cm}$, $\overline{OM} = \sqrt{3} \mathrm{cm}$ 일 때, $\triangle COB$ 의 넓이를 구하여라.

 cm^2

답:
 > 정답: 3√3 cm²


$$\overline{AB} = 6 \text{cm}, \overline{BM} = 3 \text{cm}, \overline{CM} = \sqrt{36 - 9} = \sqrt{27} = 3\sqrt{3} \text{(cm)}$$

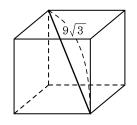
$$\Delta CMB = 3 \times 3\sqrt{3} \times \frac{1}{2} = \frac{9\sqrt{3}}{2} \text{(cm}^2)$$

$$\triangle OMB = 3 \times \sqrt{3} \times \frac{1}{2} = \frac{3\sqrt{3}}{2} (cm^2)$$

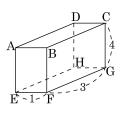
$$\triangle COB = \frac{9\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} = 3\sqrt{3}(cm^2)$$

22. 다음 그림에서 PA, PB 는 원 O 의 접 선이고 BC 는 지름이다. ∠ABC = 24° 일 때, ∠APB 의 크기는?

3 46°



$$\overline{PA} = \overline{PB}$$
 이므로 $\triangle PAB$ 는 이등변삼각형


∠PBA = ∠PAB =
$$90^{\circ} - 24^{\circ} = 66^{\circ}$$

∴ $x = 180^{\circ} - 66^{\circ} \times 2 = 48^{\circ}$

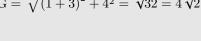
23. 다음 그림과 같이 대각선의 길이가 $9\sqrt{3}$ 인 정육면체의 부피 V 를 구하여라.

한 모서리의 길이를 a 라 하면 $\sqrt{3}a = 9\sqrt{3}$, a = 9 \therefore $V = 9^3 = 729$

24. 다음 그림은 세 모서리의 길이가 각각 1, 3, 4 인 직육면체이다. 꼭짓점 A 에서 G 까지 면을 따라 움직일 때. 가장 짧은 거리를 구하여라.

▶ 답:

ightharpoonup 정답: $4\sqrt{2}$

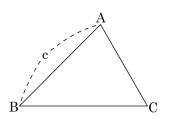

(i) \overline{BC} 를 지날 때, $\triangle AGF$ 는 직각삼각형이므로

$$\overline{AG}^2 = \overline{AF}^2 + \overline{FG}^2$$

$$\overline{AG} = \sqrt{(1+4)^2 + 3^2} = \sqrt{34}$$

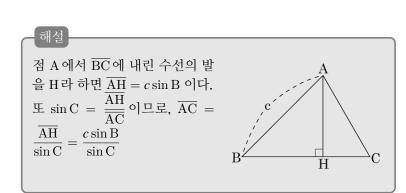
 $\overline{AG}^2 = \overline{AC}^2 + \overline{CG}^2$

$$\overline{AG} = \sqrt{(1+3)^2 + 4^2} = \sqrt{32} = 4\sqrt{2}$$


(iii) $\overline{\mathrm{CD}}$ 를 지날 때, $\Delta\mathrm{AHG}$ 는 직각삼각형이므로

$$\overline{AG}^2 = \overline{AH}^2 + \overline{HG}^2$$

 $\overline{AG} = \sqrt{(4+3)^2 + 1^2} = \sqrt{50}$


(i), (ii), (iii)에 의하여 최단거리는 4√2 이다.

25. 다음 그림 $\triangle ABC$ 에서 $\overline{AB} = c$ 라 할 때, 다음 중 \overline{AC} 의 길이를 나타낸 것을 골라라.

▶ 답:

▷ 정답: ②

