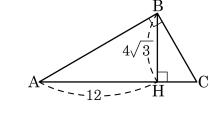
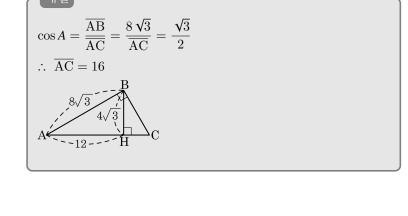

1. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A = \frac{4}{5}$ 이고, $\overline{BC} = 12$ 라고 한다. 직각삼각형 ABC 의 넓이를 구하여라.



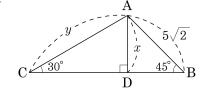
▶ 답:

▷ 정답: 54


 $\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$ 이므로 $\overline{BC} = \overline{AC} \times \sin A$ 이다. ⇒ $12 = \overline{AC} \times \frac{4}{5}$, $\overline{AC} = 15$ 피타고라스 정리에 의해 $\overline{AB} = \sqrt{15^2 - 12^2} = 9$ 이다. 따라서 삼각형 ABC 의 넓이는 $9 \times 12 \times \frac{1}{2} = 54$ 이다.

2. 다음 그림에서 $\cos A=\frac{\sqrt{3}}{2}$ 이고, $\overline{\rm AH}=12,\;\overline{\rm BH}=4\,\sqrt{3}\,\,\rm 일\,\, 때,\,\overline{\rm AC}\,\,\rm 의 \,\, \rm 길이는?}$

① 10 ② 12 ③ 14

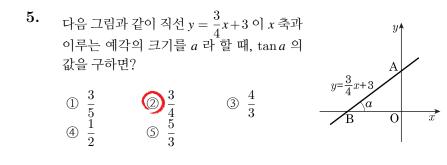

⑤ 18

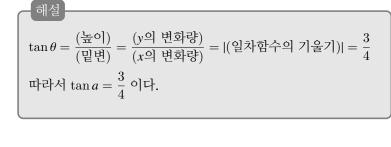
- 3. $2\sin 45 \circ \cos 45 \circ + \cos 30 \circ \sin 30 \circ$ 의 값은?
 - ① $1 + \frac{\sqrt{2}}{4}$ ② $1 + \frac{\sqrt{3}}{4}$ ③ $2 + \frac{\sqrt{2}}{4}$ ③ $2 + \frac{\sqrt{3}}{4}$

$$\sqrt{2}$$
 $\sqrt{2}$ $\sqrt{3}$ 1

- 다음 그림에서 x+y 의 값을 구하여라. 4.

▶ 답:

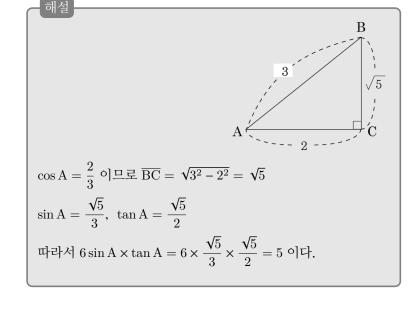

▷ 정답: 15


$$\sin 45^{\circ} = \frac{x}{5\sqrt{2}} = \frac{\sqrt{2}}{2}, \ x = 5$$

$$\sin 30^{\circ} = \frac{x}{y} = \frac{5}{y} = \frac{1}{2}, \ y = 10$$

$$\therefore \ x + y = 5 + 10 = 15$$

$$\therefore x + y = 5 + 10 = 15$$


6. 다음 그림과 같이 두 대각선이 이루는 각의 크기가 45° 인 등변사다리 꼴 ABCD 의 넓이가 $36\sqrt{2} \text{cm}^2$ 일 때, $\overline{\text{AC}}$ 의 길이를 구하면?

① 8 cm ② 10 cm ③ 12 cm ④ 14 cm ⑤ 16 cm

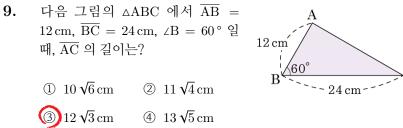
대각선 $\overline{AC} = \overline{BD} = x$ 라면 $x \times x \times \frac{1}{2} \times \sin 45 = 36\sqrt{2}$ $x^2 \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = 36\sqrt{2}$ $x^2 = 144$ x = 12 (cm)

- ① 2
- ② 3 ③ 4
- **4**5
- ⑤ 6

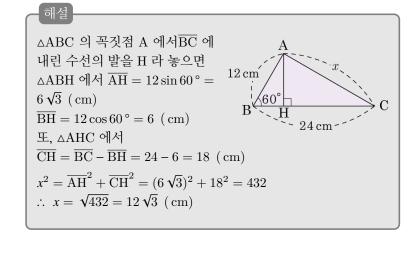
8. 다음 삼각비 표를 보고 $\cos 25^\circ + \sin 25^\circ \times \sin 50^\circ - \tan 50^\circ$ 의 값을 소수 둘째 자리까지 구하면?

각도	sin	cos	tan
25°	0.42	0.90	0.46
50°	0.76	0.64	1.19
70°	0.93	0.34	2.74

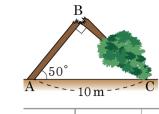
40.03


⑤ 0.02

 $\cos 25\,^{\circ} + \sin 25\,^{\circ} \times \sin 50\,^{\circ} - \tan 50\,^{\circ}$ $= 0.90 + 0.42 \times 0.76 - 1.19$


① 0.06 ② 0.05 ③ 0.04

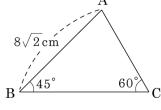
= 0.90 + 0.3192 - 1.19= 0.0292


≒ 0.03

 \bigcirc 14 $\sqrt{2}$ cm

10. 똑바로 서 있던 나무가 벼락을 맞아 다음 그림과 같이 직각으로 쓰러졌다. 이 나무가 쓰러지기 전의 높이를 다음 삼각비의 표를 이용하여구하면?

- 각노	sin	cos	tan
40	0.6428	0.7660	0.8391
50	0.7660	0.6428	1.1918


④ 11.918 m

① $6.428\,\mathrm{m}$

② 7.660 m ③ 14.088 m ③ 8.391 m

 $\overline{BC} = 10 \sin 50^{\circ} = 10 \times 0.7660 = 7.660 \text{ m}$

| AB = 10 cos 50° = 10 × 0.6428 = 6.428(m) | 따라서 나무의 높이= 7.660 + 6.428 = 14.088(m) 이다.

$$3 \left(8 + \frac{2\sqrt{3}}{3}\right) \text{ cm}$$

$$4 \left(8 + \frac{4\sqrt{3}}{3}\right) \text{ cm}$$

$$5 \left(8 + \frac{8\sqrt{3}}{3}\right) \text{ cm}$$

점 A 에서
$$\overline{BC}$$
에 내린 수선의 발을 H 라고 하면 $\overline{AH}=8\sqrt{2}\sin 45\,^\circ$
$$=8\,\sqrt{2}\times\frac{1}{\sqrt{2}}=8\,(cm)$$

$$AH = 8 \sqrt{2} \sin 45^{\circ}$$
$$= 8 \sqrt{2} \times \frac{1}{\sqrt{2}} = 8 (cm)$$

$$\overline{BH} = \overline{AH} = 8 \text{ (cm)}$$

$$\tan 60^{\circ} = \frac{8}{3}$$

$$\tan 60^{\circ} = \frac{8}{\overline{CH}}$$

$$\overline{CH} = \frac{8}{\tan 60^{\circ}} = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3} \text{ (cm)}$$

$$\therefore \overline{BC} = \overline{BH} + \overline{CH} = 8 + \frac{8\sqrt{3}}{3} \text{ (cm)}$$

12. 다음 그림의 삼각형 ABC 에서 $\overline{\mathrm{AB}}$ = $10 \mathrm{cm}$, $\angle \mathrm{A} = 30^{\circ}$, $\angle \mathrm{CBH} = 60^{\circ}$ 이다. ○ CH 의 길이를 구하여라.

▶ 답:

 $\underline{\mathrm{cm}}$

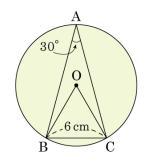
ightharpoonup 정답: $5\sqrt{3}$ $\underline{\mathrm{cm}}$

 $\overline{\mathrm{CH}} = 10\sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}(\mathrm{cm})$

 $\overline{AB} = \overline{BC} = 10(cm)$

- 13. 다음 그림의 $\triangle ABC$ 에서 $\angle A: \angle B: \angle C=$ 3:4:5 이고 원 O 의 반지름의 길이가
 - 24cm 일 때, △ABC 의 넓이는?

24 cm


- ① $264(2+\sqrt{3})$
- ② $144(3+\sqrt{3})$
- $3 149 \left(2 + \sqrt{2}\right)$
- $4 288 (2 + \sqrt{3})$
- \bigcirc 288 $(3+\sqrt{3})$

해설

- $\angle A: \angle B: \angle C=3:4:5$ 이므로 $\angle BOC = 90^{\circ}$, $\angle AOC = 120^{\circ}$, $\angle AOB = 150^{\circ}$
- (△ABC의 넓이) $= \triangle AOB + \triangle BOC + \triangle AOC$
- $= \frac{1}{2} \times 24^{2} \times \sin(180^{\circ} 150^{\circ}) + \frac{1}{2} \times 24^{2} \times \sin 90^{\circ}$
- $+\frac{1}{2} \times 24^2 \times \sin(180^\circ 120^\circ)$
- $= \frac{1}{2} \times 24^{2} \times (\sin 30^{\circ} + \sin 90^{\circ} + \sin 60^{\circ})$
- $= \frac{1}{2} \times 24^2 \times \left(\frac{1}{2} + 1 + \frac{\sqrt{3}}{2}\right)$

 $= 144 \left(3 + \sqrt{3}\right) \left(\text{cm}^2\right)$

14. 다음 그림과 같이 현 \overline{BC} 의 길이가 $6 \mathrm{cm}$ 인 원 O 에 내접하는 삼각형 ABC 에서 $\angle {\rm BAC} = 30\,^{\circ}$ 일 때, $\triangle {\rm OBC}$ 의 넓이는?

 $\bigcirc 9\sqrt{3} \text{cm}^2$

 $2 18 \sqrt{3} \text{cm}^2$ $4 \ 27 \sqrt{3} \text{cm}^2$ $30 \sqrt{3} \text{cm}^2$

 $3 21 \sqrt{3} \text{cm}^2$

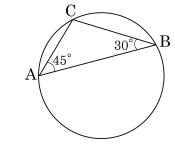
 $\angle BOC = 60\,^{\circ}(\because 5.0 \text{ptBC})$ 의 중심각) $\triangle OBC$ 는 정삼각형이므로 $\overline{OB} = 6 \text{cm}$ 따라서 $\triangle OBC = \frac{1}{2} \times 6 \times 6 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 6 \times 6 \times \frac{\sqrt{3}}{2}$ $= 9\sqrt{3} (\text{cm}^2) \text{ 이다.}$

- 15. A 값의 범위가 $0^{\circ} \le A \le 90^{\circ}$ 일 때, 다음 중 틀린 것의 기호를 쓰시오.
 - ⊙ cos A 의 최댓값은 1이다.
 - © A의 값이 감소할 때, tan A의 값은 감소하다 증가한다.
 - ⑤ sin A 의 값과 cos A 의 값이 같아지는 경우는 A가 45° 일 때이다.
 ⑥ A 의 값이 증가할 때, sin A 의 값은 증가한다.
 - ◎ tan A 의 최댓값은 존재하지 않는다.

▷ 정답: ⑤

▶ 답:

해설


A의 값이 감소하면, tan A의 값은 감소한다.

16. 방정식 $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$ 의 두 근을 $\tan a$, $\tan b$ 라고 할 때, b 의 크기는? (단, $\tan a < \tan b$, a, b 는 예각)

① 0° ② 30° ③ 45° ④ 60° ⑤ 80°

해설 $x^{2} - (\sqrt{3} + 1)x + \sqrt{3} = 0$ $(x - 1)(x - \sqrt{3}) = 0$ $x = 1 또는 x = \sqrt{3} \text{ 이다.}$ $\tan a < \tan b \text{ 이므로 } \tan a = 1, \tan b = \sqrt{3} \text{ 이다.}$ $\therefore b = 60^{\circ}$

17. 다음 그림과 같이 반지름의 길이가 2 인 원에 $\triangle ABC$ 가 내접하고 있다. $\angle A=45^\circ$, $\angle B=30^\circ$ 일 때, \overline{AB} 의 길이는?

- ① $\sqrt{2}$ ② $\sqrt{6}$ ② $\sqrt{2} + \sqrt{6}$ ③ $2(\sqrt{2} + \sqrt{6})$
 - $\sqrt{3}$ $\sqrt{2} + \sqrt{6}$
- $\overline{CA} = 4\cos 60^\circ = 2$

점 C 에서 \overline{AB} 에 내린 수선의 발을 H 라 하면 \overline{AH} = $\frac{\overline{CA}\cos 45^{\circ} = \sqrt{2} \circ | \overrightarrow{\Gamma}|.}{\overline{CH} = \overline{AH} = \sqrt{2}}$ $\frac{\overline{BH}}{\overline{BH}} = \frac{\overline{CH}}{\tan 30^{\circ}} = \sqrt{2} \times \sqrt{3} = \sqrt{6}$ $\therefore \overline{AB} = \sqrt{2} + \sqrt{6}$

18. 다음 그림과 같은 △ABC 의 넓이가 $7\sqrt{3} {\rm cm}^2$ 일 때, ∠A 의 크기는? (단, $0^\circ < \angle A \le 90^\circ$)

4 cm A

① 30° ② 45° ③ 50° ④ 60° ⑤ 65°

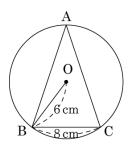
 $\frac{1}{2} \times 4 \times 7 \times \sin A = 7\sqrt{3}$ $\sin A = \frac{\sqrt{3}}{2}$ 따라서 $\angle A = 60^{\circ}$ 이다. 19. $\overline{\rm AB}=13$ 인 삼각형 ABC에서 $\sin B=\cos C$ 이고, 점 A 에서 변 BC 에 내린 수선의 길이가 5 일 때, 선분 BC 의 길이를 구하여라.

▶ 답:

해설

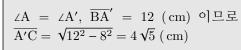
ightharpoonup 정답: $rac{169}{12}$

 $\sin B = \cos C$ 이면 $\angle A = 90^{\circ}$


점 A 에서 변 BC 에 내린 수선의 발을 H 라 할 때, 삼각형 AHB 와 삼각형 CAB 는 닮음이므로

 $\angle ACB = \angle BAH = x$ 라할때 $\cos x = \frac{5}{13}$, $\sin x = \frac{12}{13}$, $\tan x = \frac{12}{13}$

 $\frac{12}{5}$ 이다.


따라서 $\overline{\mathrm{BC}} = \frac{\overline{\mathrm{AB}}}{\sin x} = \frac{13}{\frac{12}{13}} = \frac{169}{12}$ 이다.

20. 다음 그림과 같이 반지름의 길이가 $6 \, \mathrm{cm}$ 인 원 O 에 내접하는 \triangle ABC 에서 $\overline{BC}=8\,\mathrm{cm}$ 일 때, $\sin A + \cos A \times \tan A$ 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{4}{3}$

$$\therefore \sin A = \frac{8}{12} = \frac{2}{3}, \cos A = \frac{4\sqrt{5}}{12} = \frac{1}{12}$$

따라서
$$\sin A + \cos A \times \tan A$$
 의 값은

$$\frac{2}{3} + \frac{\sqrt{3}}{3} \times \frac{2}{\sqrt{5}} = \frac{4}{3}$$

$$\frac{\sqrt{5}}{3}, \tan A = \frac{8}{4\sqrt{5}} = \frac{2}{\sqrt{5}}$$
따라서 $\sin A + \cos A \times \tan A$ 의 값은 $\frac{2}{3} + \frac{\sqrt{5}}{3} \times \frac{2}{\sqrt{5}} = \frac{4}{3}$ 이다.