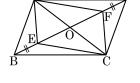
1. 평행사변형 ABCD 에서 대각선 BD 위에 $\overline{BE} = \overline{DF}$ 가 되도록 두 점 E,F 를 잡을 때, □AECF 는 평행사변형이다. 이를 증명하기 위해 사용하기에 가장 적합한

평행사변형의 조건은?



- ① 두 쌍의 대변이 각각 평행하다. ② 두 쌍의 대변의 길이가 각각 같다.
- ③ 두 쌍의 대각의 크기가 각각 같다.
- ④ 두 대각선이 서로 다른 것을 이등분한다.
- ⑤ 한 쌍의 대변의 길이가 같고 평행하다.

(가정) $\square ABCD$ 는 평행사변형, $\overline{BE} = \overline{DF}$

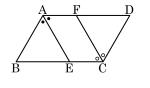
해설

(결론) □AECF 는 평행사변형 (증명) □ABCD 는 평행사변형이므로 $\overline{\mathrm{OA}} = \overline{\mathrm{OC}}$

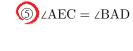
가정에서 $\overline{\mathrm{BE}} = \overline{\mathrm{DF}}$ 이므로 $\overline{\mathrm{OE}} = \overline{\mathrm{OF}}$ 따라서 두 대각선이 서로 다른 것을 이등분하므로 □AECF

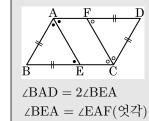
는 평행사변형이다.

 ${f 2}$. 다음 그림의 평행사변형 ${f ABCD}$ 에서 ${\it \angle A}$ 와 $\angle C$ 의 이등분선과 \overline{BC} , \overline{AD} 와의 교점을 E, F 라고 할 때, 다음 중 옳지 <u>않은</u> 것은?



- $\overline{3} \overline{AF} = \overline{CE}$
- ② $\angle BEA = \angle DFC$



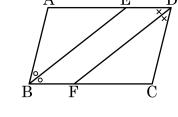


 $= \angle \mathrm{BAE}$ $\angle AEC = 180^{\circ} - \angle BEA = 180^{\circ} - \angle BAE$

그런데 ∠BAE는 알 수 없으므로 ∠AEC ≠ ∠BAD

따라서 $\angle AEC = \angle BAD$ 인 것은 $\angle BAE = 60$ °일 때만 성립한다.

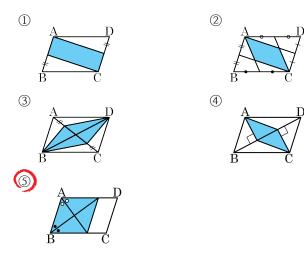
3. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle B$ 와 $\angle D$ 의 이등분선이 \overline{AD} , \overline{BC} 와 만나는 점을 각각 E,F 라 할 때, 다음 보기 중에서 옳은 것은 모두 몇 개인가?



사각형 BEDF 는 평행사변형이고,

ΔABE ≡ ΔCDF 이므로 ⑦~⊕ 모두 옳다.

4. 다음 □ABCD 가 평행사변형일 때, 색칠한 사각형 중 종류가 <u>다른</u> 것은?

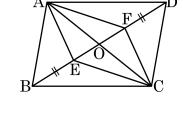


①,②,③,④ : 평행사변형

해설

⑤ 마름모

다음은 한솔중 2 학년 예지가 증명을 해 놓은 결과 중 2 곳이 지워졌다. 빈칸에 알맞은 것을 차례대로 써 넣어라.
 (단, 평행사변형 ABCD 에서 두 대각선의 교점을 O 라 하고, 점 E,F 는 대각선 BD 위에 BE = DF 를 만족하는 점이다.)



[가정]□ABCD 는 평행사변형, BE = DF

[결론]□AECF 는 평행사변형

[증명]□ABCD 는 평행사변형이므로

OA = (a)

가정에서 BE = DF 이므로 OE=(b)

따라서 두 대각선이 서로 다른 것을 이등분하므로
□AECF 는 평행사변형이다.

▶ 답:

▶ 답:

▷ 정답: OC

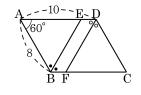
▷ 정답: OF

해설

평행사변형의 두 대각선은 서로 다른 것을 이등분하므로 $\overline{\mathrm{OA}}=\overline{\mathrm{OC}}$

또, $\overline{OB} = \overline{OD}$ 이고 가정에서 $\overline{BE} = \overline{DF}$ 이므로 $\overline{OE} = \overline{OF}$ 따라서 두 대각선이 서로 다른 것을 이등분하므로 $\square AECF$ 는 평행사변형이다.

6. 다음 그림과 같은 평행사변형 ABCD 에서 ∠B 와 ∠D 의 이등분선일 때, □BEDF 의 둘 레의 길이를 구하여라.



 달:

 ▷ 정답:
 20

해설

∠EBF = ∠BEA(∵ 엇각)

따라서 $\triangle ABE$ 는 $\overline{AB} = \overline{AE}$ 인 이등변삼각형이고 세 각의 크기가 모두 60° 이므로 전상가형이다

가 모두 60° 이므로 정삼각형이다. 따라서 $\overline{\mathrm{ED}}=\overline{\mathrm{AD}}-\overline{\mathrm{AE}}=10-8=2$ 이다.

 $\overline{BE} = \overline{AB} = 8$ 이므로

□BEDF는 평행사변형이다. ∴ □BEDF 의 둘레의 길이는 2 × (8 + 2) = 20 이다.

7. $\overline{\mathrm{AB}}=100\mathrm{cm}$ 인 평행사변형 ABCD 에서 점 $P \leftarrow \overline{AB}$ 위를 초속 4cm의 속도로 A 에서 출 발하여 B 쪽으로, 점 Q 는 매초 $7\mathrm{cm}$ 의 속도로 $\overline{\mathrm{CD}}$ 위를 C 에서 출발하여 D 쪽으로 움직이고 있다. P 가 출발한 지 9 초 후에 Q 가 출발할 때, 처음으로 $\overline{\mathrm{AQ}}//\overline{\mathrm{PC}}$ 가 되는 것은 P 가 출발한 지 몇 초 후인지 구하여라. ▶ 답: <u>초</u>

정답: 21 초

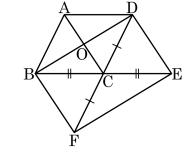
Q 가 출발한지 t 초 후의 P 가 움직인 거리 : $\overline{\mathrm{AP}} = 4(9+t)$

해설

Q 가 움직인 거리 : $\overline{\text{CQ}} = 7t$

 $\overline{\mathrm{AP}} = \overline{\mathrm{CQ}}$ 에서 4(9+t) = 7t 이므로 t = 12∴ 12 + 9 = 21 (초) 후이다.

8. 평행사변형 ABCD 의 두 변 BC, DC 의 연장선 위에 $\overline{BC}=\overline{CE}$, $\overline{DC}=\overline{CF}$ 가 되도록 두 점 E, F 를 잡을 때, \Box ABCD를 제외한 사각 형이 평행사변형이 되는 조건은 보기에서 모두 몇 개인가?



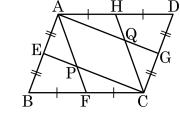
○ 두 쌍의 대변이 각각 평행하다.

보기

- ⓒ 두 쌍의 대변의 길이가 각각 같다.
- © 두 쌍의 대각의 크기가 각각 같다.
- ◎ 두 대각선이 서로 다른 것을 이등분한다.
- ◎ 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

해설

평행사변형이 되는 조건은 □ABFC, □ACED가 평행사변형이되는 조건 ⓐ과 □BFED가 평행사변형이 되는 조건 ⓐ로 2개이다.



- ℂ 두 쌍의 대변의 길이가 각각 같다.
- © 두 쌍의 대각의 크기가 각각 같다.

⊙ 두 쌍의 대변이 각각 평행하다.

- 두 대각선이 서로 다른 것을 이등분한다.
- ① 한 쌍의 대변이 평행하고 그 길이가 같다.

(4) (7), (E), (E)

 \bigcirc \bigcirc , \bigcirc , \bigcirc

해설

□APCQ는 AP // QC 이고 PC // AQ 이다. (⑤)

 $\Box AECG$ 는 \overline{AE} // \overline{GC} 이고 \overline{AE} = \overline{GC} 이다. (@) $\Box AFCH$ 는 \overline{AH} // \overline{FC} 이고 \overline{AH} = \overline{FC} 이다. (@)