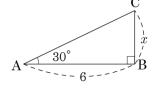

$\cos A = \frac{1}{3}$ 인 직각삼각형 ABC 에서 $\sin A \times \tan A$ 의 값을 구하여라. (단, $0^\circ < A < 90^\circ$


ightharpoons 정답: $rac{8}{3}$

해설
$$\cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{1}{3} \circ | \Box \overline{\Xi} \ \overline{AC} = \overline{AB} \times \cos A = 9 \times \frac{1}{3} = 3 \circ | \Box \overline{AC} = \overline{AB} \times \cos A = \frac{1}{3} = \frac{1}{3} \circ | \Box \overline{AC} = \overline{AB} \times \cos A = \frac{1}{3} = \frac{1}{3} \circ | \Box \overline{AC} = \overline{AB} \times \cos A = \frac{1}{3} = \frac{1}{3} \circ | \Box \overline{AC} = \frac{1}{3} = \frac{1}{$$

$$\Rightarrow \sin A = \frac{6\sqrt{2}}{9} = \frac{2\sqrt{2}}{3}, \tan A = \frac{\sin A}{\cos A} = \frac{2\sqrt{2}}{3} = 2\sqrt{2}$$

따라서
$$\sin A \times \tan A = \frac{2\sqrt{2}}{3} \times 2\sqrt{2} = \frac{8}{3}$$
 이다.

2. 다음 그림에서 x의 값을 구하여라.

▶ 답:

▷ 정답: 2√3

 $x = \overline{AB} \times \tan 30^{\circ}$ 이다.

따라서 $x = 6 \times \tan 30^\circ = 6 \times \frac{1}{\sqrt{3}} = 6 \times \frac{\sqrt{3}}{3} = 2\sqrt{3}$ 이다.

3. 다음 주어진 표를 보고 x + y 의 값을 구하면?

각노	sin	cos	tan
÷	:	÷	:
14°	0.2419	0.9703	0.2493
15 °	0.2588	0,9859	0.2679
16°	0.2766	0.9613	0.2867
:	:	÷	:

 $\sin x = 0.2766$, $\tan y = 0.2493$

① 28°

② 29°

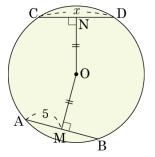
③30°

④ 31° ⑤ 32°

 $\sin x = 0.2766 \therefore x = 16^{\circ}$

해설

 $\tan y = 0.2493 :: y = 14^{\circ}$ $\therefore x + y = 16^{\circ} + 14^{\circ} = 30^{\circ}$

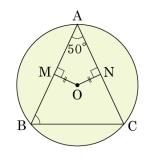

4. 다음 그림에서 x 의 길이는 ?

① $\sqrt{3}$ ② $\sqrt{5}$ ③ $\sqrt{7}$ ④ $\sqrt{10}$ ⑤ $\sqrt{13}$

점 O 에서 내린 수선의 발을 \mathbf{H} 라 하면

 $\overline{AH} = \overline{BH} = 3$ $x^2 = 3^2 + 2^2 \quad \therefore x = \sqrt{13}$

5. 다음 그림에서 x 의 값을 구하여라.


 ► 답:

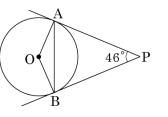
 ► 정답: x = 10

원의 중심으로부터 같은 거리에 있는 현의

길이는 같으므로 ∴ *x* = 5 × 2 = 10

다음 그림에서 $\overline{\rm OM}=\overline{\rm ON}$, $\angle {\rm A}=50\,^{\circ}$ 일 때, $\angle {\rm B}$ 의 크기는? 6.

① 55°

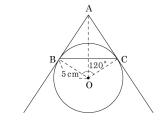

②65° 3 70° 4 75° 5 85°

해설

중심에서 현에 이르는 거리가 같으므로 $\overline{\mathrm{AB}}=\overline{\mathrm{AC}}$ $\Delta\mathrm{ABC}$ 가 이등변삼각형

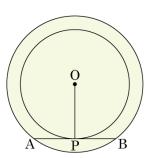
 $\therefore \angle B = (180\,^{\circ} - 50\,^{\circ}) \times \frac{1}{2} = 65\,^{\circ}$

7. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접 선이고 ∠APB = 46°일 때, ∠PAB 의 크기를 구하여라.

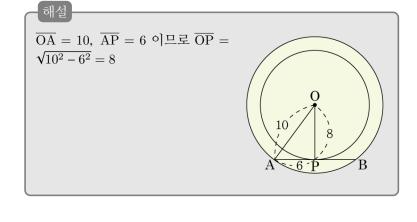

▷ 정답: 67_°

▶ 답:

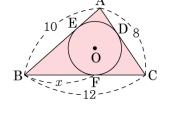
접선의 성질의 의해 $\overline{\mathrm{PA}} = \overline{\mathrm{PB}}$ 이므로 △APB 는 이등변삼각형


 $\therefore \angle PAB = 134^{\circ} \times \frac{1}{2} = 67^{\circ}$

8. 다음 그림에서 \overrightarrow{AB} , \overrightarrow{AC} 는 원 O 의 접선이고 두 점 B, C 는 원 O 의 접점이다. $\angle BOC = 120^\circ$, $\overrightarrow{BO} = 5 \mathrm{cm}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?

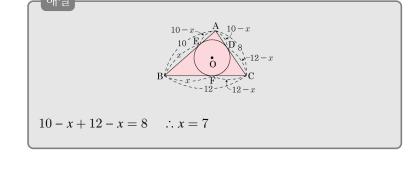

① $\overline{AB} = \overline{AC}$ ③ $\angle OBA = \angle OCA$ \bigcirc \triangle OAB \equiv \triangle OAC

∠BAO = 30° 이므로 1:2=5: AO ∴ AO = 10 cm 9. 다음 그림에서 큰 원의 반지름의 길이가 10, $\overline{AB}=12$ 일 때, 작은 원의 반지름의 길이를 구하여라.

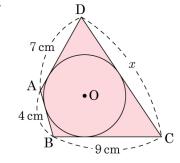


답:

➢ 정답: 8



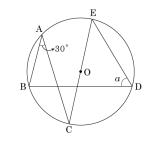
10. 원 O 가 △ABC 의 각 변과 점 D, E, F 에서 접할 때, *x* 의 값을 구하여라.



답:

▷ 정답: 7

11. 다음 그림과 같이 사각형 ABCD가 원 O에 외접할 때, $\overline{\text{CD}}$ 의 길이는?



① 11cm ② 12cm ③ 13cm ④ 14cm ⑤ 15cm

 $\overline{\mathrm{AD}} + \overline{\mathrm{BC}} = \overline{\mathrm{AB}} + \overline{\mathrm{CD}}$ 이므로 7+9=4+x

 $\therefore x = 12 \, (\mathrm{cm})$

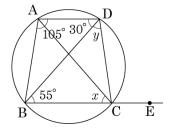
12. 다음 그림에서 $\overline{\mathrm{EC}}$ 는 원 O 의 지름이고 $\angle\mathrm{BAC}=30^\circ$ 일 때, $\angle a$ 의 크기는?

① 30° ② 40° ③ 50°

(4)60°

⑤ 70°

 $\overline{\mathrm{CD}}$ 를 연결하면


해설

 $\angle \text{CDE} = 90^{\circ}, \ \angle \text{BAC} = \angle \text{BDC} = 30^{\circ}$

 $\angle CDE = \angle BDC + \angle BDE = 30^{\circ} + a^{\circ} = 90^{\circ}$

 $\therefore \angle a = 60^{\circ}$

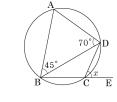
13. 다음 그림과 같이 내접하는 사각형 ABCD 에 대하여 $\angle y - \angle x$ 의 크기는?

① 10° ② 20° ③ 30° ④ 40° ⑤ 50°

□ABDC 는 원에 내접하므로

해설

 $\angle DCE = \angle BAD = 105^{\circ}$ 한편, ∠DCE = ∠y + 55 ° 이므로


 $105\degree = \angle y + 55\degree$

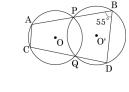
 $\therefore \angle y = 50^{\circ}$

5.0pt \overrightarrow{AB} 에 대한 원주각 $\angle x = \angle ADB$ 이므로 $\angle x = 30$ °

 $\therefore \angle y - \angle x = 50^{\circ} - 30^{\circ} = 20^{\circ}$

14. 다음 그림에서 $\angle x$ 의 크기는?

(4)65°


⑤ 70°

 $\angle BAD = 180^{\circ} - 45^{\circ} - 70^{\circ} = 65^{\circ}$ $\therefore \angle x = \angle DCE = \angle BAD = 65^{\circ}$

해설

① 50° ② 55° ③ 60°

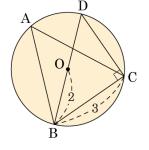
15. 다음 그림에서 ∠DBP = 55° 일 때 , ∠CAP 의 크기는?

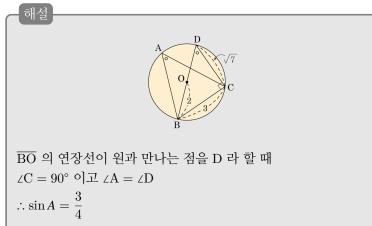
⑤ 125°

① 85° ② 95° ③ 105° ④ 115°

 $\angle PQC = \angle PBD = 55^{\circ}$ $\angle CAP + \angle PQC = 180^{\circ}$ $\therefore \angle CAP = 180^{\circ} - 55^{\circ} = 125^{\circ}$ **16.** $\sin(90^{\circ} - A) = \frac{12}{13}$ 일 때, $\tan A$ 의 값은?(단, $0^{\circ} < A < 90^{\circ}$)

① $\frac{12}{5}$ ② $\frac{13}{5}$ ③ $\frac{12}{13}$ ④ $\frac{5}{12}$ ⑤ $\frac{5}{13}$

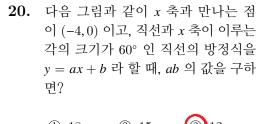

 $\sin(90^\circ - A) = \cos A = \frac{12}{13}$ 이다. $\sin A = \frac{5}{13}$ 이므로


따라서 $\tan A = \frac{\sin A}{\cos A} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}$ 이다.

- **17.** $\sin(90\degree A) = \frac{5}{13}$ 일 때, $\tan A$ 의 값은? (단, $0\degree < A < 90\degree$)
 - ① $\frac{9}{5}$ ② $\frac{12}{5}$ ③ $\frac{13}{5}$ ④ $\frac{13}{12}$ ⑤ 3

 $\tan A = \frac{12}{5}$

- 18. 다음 그림의 반지름의 길이가 2 인 원 O 에 내접하는 $\triangle ABC$ 에서 $\overline{BC}=3$ 일 때, $\sin A$ 의 값은?



$$\therefore \sin A = \frac{3}{4}$$

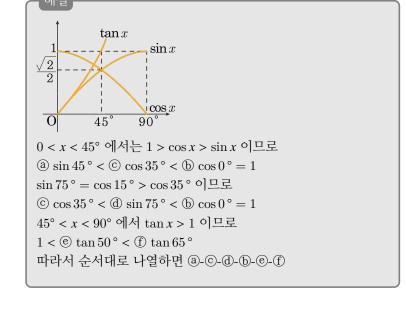
19. $4\sin^2 45$ ° ÷ $\tan^2 30$ ° × $2\cos^2 45$ ° 의 값은?

① 4 ② 5 ③ 6 ④ 7 ⑤ 8

해설 $(\frac{\sqrt{2}}{2}) = 4 \left(\frac{\sqrt{2}}{2} \right)^2 \div \left(\frac{1}{\sqrt{3}} \right)^2 \times 2 \left(\frac{\sqrt{2}}{2} \right)^2$ $= 2 \div \frac{1}{3} \times 1 = 6$

 $\overline{\mathrm{OA}} = 4 \tan 60^{\circ} = 4 \sqrt{3}$

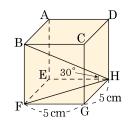
 $\therefore y = \tan 60^{\circ} x + 4\sqrt{3}$


 $= \sqrt{3}x + 4\sqrt{3}$

 $a = \sqrt{3}, b = 4\sqrt{3}$ 이므로 $ab = \sqrt{3} \times 4\sqrt{3} = 12$ 이다.

21. 다음 삼각비의 값을 작은 것부터 차례로 나열하면?

- 5 b-c-a-e-f-d
- (4) (a-©-d-b-e-f)

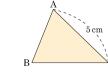

22. $\triangle ABC$ 에서 $0^\circ < A < 90^\circ$ 이고, $2\cos A - \sqrt{3} = 0$ 일 때, $\sin A \times \frac{1}{\tan A}$ 의 값을 구하면?

① 2 ② $\sqrt{3}$ ④ $\frac{3}{2}$

 $3 \frac{\sqrt{3}-1}{2}$

해설 $\cos x = \frac{\sqrt{3}}{2} \text{ 이므로 A} = 30^{\circ} \text{ 이다.}$ $\sin 30^{\circ} \times \frac{1}{\tan 30^{\circ}} = \frac{1}{2} \times \frac{1}{\frac{\sqrt{3}}{3}} = \frac{1}{2} \times \sqrt{3} = \frac{\sqrt{3}}{2}$

 ${f 23}.$ 아래 그림과 같은 직육면체에서 $\overline{
m HG}=\overline{
m FG}=$ 5 cm , ∠BHF = 30°일 때, 이 직육면체의 부 피는?


- ① $\frac{25\sqrt{6}}{3} \text{ cm}^3$ ② $\frac{125\sqrt{6}}{3} \text{ cm}^3$ ③ $\frac{125\sqrt{6}}{2} \text{ cm}^3$ ④ $68\sqrt{6} \text{ cm}^3$ ⑤ $125\sqrt{6} \text{ cm}^3$

 $\overline{FH} = 5\sqrt{2} \text{ cm} , \overline{AE} = \overline{BF} = \overline{FH} \times \tan 30^{\circ}$ $\therefore \overline{AE} = 5\sqrt{2} \times \frac{1}{\sqrt{3}} = \frac{5\sqrt{6}}{3}$ $\stackrel{\text{H}}{=} \overline{\Pi} \stackrel{\text{L}}{=} 5 \times 5 \times \frac{5\sqrt{6}}{3} = \frac{125\sqrt{6}}{3} \text{ (cm}^3)$

.. AE =
$$3\sqrt{2} \times \frac{1}{\sqrt{3}} = \frac{1}{3}$$

- **24.** 반지름의 길이가 20 cm 인 원에 내접하는 정십이각형의 넓이를 구하면?
 - ① $1200 \,\mathrm{cm^2}$ ② $1300 \,\mathrm{cm^2}$ ③ $1400 \,\mathrm{cm^2}$ ④ $1500 \,\mathrm{cm^2}$ ⑤ $1600 \,\mathrm{cm^2}$
 - $\frac{1}{2} \times 20 \times 20 \times \sin 30^{\circ} \times 12$ $= \frac{1}{2} \times 20 \times 20 \times \frac{1}{2} \times 12$ $= 1200 \text{ (cm}^2)$

25. 다음 그림에서 $\overline{AC}=5$ cm 이고 $\sin B=\frac{4}{5}$, $\sin C=\frac{3}{5}$ 일 때, \overline{BC} 의 길이는?

- ① $\frac{21}{4}$ cm ② $\frac{23}{4}$ cm ③ $\frac{25}{4}$ cm ④ $\frac{27}{4}$ cm

$$\begin{array}{c} \operatorname{SMB} = \frac{15}{5} - \overline{AB} \\ \cdot \overline{AB} = \frac{15}{5} \end{array}$$

$$BH^2 = \left(\frac{1}{4}\right)^{-1}$$

$$\overline{HC}^2 = 5^2 - 3^2 = 4$$

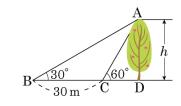
$$\therefore \overline{HC} = 4(cm)$$

$$\sin C = \frac{3}{5} \text{ old } \overline{AH} = 3(\text{cm})$$

$$\sin B = \frac{4}{5} = \frac{3}{\overline{AB}}$$

$$\therefore \overline{AB} = \frac{15}{4}$$

$$\overline{BH}^2 = \left(\frac{15}{4}\right)^2 - 3^2 = \frac{81}{16}$$


$$\therefore \overline{BH} = \frac{9}{4}(\text{cm})$$

$$\overline{HC}^2 = 5^2 - 3^2 = 4^2$$

$$\therefore \overline{HC} = 4(\text{cm})$$

$$\overline{BC} = \overline{BH} + \overline{HC} = \frac{9}{4} + 4 = \frac{25}{4}(\text{cm})$$

26. 다음 그림에서 나무의 높이 h는? (단, $\sqrt{3} = 1.7$ 로 계산한다.)

 $\textcircled{4} \ 24.5 \mathrm{m}$

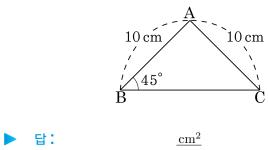
① 21.5m

② 22.5m

③ 23.5m

⑤ 25.5m

∠BAC = 30° 이므로

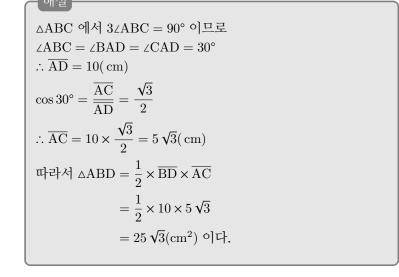

 $\overline{BC}=\overline{AC}=30(m)$

△ACD 에서 $h = 30\sin 60^{\circ}$

 $= 30 \times \frac{\sqrt{3}}{2}$ $= 15\sqrt{3}$

 $= 15 \times 1.7 = 25.5(m)$ $\therefore\ h=25.5\mathrm{m}$

27. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하여라.


▷ 정답: 50 cm²

 $\angle A = 90^{\circ}$ 이므로 $\frac{1}{2} \times 10 \times 10 \times \sin 90^{\circ} = 50 \times 1 = 50 \text{(cm}^2) \text{ 이다.}$

28. 다음 그림과 같이 직각삼각형 ABC 에서 $\angle A$ 의 이등분선과 \overline{BC} 의 교점을 D 라 하고, $\angle ABC = \angle BAD$, $\overline{BD} = 10 \mathrm{cm}$ 일 때, △ABD 의 넓이는?

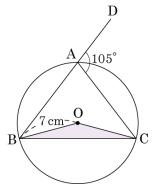
- ② $11\sqrt{3}$ cm² ① $8\sqrt{3}$ cm² $3 17 \sqrt{3} \text{cm}^2$ ④ $21\sqrt{3}$ cm²

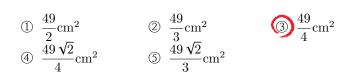
29. 다음 그림에서 평행사변형 의 넓이는?

① $21\sqrt{3}$

② $22\sqrt{3}$ ④ $24\sqrt{3}$

 $3 23\sqrt{3}$

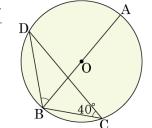

⑤ $25\sqrt{3}$


(평행사변형의 넓이) = $3 \times 14 \times \sin 60$ °

 $= 3 \times 14 \times \frac{\sqrt{3}}{2}$ $= 21\sqrt{3}$

3 60°

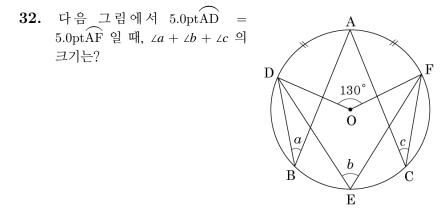
30. 다음 그림과 같이 반지름의 길이가 7cm인 원 O 에 내접하는 삼각형 ABC 에서 ∠DAC = 105°일 때, △OBC 의 넓이 는?

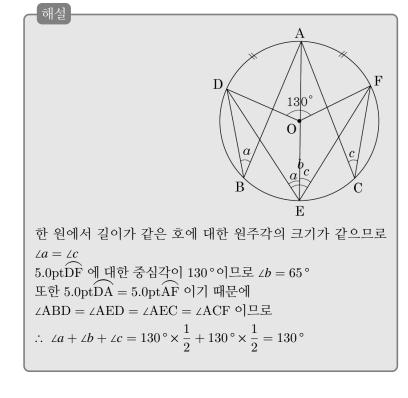

$$\frac{3}{4}$$
 cm²

원주각 $\angle BAC = 75$ ° 이므로 중심각 $\angle BOC = 150$ ° 이다. 따라서 $\triangle BOC = \frac{1}{2} \times 7 \times 7 \times \sin 30$ ° $= \frac{49}{4} (\text{cm}^2)$ 이다.

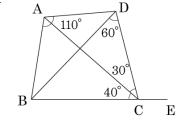
31. 다음 그림에서 \overline{AB} 는 원 O 의 지름이다. $∠BCD = 40\,^{\circ}$ 일 때, ∠ABD 의 크기를 구하 면?

> 3)50° ① 40° ② 45°


⑤ 60° ④ 55°


 $\overline{\mathrm{AB}}$ 가 지름이므로 $\overline{\mathrm{AC}}$ 를 그으면

 $\angle ACB = 90^{\circ}$ $\therefore \angle ACD = 90^{\circ} - 40^{\circ} = 50^{\circ}$


 $\angle ABD = \angle ACD = 50^{\circ}$

① 120° ② 130° ③ 140° ④ 150° ⑤ 160°

33. 다음 그림의 □ABCD 가 원에 내접할 때 ∠BAC 의 크기는?

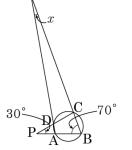
① 30° ② 40° ③ 50°

4 60°

⑤ 70°

한 원에서 한 호에 대한 원주각의 크기는 같으므로

 $\angle BAC = \angle BDC = 60^{\circ}$


34. 다음 그림에서 □ABCD 는 원에 내접하고 ∠BPC = 30°, ∠ABC = 70° 일 때, ∠BQA 의 값을 구하면?

①10°

② 20°

③ 30°

40° 50°

 $\angle {
m ADC} = 110\,^{\circ}\,(\because \angle {
m ABC}$ 의 대각) 이코, $\angle {
m PAQ} = x + 70\,^{\circ}\,$ 이다.

해설

△PAD 에서 한 외각의 크기의 합은 이웃하지 않는 두 내각의 크기의 합과 같으므로 $110^\circ = 30^\circ + x^\circ + 70^\circ$ ∴ $x^\circ = 10^\circ$

 $\therefore x^\circ = 10^\circ$

 ${f 35}$. 다음 그림에서 $5.0{
m pt}\widehat{
m AB}=5.0{
m pt}\widehat{
m AE}$ 이고 $\angle{
m ACD}=62^{\circ}$ 일 때, $\angle{\it x}$ 의 크기는?

③118°

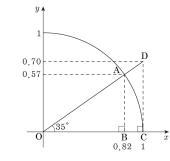
4 119°

⑤ 120°

□ACDE 에서

① 116°

해설


 $\angle AED = 180^{\circ} - \angle ACD = 180^{\circ} - 62^{\circ} = 118^{\circ}$ 이다. 5.0ptAB = 5.0ptAE 이므로 $\angle ABE = \angle BCA = \angle ADE = \angle BEA = \angle y$ 라 하면

② 117°

 $\angle BED = 118^{\circ} - \angle y$ 이다.

따라서 $\angle x = \angle \text{BED} + \angle \text{ADE} = 118^{\circ} - \angle y + \angle y = 118^{\circ}$ 이다.

36. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 옳지 <u>않은</u> 것을 모두 고르면?(정답 2개)

 $3 \sin 55^{\circ} = 0.82$

- $2 \tan 35^{\circ} = \tan 55^{\circ}$

② $\tan 35^{\circ} = \frac{\overline{CD}}{\overline{OC}} = 0.70, \tan 55^{\circ} = \frac{\overline{OC}}{\overline{CD}} = \frac{1}{0.70}$ 이므로 $\tan 35^{\circ} \neq \tan 55^{\circ}$ $4 \sin 35^{\circ} = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = 0.57$

37. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

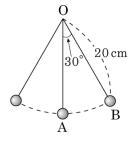
- ① 14 ② 13 ③ 12 ④ 11 ⑤ 10

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2 11 \times 2 + a = 0$

8 - 22 + a = 0, a = 14

38. 다음 그림에서 $\overline{AC}=5\,\mathrm{cm}$ 이고 $\sin B=\frac{4}{5},\,\sin C=\frac{3}{5}\,\mathrm{일}$ 때, \overline{BC} 의 길이를 구하여라.

▶ 답:


ightharpoonup 정답: $\frac{25}{4}$ $\underline{\mathrm{cm}}$

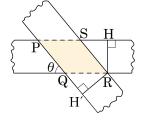
점 A 에서 \overline{BC} 에 내린 수선의 발을 H라 하면 $\sin C = \frac{3}{5} \text{에서 } \overline{AH} = 3 \text{ (cm) } \text{이고,}$ $\sin B = \frac{4}{5} = \frac{3}{\overline{AB}} \text{ 이므로 } \overline{AB} = \frac{15}{4} \text{ (cm) } \text{이다.}$

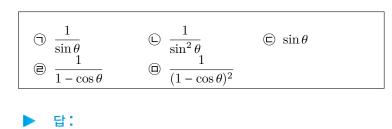
따라서 $\overline{\rm BH}^2=\left(\frac{15}{4}\right)^2-3^2=\frac{81}{16}, \overline{\rm BH}=\frac{9}{4}\ (\,{\rm cm})$ 이다. $\overline{\rm HC}^2=$ $5^2 - 3^2 = 4^2$, $\overline{HC} = 4$ (cm)이다.

그러므로 $\overline{\mathrm{BC}}=\overline{\mathrm{BH}}+\overline{\mathrm{HC}}=\frac{9}{4}+4=\frac{25}{4}$ (cm)이다.

39. 다음 그림과 같이 실의 길이가 $20 \, \mathrm{cm}$ 인 추가 있다. ∠AOB = 30°일 때, 이 추가 A 를 기 준으로 몇 $\,\mathrm{cm}$ 의 높이에 있는지 구하면?

- $(20-10\sqrt{3})$ cm ③ $(20-5\sqrt{3})$ cm ④ $(20-\sqrt{3}0$ cm
 - \odot 5 cm

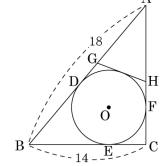

② $(20-10\sqrt{2})$ cm


다음 그림에서 구하는 높이는 $\overline{\mathrm{AH}}$ 이다.

 $=20-20 \times \frac{\sqrt{3}}{2} = 20-10\sqrt{3} \text{(cm)}$

40. 다음 그림과 같이 폭이 1로 일정한 두 종이 테이프가 θ 의 각을 이루며 겹쳐 있을 때, □PQRS의 넓이를 구하여라.

▷ 정답: つ


해설

점 R 에서 \overrightarrow{PS} , \overrightarrow{PQ} 에 내린 수선의 발을 각각 H, H'이라 하면 $\triangle QRH'$ 에서 $\angle RQH'=\theta$ 이므로

$$\overline{\mathrm{QR}} = \frac{\overline{\mathrm{RH'}}}{\sin \theta} = \frac{1}{\sin \theta}$$
이다. 또, $\triangle \mathrm{SRH}$ 에서 $\angle \mathrm{RSH} = \theta$ 이므로 $\overline{\mathrm{SR}} = \frac{\overline{\mathrm{RH}}}{\sin \theta} = \frac{1}{\sin \theta}$

$$\therefore \Box PQRS = \overline{QR} \times \overline{SR} \times \sin \theta$$
$$= \frac{1}{\sin \theta} \times \frac{1}{\sin \theta} \times \sin \theta = \frac{1}{\sin \theta}$$

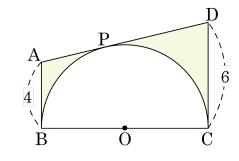
41. 다음 그림에서 원 O 는 \triangle ABC 의 내 접원이고, 세 점 D, E, F 는 접점이다. $\overline{\mathrm{AB}}=18$, $\overline{\mathrm{BC}}=14$, $\triangle\mathrm{AGH}$ 의 둘레의 길이가 20 일 때, $\overline{\mathrm{AC}}$ 의 길이는?

① 10

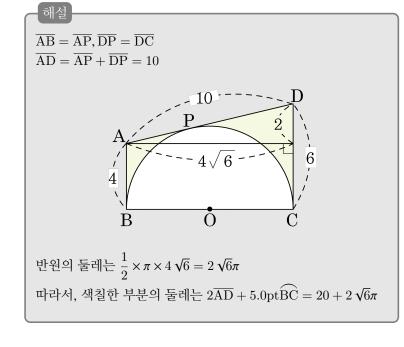
② 12

316

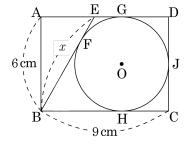
4 17


⑤ 18

해설 접선의 성질에 따라 $\overline{\mathrm{AD}} = \overline{\mathrm{AF}}$


 $\triangle AGH$ 의 둘레는 $\overline{AD} + \overline{AF} = 2 \times \overline{AD}$ $\Delta {
m AGH}$ 의 둘레가 20 이므로 $\overline{
m AD} = \overline{
m AF} = 10$ $\therefore \overline{\mathrm{BD}} = \overline{\mathrm{BE}} = 8, \ \overline{\mathrm{EC}} = \overline{\mathrm{CF}} = 6$

 $\therefore \overline{AC} = \overline{AF} + \overline{CF} = 10 + 6 = 16$


42. 다음 그림에서 \overline{BC} 는 원 O 의 지름이고 \overline{AB} , \overline{CD} , \overline{AD} 는 모두 원 O 의 접선일 때, 색칠한 부분의 둘레는?

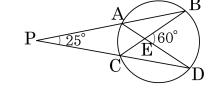
- ① 20
- ② $10 + 21\pi$
- $3 12 + 2\sqrt{3}\pi$
- $4)20 + 2\sqrt{6}\pi$
- ⑤ $20 + 5\pi$

43. 다음 그림과 같이 원 O 가 직사각형 $\square ABCD$ 의 세 변과 \overline{BE} 에 접할 때, x의 값을 구하여라. (단, F, G, H, I 는 접점)

▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $rac{15}{2}$ $\underline{
m cm}$


$\overline{\mathrm{ED}}+\overline{\mathrm{BC}}=\overline{\mathrm{EB}}+\overline{\mathrm{DC}}$ 이므로 $\overline{\mathrm{ED}}+9=x+6$ 이다. 따라서

해설

 $\overline{\mathrm{ED}} = x - 3$ 이다.

 $\overline{AE} = \overline{AD} - \overline{ED} = 9 - (x - 3) = 12 - x$ 이므로 직각삼각형 ABE 에서 $x^2 = (12 - x)^2 + 6^2$ 이다. 따라서 $x = \frac{15}{2}$ (cm) 이다.

44. 다음 그림에서 $\angle P=25\,^\circ$, $\angle BED=60\,^\circ$ 일 때, $\angle ABC$ 의 크기를 구하여라.

 답:

 ▷ 정답:
 17.5°

V 68: 11.0_

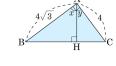
△AEB 에서

해설

 $\angle ABC = x$ 라면 $25^{\circ} + x + x = 60^{\circ}$

 $2x = 35^{\circ} \therefore x = 17.5^{\circ}$

45. 다음 중 □ABCD 가 원에 내접하는 경우가 <u>아닌</u> 것은?


- ② $\angle B = \angle C$, $\overline{AD} // \overline{BC}$ ③ $\angle BAC = \angle BDC$
- ZBITO ZBD
- ⑤ \overline{AC} 와 \overline{BD} 의 교점 P에 대하여 $\overline{PA} \times \overline{PC} = \overline{PB} \times \overline{PD}$

① ∠A = 180° - ∠C 일 때, 원에 내접한다.

해설

- ② AD // BC 이므로 ∠A + ∠B = 180° 또, ∠B = ∠C 이므로 ∠A + ∠C = 180°
- 도, ZB = ZC 이므도 ZA + ZC = 180 따라서 □ABCD 는 원에 내접한다.

46. 다음 그림에 대하여 주어진 식의 값을 구하여라.

 $\sin x + \sqrt{3}\sin y$

▷ 정답: √3

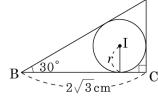
▶ 답:

직각삼각형 ABC 와 직각삼각형 HBA는 AA 닮음이므로

 $\angle x = \angle ACH, \angle y = \angle ABH$ 이다. $\mathfrak{L},\,\overline{\mathrm{BC}}=\sqrt{(4\,\sqrt{3})^2+4^2}$

$$= \sqrt{48 + 16}$$

$$= \sqrt{64} = 8$$
 이다.


$$=\sqrt{64}=8$$

따라서
$$\sin x = \frac{\sqrt{3}}{2}, \sin y = \frac{1}{2}$$
이므로

$$\sin x + \sqrt{3}\sin y = \frac{\sqrt{3}}{2} + \sqrt{3} \times \frac{1}{2}$$

$$=\frac{2\sqrt{3}}{2}$$
$$=\sqrt{3}$$
이다.

47. 다음 그림과 같이 ∠C = 90° 인 직각삼 각형 ABC 에서 ∠B = 30° 이고, BC = 2√3 cm 일 때, 내접원 I 의 반지름의 길이를 구하여라.

답:

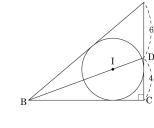
ightharpoonup 정답: $\sqrt{3}-1\underline{\mathrm{cm}}$

해설

$$\overline{AC} = \overline{BC} \tan 30^{\circ} = 2\sqrt{3} \times \frac{1}{\sqrt{3}} = 2 \text{ (cm)}$$

또, $\cos 30^{\circ} = \frac{\overline{BC}}{\overline{AB}}$ 이므로

 $\underline{\mathrm{cm}}$


$$\overline{AB} = \frac{\overline{BC}}{\cos 30}$$
° $= 2\sqrt{3} \times \frac{2}{\sqrt{3}} = 4$ (cm) $\triangle ABC$ 의 넓이를 이용하면

$$\frac{1}{2} \times \overline{BC} \times \overline{AC} = \Delta IBC + \Delta ICA + \Delta IAB$$

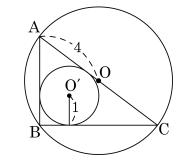
$$2\sqrt{3} = \frac{1}{2} \times 2\sqrt{3} \times r + \frac{1}{2} \times 2 \times r + \frac{1}{2} \times 4 \times r$$

$$\left(3+\sqrt{3}\right)r=2\sqrt{3} \qquad \therefore r=\sqrt{3}-1 \text{ (cm)}$$

48. 다음 그림에서 ΔABC 의 내심을 I 라 하고, \overline{BI} 의 연장선이 \overline{AC} 와 만나는 점을 D 라 할 때, $\overline{AD}=6,\overline{CD}=4$ 이다. 내접원의 반지름의 길이를 구하여라.

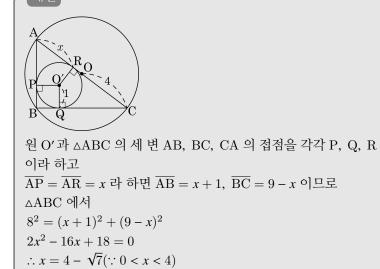
▶ 답: ightharpoonup 정답: $5-\sqrt{5}$

 $\overline{\mathrm{BD}}$ 가 $\angle\mathrm{ABC}$ 의 이등분선이므로 $\overline{\mathrm{AB}}:\overline{\mathrm{BC}}=\overline{\mathrm{AD}}:\overline{\mathrm{CD}}=6:$

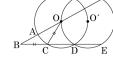

4 = 3:2 $\overline{\mathrm{AB}}=3a,\overline{\mathrm{BC}}=2a$ 로 놓으면

 $9a^2 = 4a^2 + 100$

 $5a^2 = 100$ $a = 2\sqrt{5}(\because a > 0)$


 $\frac{1}{2} \times 10 \times 4\sqrt{5} = \frac{1}{2} \times r \times (10 + 10\sqrt{5})$ $\therefore r = 5 - \sqrt{5}$

49. 다음 그림과 같이 \overline{AC} 가 지름인 원 O 는 $\triangle ABC$ 의 외접원이고 원 O'는 내접원이다. 원 O 와 원 O'의 반지름의 길이가 각각 4, 1 일 때, $\triangle ABC$ 의 넓이를 구하여라.


답:

▷ 정답: 9

 $\therefore \overline{AB} = 4 - \sqrt{7} + 1 = 5 - \sqrt{7}, \ \overline{BC} = 9 - (4 - \sqrt{7}) = 5 + \sqrt{7}$ $\therefore \triangle ABC = \frac{1}{2} \times (5 - \sqrt{7}) \times (5 + \sqrt{7}) = 9$

50. 다음 그림과 같이 크기가 같은 두 원 $_{O,O'}$ 이 서로 중심을 지나고 있다. $_{\overline{BC}=\overline{OC}}$ 이고 $_{5.0pt}\widehat{AC}=_{4\,cm}$ 일 때, $_{5.0pt}\widehat{24.88pt_{DEF}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 24<u>cm</u>

он. 24<u>cm</u>

답:

 $_{A}^{A}$ $_{C}$ $_{D}^{B}$ $_{C}$ $_{D}$ $_{E}$ $_{C}$ $_{C}$ $_{D}$ $_{E}$ $_{C}$ 라하면

∠OCD = ∠ODC = 2x 이다. ∠FOD 는 △OBD 의 외각이므로

 $\angle FOD = 3x$ 이다.

원 0' 에서 5.0 pt 24.88 pt 이 중심각 $\angle DO'F = 6x$

 $\begin{array}{l} \mathrm{5.0pt}\widehat{\mathrm{AC}}:\mathrm{5.0pt}24.88pt\widehat{\mathrm{DEF}}=1:6\\ \mathrm{...}\,\mathrm{5.0pt}24.88pt\widehat{\mathrm{DEF}}=6\times4=24(\,\mathrm{cm}) \end{array}$

1