1. 다음은 수영이가 이번 주에 받은 문자의 개수를 나타낸 표이다. 이때, 수영이가 하루 동안 받은 문자의 개수의 중앙값과 최빈값을 각각 구 하여라.

- -	4 T	\neg		노	2
문자의 개수 10 1	.5 14	17	15	11	15

 □
 □

 □
 □

 □
 □

 ▶ 정답 : 중앙값 : 15

➢ 정답: 최빈값: 15

수영이가 받은 문자의 개수를 순서대로 나열하면

해설

10, 11, 14, 15, 15, 15, 17이므로 중앙값은 15, 최빈값도 15이다.

2. 다음은 학생 9명의 철봉 매달리기 기록이다. 이 때, 중앙값과 최빈값을 차례대로 구하여라.

12, 5, 13, 10, 8, 20, 22, 18, 5

답:답:

> 정답: 중앙값: 12▷ 정답: 최빈값: 5

변량을 크기의 순서로 나열하면 다음과 같다.

해설

5, 5, 8, 10, 12, 13, 18, 22, 20 따라서 중앙값은 12 이고, 최빈값은 5 이다. **3.** 다음 표는 9 명의 학생에 대한 턱걸이 횟수의 기록을 나타낸 것이다. 이때, 턱걸이 횟수에 대한 중앙값과 최빈값을 구하여라.

 횟수
 4
 5
 6
 7
 8
 합계

 학생의 수
 3
 2
 2
 1
 1
 9

▶ 답: ▶ 답:

정답: 중앙값: 5

➢ 정답 : 최빈값 : 4

변량을 순서대로 나열하면 4, 4, 4, 5, 5, 6, 6, 7, 8이므로 중앙값은 5이고, 학생 수가 가장

해설

많은 턱걸이 횟수인 4가 최빈값이다.

4. 다음 표는 9 명의 수학 쪽지시험에 대한 점수를 나타낸 것이다. 이때, 시험 점수에 대한 중앙값과 최빈값을 구하여라.

 점수
 4
 5
 6
 7
 8
 합계

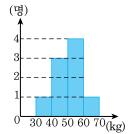
 학생수
 2
 2
 3
 1
 1
 9

□ 답:□ 답:

▷ 정답 : 중앙값 : 6

➢ 정답: 최빈값:6

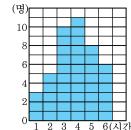
변량을 순서대로 나열하면 4, 4, 5, 5, 6, 6, 6, 7, 8이므로 중앙값은 6이고, 학생 수가 가장 많은 6이 최빈값이다.


해설

5. 다음 그림은 영희네 분단 학생 9 명의 몸무게 를 조사하여 그린 히스토그램이다. 학생들 9 명의 몸무게의 중앙값과 최빈값은?

> ① 중앙값: 35, 최빈값: 45 ② 중앙값: 45, 최빈값: 55

③ 중앙값: 55, 최빈값: 55


④ 중앙값: 55, 최빈값: 65 ⑤ 중앙값: 65, 최빈값: 55

최빈값은 학생 수가 4 명으로 가장 많을 때인 55이고, 학생들의

몸무게를 순서대로 나열하면 35, 45, 45, 45, 55, 55, 55, 55, 65 이므로 중앙값은 55이다.

- 6. 다음은 희정이네 학급 43 명의 일주일 동안 의 운동시간을 조사하여 나타낸 그래프이 다. 학생들의 운동시간의 중앙값과 최빈값 은?
 - ① 중앙값: 3, 최빈값: 3 ② 중앙값: 3, 최빈값: 4
 - ③ 중앙값: 4, 최빈값: 3
 - ④ 중앙값: 4, 최빈값: 4
 - ⑤ 중앙값: 5, 최빈값: 5

최빈값은 학생 수가 11 명으로 가장 많을 때인 4 이고, 운동시간

을 순서대로 나열하면 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6 이므로 중앙값은 4

- 이다.

7. 다음 중 옳지 <u>않은</u> 것을 모두 골라라.

○ 중앙값은 반드시 한 개 존재 한다.

- © 최빈값은 없을 수도 있다.
- S TENE NE 12 X
- ② 자료의 개수가 짝수이면 중앙값은 없다.② 최빈값과 중앙값은 반드시 다르다.

▶ 답:

▶ 답:

▷ 정답: ②

▷ 정답: ②

© 자료의 개수가 짝수이면 중앙값은 없다. → 자료의 개수가

짝수이면 $\frac{n}{2}$ 번째와 $\frac{n+1}{2}$ 번째 자료값의 평균이 중앙값이 된다. ⓐ 최빈값과 중앙값은 반드시 다르다. → 최빈값과 중앙값은 같을 수도 있다.

8. 다음 표는 동건이의 일주일동안 수학공부 시간을 조사하여 나타낸 것이다. 수학공부 시간의 평균은?

| 요일 | 일 | 월 | 화 | 수 | 목 | 금 | 토

시간	2	1	0	3	2	1	5

① 1시간 ② 2시간 ③ 3시간 ④ 4시간 ⑤ 5시간

(평균)= $\frac{\{(변량)의총합\}}{\{(변량)의갯수\}}$ 이므로 $\frac{2+1+0+3+2+1+5}{7} = \frac{14}{7} = 2(시간)$ 이다.

세 수 a,b,c의 평균이 6일 때, 5개의 변량 8,a,b,c,4의 평균은? 9.

③6 ④ 8 ⑤ 10 ① 2 ② 4

a,b,c의 평균이 6이므로 $\frac{a+b+c}{3}=6$

 $\therefore a+b+c=18$ 따라서 5개의 변량 8,a,b,c,4의 평균은 $\frac{8+a+b+c+4}{5} = \frac{8+18+4}{5} = 6$

10. 3회에 걸친 영어 시험 성적이 84점,82점, 90점이다. 4회의 시험에 몇점을 받아야 4회까지의 평균이 86점이 되겠는가?

① 80 A ② 82 A ③ 84 A ④ 86 A ⑤ 88 A

해설 $4회의 성적을 x점이라 하면
\frac{84 + 82 + 90 + x}{4} = 86$

∴ x = 88(점)

256 + x = 344

- 11. 희영이네 반 학생 38 명의 몸무게의 평균이 58kg 이다. 2 명의 학생이 전학을 온 후 총 40 명의 학생의 몸무게의 평균이 58.5kg 이 되었다. 이때, 전학을 온 2 명의 학생의 몸무게의 평균은?
 - ① 60kg ② 62kg ③ 64kg ④ 66kg ⑤ 68kg

전학을 온 2 명의 학생의 몸무게의 합을 xkg 이라고 하면 $38 \times 58 + x$ _ 58 5 2204 + x = 2240 $+ x = 126 (|x_0|)$

 $\frac{38 \times 58 + x}{40} = 58.5$, 2204 + x = 2340 ∴ x = 136 (kg)따라서 전학을 온 2 명의 학생의 몸무게의 평균은

 $\frac{136}{2} = 68(\text{kg})$ 이다.

- **12.** 철수의 4회에 걸친 수학 성적이 80,82,86,76이다. 다음 시험에서 몇점을 받아야 평균이 84점이 되겠는가?
 - ① 90 A ② 92 A ③ 94 A ④ 96 A ⑤ 98 A

해설 ___

다음에 받아야 할 점수를 x점이라고 하면 $(평균) = \frac{80 + 82 + 86 + 76 + x}{5} = 84$ $\frac{324 + x}{5} = 84$ 324 + x = 420 $\therefore x = 96(점)$

13. 영희가 4회에 걸쳐 치른 음악 실기시험 성적은 15점, 18점, 17점, x점이고, 최빈값은 18점이다. 5회의 음악 실기 시험 성적이 높아서 5회까지의 평균이 4회 까지의 평균보다 1점 올랐다면 5회의 성적은 몇점인지 구하여라.

점

정답: 22 점

▶ 답:

최빈값이 18점이므로 x = 18(점)이다. 4회까지의 평균은 15 + 18 + 17 + 18 = 68 = 17(전)이다.

 $\frac{15+18+17+18}{4}=\frac{68}{4}=17(\ \mathrm{A})$ 이다. 5회까지의 평균은 $17+1=18(\ \mathrm{A})$ 이고 5회 성적을 y점이라

하면 $\frac{15+18+17+18+y}{5}=18(점) 이다.$ 68+y=90

∴ y = 22(점)

14. 다음은 두 양궁 선수 A, B 가 다섯 발의 화살을 쏘아 얻은 점수를 나타낸 표이다. 이때, 표준편차가 작은 선수를 구하여라.
 1회 | 2회 | 3회 | 4회 | 5회

	ㅗㅗ	4-41	0 파	포피	0-4
\boldsymbol{A}	8	8	9	8	7
В	7	10	8	6	9

 ► 답:

 ▷ 정답:
 A

해설

A, B 의 평균은 모두 8 이다. 표준편차는 자료가 흩어진 정도를 나타내고, 표준편차가 작을수록 변량이 평균 주위에 더 집중되

므로 표준편차가 작은 선수는 A 이다.

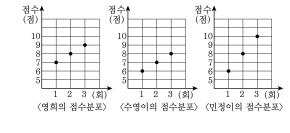
15. 다음은 A, B 두 명의 학생의 턱걸이 횟수의 기록을 나타낸 표이다. 이때, 표준편차가 큰 학생을 구하여라.

 1회
 2회
 3회
 4회
 5회

 A
 8
 9
 8
 7
 9

 B
 7
 9
 8
 10
 6

 B
 7
 9
 8
 10
 6

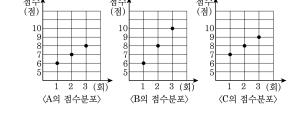

▷ 정답: B

해설

A, B 의 평균은 모두 8 이다. 표준편차는 자료가 흩어진 정도를 나타내고, 표준편차가 작을수록 변량이 평균 주위에 더 집중되

므로 표준편차가 큰 학생은 B 이다.

16. 다음은 영희, 수영, 민정이 세 사람의 3 회에 걸친 수학 쪽지시험을 나타낸 그래프이다. 이때, 수영이랑 표준편차가 같은 사람은 누구인지 구하여라.


▷ 정답: 영희

답:

표준편차는 자료가 흩어진 정도를 나타내므로 영희와 수영이의

표준편차는 같다.

17. 다음은 A, B, C 세 사람의 3 회에 걸친 턱걸이 횟수의 기록을 나타낸 그래프이다. 이 중 표준편차가 다른 한 사람은 누구인지 구하여라.

▷ 정답: B

▶ 답:

표준편차는 자료가 흩어진 정도를 나타내므로 A, C 의 표준편 차는 같다.

18. 다음 보기의 자료들 중에서 표준편차가 가장 큰 자료와 가장 작은 자료를 차례대로 나열한 것은?

보기

① 4, 4, 4, 6, 6, 4, 4, 4 ① 2, 10, 2, 10, 2, 10, 2, 10 ② 2, 4, 2, 4, 2, 4, 4, 4 ② 1, 1, 1, 1, 1, 1, 1, 1 ② 1, 3, 1, 3, 1, 3, 1, 3 ④ 5, 5, 5, 7, 7, 7, 6, 6

해설 표준편차는 자료가 흩어진 정도를 나타내므로 주어진 자료들

중에서 표준편차가 가장 큰 것은 ①, 가장 작은 것은 ②이다.

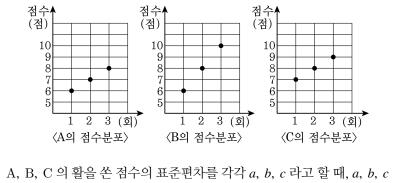
- 19. 다음 자료들 중에서 표준편차가 가장 작은 자료와 가장 큰 자료를 차례대로 나열하여라.
 - 3, 3, 3, 7, 7, 7, 7, 710, 10, 10, 10, 10, 10, 10, 10
 - © 1, 4, 1, 4, 1, 4
 - **a** 1, 1, 1, 1, 2, 2, 2, 2
 - 1, 3, 3, 3, 3, 3, 3
 - ⊕ 7, 7, 7, 7, 7, 7, 6
 - ▶ 답:
 - 답:
 - ▷ 정답:
 □

 ▷ 정답:
 ¬

 - 해설 ___

표준편차는 자료가 흩어진 정도를 나타내므로 주어진 자료들 중에서 표준편차가 가장 작은 것은 \bigcirc , 가장 큰 것은 \bigcirc 이다.

 ${f 20}.$ 다음은 다섯 명의 학생 A, B, C, D, E 가 ${f 5}$ 일 동안 받은 문자의 개수를 나타낸 표이다. 이때, 표준편차가 가장 큰 사람은 누구인가?


A	0			. –	금요일
	2	5	2	5	2
В	3	6	3	6	4
С	10	2	1	11	3
D	8	8	8	8	9
E	5	6	7	8	9

① A ② B ③ C ④ D ⑤ E

표준편차는 자료가 흩어진 정도를 나타내고, 표준편차가 클수록

변량이 평균에서 더 멀어지므로 표준편차가 가장 큰 학생은 ${f C}$ 이다.

21. 다음은 양궁선수 A, B, C 가 3 회에 걸쳐 활을 쏜 기록을 나타낸 그래프이다.

해설

차는 같고, B 의 표준편차는 A, C 의 표준편차보다 크다. 따라서 a=c < b이다.

표준편차는 자료가 흩어진 정도를 나타내므로 A, C의 표준편

22. 다음은 A, B, C 가 3 회에 걸쳐 활을 쏜 기록을 나타낸 그래프이다.

의 대소 관계는? ① a = b = c ② a = b < c ③ a < b = c

(4) a = b > c (5) a < b < c

해설

표준편차는 자료가 흩어진 정도를 나타내므로 A, B 의 표준편 차는 같고, C 의 표준편차는 A, B 의 표준편차보다 크다.

- **23.** 다음의 표준편차를 순서대로 x, y, z 라고 할 때, x, y, z의 대소 관계를 바르게 나타낸 것은?
 - X : 1 부터 100 까지의 홀수 Y: 1 부터 100 까지의 2 의 배수
 - Z: 1 부터 150 까지의 3 의 배수

① x = y = z ② x = y < z ③ x < y = z ④ x = y > z

해설

X, Y, Z 모두 변량의 개수는 50 개이다.

이때, X, Y는 모두 2 만큼의 간격을 두고 떨어져 있으므로 X, Y의 표준편차는 같다.

한편, Z 는 3 만큼의 간격을 두고 떨어져 있으므로 X, Y 보다 표준편차가 크다.

 ${f 24.}$ 다음은 A, B, C, D, E 5 명의 학생들이 가지고 있는 게임 CD 의 개수의 편차를 나타낸 표이다. 이때, 5 명의 학생의 CD 의 개수의 분산은? 학생 A B C D E

978	A	ь		ט	12
편차(개)	-2	3	x	1	-4

해설

① 6 ② 6.2 ③ 6.4 ④ 6.6

⑤6.8

편차의 합은 0 이므로

-2+3+x+1-4=0, x-2=0 : x=2

따라서 분산은 $\frac{(-2)^2 + 3^2 + 2^2 + 1^2 + (-4)^2}{5} = \frac{34}{5} = 6.8 \text{ A}$

25. 다음은 A, B, C, D, E 5 명의 학생의 영어 성적의 편차를 나타낸 표이 다. 이 5 명의 수학 성적의 평균이 8점 일 때, A 의 성적과 표준편차를 차례대로 나열한 것은? A B C D E

	A	ь		ן ט	E
편차(점)	-1	2	0	x	1

① $5\,\text{A}$, $\sqrt{2}\,\text{A}$ ② $6\,\text{A}$, $\sqrt{2}\,\text{A}$ ③ $6\,\text{A}$, $\sqrt{3}\,\text{A}$ ④ $7\,\text{A}$, $\sqrt{2}\,\text{A}$ ⑤ $8\,\text{A}$, $\sqrt{3}\,\text{A}$

A 의 성적은 8 - 1 = 7(점)

또한, 편차의 합은 0 이므로

-1 + 2 + 0 + x + 1 = 0x + 2 = 0, $\therefore x = -2$

따라서 분산이

 $\frac{(-1)^2 + 2^2 + 0^2 + (-2)^2 + 1^2}{5} = \frac{10}{5} = 2$

이므로 표준편차는 $\sqrt{2}$ 점 이다.

26. 다음은 5 명의 학생의 50m 달리기 결과의 편차를 나타낸 표이다. 이 5 명의 50m 달리기 결과의 평균이 7점 일 때, 영진이의 성적과 표준편차를 차례대로 나열한 것은?

이듬	윤숙	태경	혜진	노경	영진
편차(점)	-1	1.5	X	0.5	0

① 5점, $\sqrt{0.8}$ kg ② 6점, $\sqrt{0.9}$ kg ③ 6점, 1kg ④ 7점, $\sqrt{0.9}$ kg ⑤ 8점, 1kg

해설

또한, 편차의 합은 0 이므로 -1 + 1.5 + x + 0.5 + 0 = 0, x + 1 = 0 $\therefore x = -1$ 따라서 분산이

영진이의 성적은 7 - 0 = 7(점)

 $\frac{(-1)^2 + 1.5^2 + (-1)^2 + 0.5^2 + 0^2}{5} = \frac{4.5}{5} = 0.9$ 이므로 표준편차는 $\sqrt{0.9}\,\mathrm{kg}$ 이다.

27. 다음은 A, B, C, D, E 다섯 사람의 몸무게에 대한 편차를 나타낸 표이다. 이 다섯 사람의 몸무게의 평균이 65 kg 일 때, B 의 몸무게와 다섯 사람의 전체의 표준편차를 차례대로 나열한 것은? (단, 분산은 소수 첫째자리에서 반올림한다.)

학생 A B C D E 편차(kg) -2 3 1 x 0

 $364 \,\mathrm{kg}, \,2 \,\mathrm{kg}$

E-1(18) 2 0 1 x 0

⑤ 68 kg, 2 kg
 ⑤ 68 kg, 3 kg

① 60 kg, 1 kg ② 64 kg, 1 kg

B 의 몸무게는 65 + 3 = 68(kg)

해설

또한, 편차의 합은 0 이므로 -2+3+1+x+0=0, x+2=0 ∴ x=-2

따라서 분산이 (-2)² + 3² + 1² + (-2)² + 0² 18

 $\frac{(-2)^2 + 3^2 + 1^2 + (-2)^2 + 0^2}{5} = \frac{18}{5} = 3.6$

이므로 소수 첫째자리에서 반올림하면 4이다. 따라서 표준편차는 $\sqrt{4}=2\,\mathrm{kg}$ 이다.

28. 다음 표는 정수가 올해 시험을 쳐서 받은 수학점수이다. 평균이 80 점, 분산이 $\frac{146}{7}$ 일 때, 4 월과 7 월 시험성적을 구하여라. (단, 4 월 보다 7월 시험 성적이 더 우수하다.)

월 3 4 5 6 7 8 9

점수(점)	72	а	80	84	b	81	86

점

▶ 답: 점 ▶ 정답: 4월 시험 성적: 75점

▶ 답:

▶ 정답: 7월 시험 성적: 82점

 $\frac{72+a+80+84+b+81+86}{7}=80,$ a+b=157이다.

 $\frac{64 + (a - 80)^2 + 0 + 16 + (b - 80)^2 + 1 + 36}{7} = \frac{146}{7},$ $(a-80)^2 + (b-80)^2 = 29$ 이다. 두 식을 연립해서 풀면, a = 75, b = 82 이다.

29. 네 수 a, b, c, d의 평균과 분산이 각각 10, 5일 때, $(a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2$ 의 값은?

② 10 ③ 15 ① 5

4 20

 \bigcirc 25

네 수 a, b, c, d 의 평균이 10 이므로 각 변량에 대한 편차는 a-10, b-10, c-10, d-10 이다. 따라서 분산은

$$\frac{(a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2}{4} = 5$$

$$\therefore (a-10)^2 + (b-10)^2 + (c-10)^2 + (d-10)^2 = 20$$

30. 네 개의 변량 4, 6, a, b 의 평균이 5 이고, 분산이 3 일 때, $a^2 + b^2$ 의 값은?

① 20 ② 40 ③ 60 ④ 80 ⑤ 100

변량 4, 6, a, b의 평균이 5이므로 $\frac{4+6+a+b}{4} = 5, a+b+10 = 20$ $\therefore a+b=10\cdots\bigcirc$ 또, 분산이 3이므로 $\frac{(4-5)^2+(6-5)^2+(a-5)^2+(b-5)^2}{4} = 3$ $\frac{1+1+a^2-10a+25+b^2-10b+25}{4} = 3$ $\frac{a^2+b^2-10(a+b)+52}{4} = 3$ $a^2+b^2-10(a+b)+52=12$ $\therefore a^2+b^2-10(a+b)=-40\cdots\bigcirc$ 으의 식에 ①을 대입하면 $\therefore a^2+b^2=10(a+b)-40=10\times10-40=60$

31. 네 개의 수 5, 8, a, b 의 평균이 4이고, 분산이 7일 때, $a^2 + b^2$ 의 값을 구하여라.

 답:

 ▷ 정답:
 3

7 02 -

변량 5, 8, a, b 의 평균이 4 이므로 $\frac{5+8+a+b}{4} = 4, a+b+13 = 16$ ∴ $a+b=3\cdots$ 또, 분산이 7 이므로 $\frac{(5-4)^2+(8-4)^2+(a-4)^2+(b-4)^2}{4} = 7$ $\frac{1+16+a^2-8a+16+b^2-8b+16}{4} = 7$ $\frac{a^2+b^2-8(a+b)+49}{4} = 7$ $a^2+b^2-8(a+b)+49=28$ ∴ $a^2+b^2-8(a+b)=-21\cdots$ ©의 식에 ③을 대입하면
∴ $a^2+b^2=8(a+b)-21=8\times3-21=3$

32. 다섯 개의 변량 8, 7, *x*, *y*, 9의 평균이 8이고, 분산이 5일 때, 4*xy*의 값을 구하여라.

답:▷ 정답: 210

00.

다섯 개의 변량 8, 7, x, y, 9 의 평균이 8 이므로 $\frac{8+7+x+y+9}{5} = 8, x+y+24 = 40$ $\therefore x+y=16\cdots \bigcirc$ 또, 분산이 5 이므로 $\frac{(8-8)^2+(7-8)^2+(x-8)^2}{5}$ $+\frac{(y-8)^2+(9-8)^2}{5} = 5$ $\frac{0+1+x^2-16x+64+y^2-16y+64+1}{5} = 5$ $\frac{x^2+y^2-16(x+y)+130}{5} = 5$ $x^2+y^2-16(x+y)=-105\cdots \bigcirc$ 으의 식에 ①을 대입하면 $x^2+y^2=16(x+y)-105=16\times16-105=151$ $\therefore x^2+y^2=151\cdots \bigcirc$ $(x+y)^2=x^2+y^2+2xy,$ $16^2=151+2xy, 2xy=105$ $\therefore 4xy=210$

33. 다섯 개의 변량 5, 7, *x*, *y*, 8 의 평균이 6 이고, 분산이 5 일 때, 2*xy* 의 값을 구하여라.

답:

▷ 정답: 33

헤서

다섯 개의 변량 5, 7, x, y, 8 의 평균이 6 이므로 $\frac{5+7+x+y+8}{5} = 6, \quad x+y+20 = 30$ $\therefore x+y=10 \quad \cdots \quad \bigcirc$ 또, 분산이 5 이므로 $\frac{(5-6)^2+(7-6)^2+(x-6)^2+(y-6)^2}{5}$ $+\frac{(8-6)^2}{5} = 5$ $\frac{1+1+x^2-12x+36+y^2-12y+36+4}{5} = 5$ $\frac{x^2+y^2-12(x+y)+78}{5} = 5$ $\frac{x^2+y^2-12(x+y)+78=25}{5} \quad \cdots \quad \bigcirc$ ①의 식에 ①을 대입하면 $x^2+y^2=12(x+y)-53=12\times 10-53=67$ $\therefore x^2+y^2=67 \quad \cdots \quad \bigcirc$ $(x+y)^2=x^2+y^2+2xy, \quad 10^2=67+2xy, \quad 2xy=33$ $\therefore 2xy=33$

34. 5개의 변량 4,5,x,11,y의 평균이 6이고 분산이 8일 때, x^2+y^2 의 값을 구하여라.

▶ 답:

➢ 정답: 58

해설

5개의 변량의 평균이 6이므로 x + y = 10이다. $\frac{(4-6)^2 + (5-6)^2 + (x-6)^2}{5}$ $+ \frac{(11-6)^2 + (y-6)^2}{5} = 8$ $4 + 1 + (x-6)^2 + 25 + (y-6)^2 = 40$ $x^2 + y^2 - 12(x+y) + 72 + 30 = 40$ $x^2 + y^2 - 12(10) + 72 + 30 = 40$ ∴ $x^2 + y^2 = 58$

35. 5개의 변량 3, a, 4, 8, b의 평균이 5이고 분산이 3일 때, $a^2 + b^2$ 의 값을 구하여라.

▶ 답:

➢ 정답: 51

해설

5개의 변량의 평균이 5이므로 a + b = 10이다.

$$\frac{(3-5)^2 + (a-5)^2 + (4-5)^2}{5} + \frac{(8-5)^2 + (b-5)^2}{5} = 3$$

$$4 + (a-5)^2 + (b-5)^2 = 1$$

$$(a-5)^2 + (b-5)^2 = 1$$

$$(a-5)^{2} + (b-5)^{2} = 1$$

$$a^{2} + b^{2} - 10(a+b) + 50 = 1$$

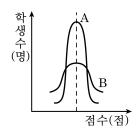
$$a^{2} + b^{2} - 10(10) + 50 = 1$$

$$a^{2} + b^{2} - 10(10) + 50 = 1$$

$$a^{2} + b^{2} = 51$$

36. 다음 표는 A, B, C, D, E 다섯 반의 학생들의 음악 실기 점수의 평균과 표준편차를 나타낸 것이다. 학생들 간의 음악 실기 점수의 격차가 가장 작은 반은? (단, 각 학급의 학생 수는 모두 같다.)

이름	A	В	C	D	E
평균(점)	72	85	83	77	81
표준편차(점)	1.6	2.1	1.5	2.4	1.1


① A ② B ③ C ④ D

 \bigcirc E

표준편차가 작을수록 변량이 평균 주위에 더 집중된다. 따라서

음악 실기 점수의 격차가 가장 작은 반은 표준편차가 가장 작은 E이다.

37. 다음 그림은 A, B 두 학급의 수학 성적을 나타낸 그래프이다. 다음 보기의 설명 중 <u>틀린</u> 것을 고르면?

- ① A 반 학생 성적은 평균적으로 B 반 학생 성적과 비슷하다. ② 중위권 학생은 A 반에 더 많다.
- ③ A 반 학생의 성적이 더 고르다.
- ④ 고득점자는 A 반에 더 많다. ⑤ 평균 점수 부근에 있는 학생은 A 반 학생이 더 많다.

④ 고득점자는 A 반에 더 많다. \Rightarrow 고득점자는 B 반에 더 많다.

해설

 ${f 38.}$ 다음 중 [보기] A, B, C 의 표준편차의 대소 관계를 바르게 나타낸 것은?

- A. 1 부터 50 까지의 자연수 B. 51 부터 100 까지의 자연수
- C. 1 부터 100 까지의 홀수

④ B>C>A ⑤ A=B=C

- ① C>A=B ② A>B=C ③ C>A>B

해설 A 와 B 의 표준편차는 같고, C 의 표준편차는 이들보다 크다. 39. 다음 표는 희숙이와 미희가 올해 본 수학 성적을 조사한 것이다. 다음 보기 중 옳은 것을 모두 고르시오. 바 하스 미칭

반	희숙	미희
평균(점)	86	85
표준편차	5	0

보기

① 미희는 항상 같은 점수를 받았다.

⊙ 희숙이는 미희보다 항상 성적이 높았다.

② 희숙이는 86 점 아래로 받아 본적이 없다.

- € 희숙이의 성적이 더 고르다.
- ◎ 미희는 85 점 아래로 받아 본적이 없다.

▶ 답:

답:

▷ 정답: □

▷ 정답: □

해설

⑤ 희숙이는 미희보다 항상 성적이 높았다. ⇒ 희숙이는 표준편 차가 5 이므로 85 점보다 낮은 점수를 받았을 수도 있다.

ⓒ 희숙이의 성적이 더 고르다. ⇒ 미희 성적이 더 고르다. ② 희숙이는 86 점 아래로 받아 본적이 없다. \Rightarrow 표준편차가 5

이므로 86 점 아래 점수도 받았다.

40. 세 수, a,b,c의 평균과 분산이 각각 2,4이다. 세 수 3a+1,3b+1,3c+1의 평균과 분산을 각각 구하면?

① 평균 : 5, 분산 : 10

② 평균: 6, 분산: 20 ④ 평균: 7, 분산: 36

③ 평균: 7, 분산: 25

⑤ 평균 : 8, 분산 : 36

 $3 \cdot 2 + 1 = 7$ 이고, 분산은 $3^2 \cdot 4 = 36$ 이다.

a,b,c의 평균이 2, 분산이 4일 때, 3a+1,3b+1,3c+1의 평균은

41. 6개의 변량 $x_1, x_2, x_3, \cdots, x_6$ 의 평균이 3이고 표준편차가 4일 때, $2x_1 - 1, 2x_2 - 1, 2x_3 - 1, \cdots, 2x_6 - 1$ 의 평균과 표준편차는?

① 평균: 3, 표준편차: 8 ② 평균: 3, 표준편차: 15

③ 평균: 3, 표준편차: 20 ④ 평균 : 5, 표준편차 : 8 ⑤ 평균 : 5, 표준편차 : 15

n개의 변량 $x_1, x_2, x_3, \cdots, x_n$ 의 평균이 m이고 표준편차가 s일 때, 변량 $ax_1+b,ax_2+b,ax_3+b,\cdots,ax_n+b$ 에 대하여 평균은 am + b, 표준편차는 |a|s이므로 평균은 $2 \cdot 3 - 1 = 5$ 이고 표준편차는 |2| · 4 = 8이다.

42. 변량 x_1, x_2, \dots, x_n 의 평균이 4, 분산이 5일 때, 변량 $3x_1 - 5, 3x_2 - 5, \dots 3x_n - 5$ 의 평균을 m, 분산을 n이라 한다. 이 때, m + n의 값은?

① 50 ② 51 ③ 52 ④ 53 ⑤ 54

(평균)= $3 \cdot 4 - 5 = 7 = m$ (분산)= $3^2 \cdot 5 = 45 = n$

해설

 $\therefore m + n = 7 + 45 = 52$

43. 4개의 변량 a,b,c,d의 평균이 10이고, 표준편차가 3일 때, 변량 a+5,b+5,c+5,d+5의 평균과 표준편차를 차례로 나열하여라.
답∶

■ 답:

н

▷ 정답: 평균: 15▷ 정답: 표준편차: 3

평균: $1 \cdot 10 + 5 = 15$

해설

표준편차 : |1|·3 = 3

44. 다음 세 개의 변수 a, b, c 에 대하여 다음 보기 중 옳지 <u>않은</u> 것은?

- \bigcirc $2a,\ 2b,\ 2c$ 의 표준편차는 $a,\ b,\ c$ 의 표준편차의 2배이다. \bigcirc a+2, b+2, c+2 의 평균은 a, b, c 의 평균보다 2
- 만큼 크다. © 2a+1, 2b+1, 2c+1 의 표준편차는 a, b, c 의 4
- 배이다. ② 3a, 3b, 3c 의 평균은 a, b, c 의 평균보다 3 배만큼
- 크다.

▷ 정답: □

▶ 답:

해설

© 2a+1, 2b+1, 2c+1 의 표준편차는 a, b, c 의 2 배이다.

- **45.** 다음 네 개의 변수 a, b, c, d 에 대하여 다음 보기 중 옳지 않은 것을 모두 고르면?
 - - 만큼 크다. ② a + 3, b + 3, c + 3, d + 3의 평균은 a, b, c, d의 평균보다 3 배만큼 크다.

① a+1, b+1, c+1, d+1의 평균은 a, b, c, d의 평균보다 1

- ③ 2a+3, 2b+3, 2c+3, 2d+3의 표준편차는 a, b, c, d의 표준편차보다 2배만큼 크다.
- ④ 4a+7, 4b+7, 4c+7, 4d+7의 표준편차는 a, b, c, d의 표준편차의 4배이다.
- ⑤ 3a, 3b, 3c, 3d의 표준편차는 a, b, c, d의 표준편차의 9
- 배이다.

② a+3, b+3, c+3, d+3 의 평균은 a, b, c, d의 평균보다

해설

3 배만큼 크다. → a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다 3 만큼 크다.

- ⑤ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 9배이다.
- → 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 3 배이다.

46. 다음 그림은 A 반 학생들의 몸무게를 조사하 (명)↑ 여 그린 히스토그램이다. 이 자료의 분산을 구하여라.

0 35 45 55 65 (kg)

답:

▷ 정답: 49

전체 학생 수는 2+5+3=10(명) 이므로 학생들의 몸무게의 평균은 (평균) = $\frac{\{(계급값) \times (도수)\} \text{ 의 총합}}{(도수)\text{의 총합}}$ $= \frac{40 \times 2 + 50 \times 5 + 60 \times 3}{10}$ $= \frac{80 + 250 + 180}{10} = 51 \text{ (kg)}$ 따라서 구하는 분산은 $\frac{1}{10} \left\{ (40 - 51)^2 \times 2 + (50 - 51)^2 \times 5 + (60 - 51)^2 \times 3 \right\}$ $=\frac{1}{10}(242+5+243)=49$ 이다.

47. 다음은 학생 8 명의 기말고사 수학 성적을 조사하여 만든 것이다. 학생들 8 명의 수학 성적의 분산은?

계급	계급값	도수	(계급값)×(도수)
55 ^{이상} ~ 65 ^{미만}	60	3	180
65 ^{이상} ~ 75 ^{미만}	70	3	210
75 ^{이상} ~ 85 ^{미만}	80	1	80
85 ^{이상} ~ 95 ^{미만}	90	1	90
계	계	8	560

① 60 ② 70 ③ 80 ④ 90

⑤100

학생들의 수학 성적의 평균은 $(평균) = \frac{\{(계급값) \times (도수)\} \text{ 의 총합}}{(도수) \text{의 총합}}$ $= \frac{560}{8} = 70(점)$ 따라서 구하는 분산은 $\frac{1}{8}\{(60-70)^2 \times 3 + (70-70)^2 \times 3 + (80-70)^2 \times 1 + (90-70)^2 \times 1\}$ $= \frac{1}{8}(300+0+100+400) = 100$ 이다.

48. 다음은 학생 10 명의 국어 성적을 조사하여 만든 것이다. 학생들 10 명의 국어 성적의 분산을 구하여라.계급 계급값 도수 (계급값)×(도수)

게ㅂ	게ㅂ섮	エー	(겝鉱/へ(エテ)
55 ^{이상} ~ 65 ^{미만}	60	3	180
65 ^{이상} ~ 75 ^{미만}	70	3	210
75 ^{이상} ~ 85 ^{미만}	80	2	160
85 ^{이상} ~ 95 ^{미만}	90	2	180
계	계	10	730

 답:

 ▷ 정답:
 121

학생들의 국어 성적의 평균은 $(평균) = \frac{(계급값) \times (도수)}{(도수)} 의 총합$ $= \frac{730}{10} = 73(점)$ 따라서 구하는 분산은 $\frac{1}{10} \{ (60-73)^2 \times 3 + (70-73)^2 \times 3 + (80-73)^2 \times 2 + (90-73)^2 \times 2 \}$ $= \frac{1}{10} (507 + 27 + 98 + 578) = 121 이다.$

49. 다음은 학생 8 명의 기말고사 국어 성적을 조사하여 만든 것이다. 학생들 8 명의 국어 성적의 분산은?

계급	도수
55 ^{이상} ~ 65 ^{미만}	3
65 ^{이상} ~ 75 ^{미만}	3
75 ^{이상} ~ 85 ^{미만}	1
85 ^{이상} ~ 95 ^{미만}	1
합계	8

⑤100

① 60 ② 70 ③ 80 ④ 90

학생들의 국어 성적의 평균은 $(평균) = \frac{\{(계급값) \times (\Sigma 수)\} \ \, 9 \ \, \mathring{8} \ \, \mathring{6}}{(\Sigma 수) 의 \ \, \mathring{8} \ \, \mathring{6}}$ $= \frac{560}{8} = 70(점)$ 따라서 구하는 분산은 $\frac{1}{8} \{(60-70)^2 \times 3 + (70-70)^2 \times 3 + (80-70)^2 \times 1 + (90-70)^2 \times 1\}$ $= \frac{1}{8}(300+0+100+400) = 100$ 이다.

50. 다음 도수분포표는 어느 반에서 20명 학생의 체육 실기 점수를 나타낸 것이다. 이 반 학생들의 체육 실기 점수의 분산과 표준편차는?

점수(점) 1 2 3 4 5 학생수(명) 2 5 8 3 2

② 분산: 1.17, 표준편차: √1.17 ③ 분산: 1.19, 표준편차: √1.19 ④ 분산: 1.21, 표준편차: √1.21 ⑤ 분산: 1.23, 표준편차: √1.23

① 분산: 1.15, 표준편차: √1.15

⑤ 분산 : 1.23, 표준편차 : √1.25

해설 평균: $\frac{2\times1+2\times5+3\times8+4\times3+5\times2}{20}=2.9$

편차: -1.9, -0.9, 0.1, 1.1, 2.1

분산: $\frac{(-1.9)^2 \times 2 + (-0.9)^2 \times 5 + 0.1^2 \times 8}{\frac{20}{20}} + \frac{1.1^2 \times 3 + 2.1^2 \times 2}{20} = 1.19$

표준편차: √1.19