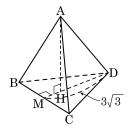

다음 그림과 같은 직육면체에서 밑면의 가로, 세로의 길이가 각각 4 cm, 3 cm 이고, 대각선의 길이가 13 cm 일 때, x 를 구하여라.

답:

해설

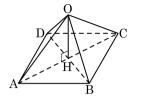
직육면체의 대각선 길이는
$$\sqrt{a^2+b^2+c^2}$$
 이므로 $\sqrt{3^2+4^2+x^2}=13$ $x^2=144$ $x>0$ 이므로 $x=12$ (cm)이다.


cm

2. 어떤 정육면체의 대각선의 길이가 9cm일 때, 이 정육면체의 겉넓이를 구하여라.

①
$$81\sqrt{3}\text{cm}^2$$
 ② $486\sqrt{3}\text{cm}^2$ ③ $162\sqrt{3}\text{cm}^2$ ④ 486cm^2 ⑤ 162cm^2

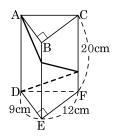
정육면체의 한 모서리의 길이를
$$a$$
 라 하면 $\sqrt{3}a=9$ 이므로 한 모서리의 길이가 $3\sqrt{3}$ cm이다. 정육면체의 겉넓이는 $6a^2$ 이므로 $6\times\left(3\sqrt{3}\right)^2=162$ (cm²)


 다음 정사면체의 꼭짓점 A 에서 밑면 BCD에 수선 AH를 그으면 점 H는 ΔBCD의 무게중 심이 된다. 정사면체의 부피를 구하여라.

$$\frac{\sqrt{3}}{2}a = 3\sqrt{3}, \ a = 3\sqrt{3} \times \frac{2}{\sqrt{3}} = 6$$
이므로

(정사면체의 부피) =
$$\frac{\sqrt{2}}{12} \times 6^3 = 18\sqrt{2}$$

4. 다음 그림과 같은 정사각뿔에서 $\overline{OH} = \sqrt{29}$, $\overline{OA} = 8\sqrt{2}$ 일 때, 밑넓이는 ?

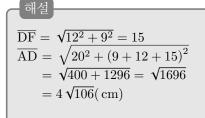


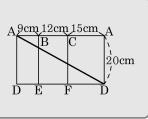
(4) 121

(1) $3\sqrt{22}$ (2) $3\sqrt{11}$ (3) 99

직각삼각형 OAH 에서
$$\overline{AH} = \sqrt{\left(8\sqrt{2}\right)^2 - \left(\sqrt{29}\right)^2} = 3\sqrt{11}$$

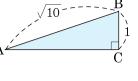
$$\overline{AH} = \frac{1}{2} \times \overline{AC}$$
에서 $\overline{AC} = 6\sqrt{11}$ 이고 $\overline{AC} = BD$ 이므로 밑넓이는 $\frac{1}{2} \times 6\sqrt{11} \times 6\sqrt{11} = 198$


5. 다음 삼각기둥은 밑면이 직각삼각형이고 직각을 낀 두 변의 길이가 9cm, 12cm이다. 높이가 20cm인 이 도형의 꼭짓점 A에서 실을 감아 모서리 BE, CF를 거쳐 꼭짓점 D에 이르는 가장짧은 실의 길이를 구하여라.



▶ 답:

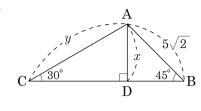
 $\underline{\mathrm{cm}}$


ightharpoonup 정답: $4\sqrt{106}$ cm

다음 그림의 직각삼각형 ABC 에서 다음 중 옳지 <u>않은</u> 것은?

6.

①
$$\tan A = \frac{1}{3}$$
③
$$\cos B = \frac{2}{5}\sqrt{10}$$


②
$$\sin A = \frac{\sqrt{10}}{10}$$

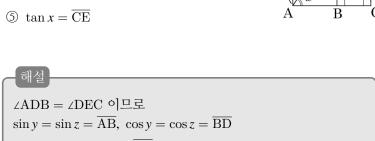
④ $\cos A = \frac{3}{10}\sqrt{10}$

$$\Im$$
 $\tan B = 3$

$$\overline{AC} = \sqrt{(\sqrt{10})^2 - 1^2} = 3$$

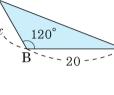
$$\Im \cos B = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$$

 다음 그림에서 x + y 의 값을 구하 여라.


$$\sin 45^{\circ} = \frac{x}{5\sqrt{2}} = \frac{\sqrt{2}}{2}, \ x = 5$$
$$\sin 30^{\circ} = \frac{x}{y} = \frac{5}{y} = \frac{1}{2}, \ y = 10$$

 $\therefore x + y = 5 + 10 = 15$

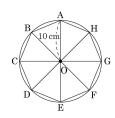
다음 그림과 같이 반지름의 길이가 1 인 사분원 에 대하여 $\angle DAB = x$, $\angle ADB = y$, $\angle DEC = z$ 라 할 때, 다음 중 옳지 않은 것은? ① $\sin y = \sin z$ ② $\cos y = \cos z$


$$3 \tan x = \tan z \qquad 4 \cos z = \overline{BD}$$

$$\Im$$
 $\tan x = \overline{C}$

 $\tan x = \overline{\text{CE}}, \ \tan z = \frac{\overline{\text{AC}}}{\overline{\text{CE}}} = \frac{1}{\overline{\text{CE}}}$

다음 그림에서
$$\overline{BC} = 20$$
, $\angle B = 120^{\circ}$ A 이고 △ABC 의 넓이가 $40\sqrt{3}$ 일 때, \overline{AB} 의 길이를 구하면?


 $5\sqrt{3}x = 40\sqrt{3}$ 따라서 x = 8 이다.

9.

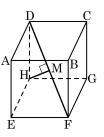
ਹੈ ਤੋਂ
$$\frac{1}{2} \times x \times 20 \times \sin(180^{\circ} - 120^{\circ}) = 40\sqrt{3}$$

 $\frac{1}{2} \times x \times 20 \times \sin 60^{\circ} = 40\sqrt{3}, \ 10x \times \frac{\sqrt{3}}{2} = 40\sqrt{3}$

$$=40\sqrt{3}$$

10. 다음 그림과 같이 반지름의 길이가 10cm 인 원에 내접하는 정팔각형의 넓이를 구하여라.

 $\textcircled{1} \ 200 \ \mathrm{cm}^2$


- ② $200 \sqrt{2} \, \text{cm}^2$ 3 $200 \sqrt{3} \, \text{cm}^2$
- $4 202 \sqrt{2} \, \text{cm}^2$
- $3 202 \sqrt{3} \, \text{cm}^2$

$$360^{\circ} \div 8 = 45^{\circ}$$
 ($\triangle AOH$ 의 넓이)= $\frac{1}{2} \times 10 \times 10 \times \sin 45$ °이므로

(정팔각형의 넓이) =
$$\frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{2}}{2} \times 8$$

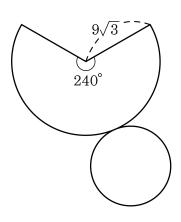
= $200\sqrt{2}$ (cm²)

11. 다음 그림과 같이 한 모서리의 길이가 a cm 인 정육면체의 꼭짓점 H 에서 DF 에 내린 수선의 길이가 √6 cm 일 때 a 는?

해설

① 1 ② 3
$$3\sqrt{6}$$
 ④ $4\sqrt{6}$ ⑤ $5\sqrt{6}$

$$\overline{\mathrm{DF}} = a\sqrt{3}\,\mathrm{cm}$$


$$\Delta\mathrm{DFH} = \frac{1}{2} \times \overline{\mathrm{DF}} \times \overline{\mathrm{HF}}$$

$$\frac{1}{2} \times a \times a\sqrt{2} = \frac{1}{2} \times a\sqrt{3} \times \sqrt{6}$$

$$a\sqrt{2} = \sqrt{3} \times \sqrt{6}$$

$$\therefore a = 3$$

12. 다음 그림과 같이 원뿔의 모선의 길이가 9√3cm 이고 중심각의 크기가 240° 인 부채꼴로 원뿔을 만들 때, 원뿔의 부피를 구하면?

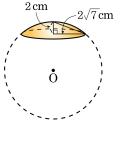
- ① $108\sqrt{15}\pi\text{cm}^3$ ② $109\sqrt{15}\pi\text{cm}^3$ ③ $110\sqrt{15}\pi\text{cm}^3$
- 4 $111\sqrt{15}\pi\text{cm}^3$ 5 $112\sqrt{15}\pi\text{cm}^3$

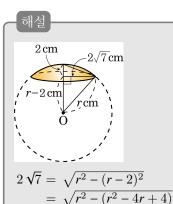
밑면의 반지름의 길이를 r 라 하면 밑면의 원의 둘레의 길이는

$$2\pi r = 18\sqrt{3}\pi \times \frac{240^{\circ}}{360^{\circ}} \quad \therefore r = 6\sqrt{3} \text{ (cm)}$$

$$A = 6\sqrt{3}$$

$$A$$

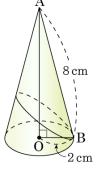

 $\therefore \overline{AH} = 3\sqrt{15}(cm)$


해설

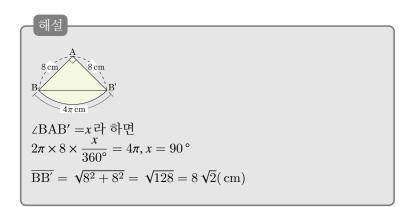
(원뿔의 부피) = $\frac{1}{3}\pi \times (6\sqrt{3})^2 \times 3\sqrt{15} = 108\sqrt{15}\pi(\text{cm}^3)$

13. 다음 그림과 같이 구를 평면으로 잘라 단면이 생겼을 때 구의 지름은?

- ① 8 cm ② 10 cm ③ 12 cm
- 4 14 cm (5) 16 cm


$$= \sqrt{4r - 4} = \sqrt{28}$$

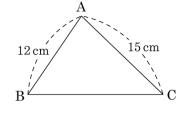
이므로
 $4r - 4 = 28$ $\therefore r = 8 \text{ (cm)}$

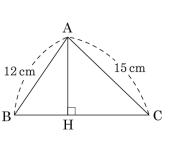

반지름이 8 cm 이므로 지름은 16 cm 이다.

14. 다음 그림과 같은 원뿔에서 점 B를 출발하여 옆면을 지나 다시 점 B 로 돌아오는 최단 거리는?

① $7\sqrt{2}$ cm ② $7\sqrt{3}$ cm ③ $8\sqrt{2}$ cm

 $4 8\sqrt{3} \, \text{cm}$ $9\sqrt{2} \, \text{cm}$


15. 다음 그림의 ΔABC 에서 AB = 12 cm, AC = 15 cm 일 때,
$$\frac{\sin C}{\sin B}$$
의 값은?


점 A 에서 변 BC 에 내린 수선의
발을 H 라 하면
$$\sin B = \frac{\overline{AH}}{\overline{AB}} = \frac{\overline{AH}}{12}, \sin C =$$

$$\sin B = \frac{\overline{AH}}{\overline{AB}} = \frac{\overline{AH}}{12}, \sin C$$

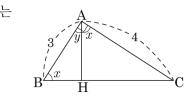
$$\frac{\overline{AH}}{\overline{AC}} = \frac{\overline{AH}}{15}$$

$$\therefore \frac{\sin C}{\sin B} = \frac{\overline{AH}}{\overline{AH}} = \frac{12}{15} = \frac{4}{5}$$

16. $\tan A = \frac{12}{5}$ 일 때, $13 \sin A - 26 \cos A$ 의 값은? (단, $0^{\circ} < A < 90^{\circ}$)

이다.

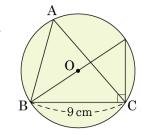
$$\tan A = \frac{12}{5}$$
 이면


$$a = \frac{12}{12}, \cos A = \frac{12}{12}$$

 $\sin A = \frac{12}{13}, \cos A = \frac{5}{13}$ 이다.

$$\sin A = \frac{1}{13}$$
, $\cos A = \frac{1}{13}$ 이다.
따라서 $13 \sin A - 26 \cos A = 13 \times \frac{12}{13} - 26 \times \frac{5}{13} = 12 - 10 = 2$

17. 다음 보기 중 tan *x* 와 같은 값을 갖는 것을 보기에서 모두 골라라.



- 답:
- ▶ 답:
- ▶ 답:
- ▷ 정답: ⑤
- ▷ 정답: □
- ▷ 정답 : □

$$x + y = 90$$
 °이므로 $\angle x + \angle C = 90$ °가 되고, 따라서 $\angle C = y$ $\triangle BCA \hookrightarrow \triangle BAH \hookrightarrow \triangle ACH$ 이므로 $\tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{4}{3} = \frac{\overline{CH}}{\overline{AH}} = \frac{\overline{AH}}{\overline{BH}}$

따라서 $\tan x$ 와 같은 것은 $\frac{4}{3}$, $\frac{\overline{CH}}{\overline{AH}}$, $\frac{\overline{AH}}{\overline{BH}}$ 이다.

18. 다음 그림은 반지름이 6 cm 인 원 O 에 내접 하는 ΔABC 에서 BC = 9 cm 이다. 이 때, sin A 의 값을 구하면?
① 1/4 ② 1/2 ③ 3/3
④ 3/4 ⑤ 4/5

그림과 같이 지름과 원주가 만나는 점을

$$A'$$
 라 하면, $\overline{A'B} = 12 \,\mathrm{cm}$, $\overline{BC} = 9 \,\mathrm{cm}$ 이므로, $\sin A' = \frac{\overline{BC}}{\overline{A'B}} = \frac{9}{12} = \frac{3}{4}$

$$\therefore \sin A = \frac{3}{4}$$

19. 이차방정식 $x^2 - (a+5)x - 2a + 6 = 0$ 의 한 근이 $2\sqrt{3}\cos 30^\circ$ 일 때, 상수 *a* 의 값을 구하여라

해설

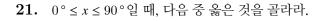
답:

한 근이
$$2\sqrt{3} \times \frac{\sqrt{3}}{2} = 3$$
 이므로

x 의 값에 대입하면

$$9 - (a + 5) \times 3 - 2a + 6 = 0$$

 $-5a = 0$
 $a = 0$ 이다.


20. 직선 ℓ 은 x 축과 양의 방향으로 60° 를 이루는 직선과 평행하고, (-6,4)를 지날 때, 직선 ℓ 의 방정식을 구하면?

①
$$y = 3x + 4\sqrt{3}$$

③ $y = 3\sqrt{3}x + 4$

②
$$y = \sqrt{3}x + 4$$

④ $y = \sqrt{3}x + 4\sqrt{3}$

$$\bigcirc y = \sqrt{3}x + 6\sqrt{3} + 4$$

해설
$$x$$
 축과 양의 방향으로 60° 를 이루는 직선과 평행하므로 기울 기= $\tan 60^\circ = \sqrt{3}$ 이다. 점 $(-6,4)$ 를 지나므로 $y = \sqrt{3}(x+6)+4, y = \sqrt{3}x+6\sqrt{3}+4$ 이다.

- \bigcirc $\cos x \ge \tan x$

- \bigcirc x가 커지면 $\cos x$ 의 값도 커진다.
- 답:
- ▷ 정답: □

해설

- ③ sin 0° < cos 0° ∴ 거짓
- © cos 60° < tan 60° ∴ 거짓
- © $0^{\circ} \le x \le 90^{\circ}$ 일 때, x가 커지면 $\cos x$ 의 값은 작아진다.

 $\sin(2x+30^\circ) = \cos(3y-45^\circ)$ 일 때, 4x-y 의 값을 구하면?

②
$$\frac{15}{2}$$
°

③ 18° ④ 30°

$$\sin x = \cos x$$
 인 $x = 45^{\circ}$ 이다. 따라서 $2x + 30^{\circ} = 45^{\circ}, 3y - 45^{\circ} = 45^{\circ}$

45° $x=\frac{15}{2}$, y=30 이다. 따라서 $4x-y=30^{\circ}-30^{\circ}=0^{\circ}$ 이다.

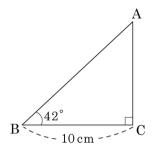
23. 다음 표는 삼각비의 값을 소수 둘째 자리까지 나타낸 것이다. 다음 중 옳지 않은 것은?

각도	sin	cos	tan
32°	0.53	0.85	0.62
33°	0.54	0.84	0.65
34°	0.56	0.83	0.67
35°	0.57	0.82	0.70
36°	0.59	0.81	0.73
37°	0.60	0.80	0.75

①
$$\sin 32^{\circ} = 0.53$$

②
$$\cos 34^{\circ} = 0.83$$

$$3 \tan 36^{\circ} = 0.73$$


$$9 2 \sin 35^{\circ} = 1.14$$

$$3\cos 36^{\circ} = 2.44$$

해설

 $\cos 36^\circ = 0.81$ 이므로 $3\cos 36^\circ = 2.43$ 이다.

24. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하면?

〈삼각비의 표〉

x	sin x	cos x	tan x
42°	0.66	0.74	0.90
43°	0.68	0.73	0.93
44°	0.69	0.72	0.97

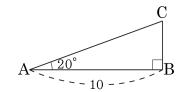
 \bigcirc 33 cm²

 $2 37 \,\mathrm{cm}^2$

 $345 \,\mathrm{cm}^2$

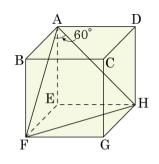
 $4 mu 72 \, \text{cm}^2$

 $90 \, \text{cm}^2$


해설

$$\overline{AC} = x$$
라 하면

$$\angle B = 42^{\circ}$$
이므로 $x = 10 \times \tan 42^{\circ} = 10 \times 0.9 = 9$

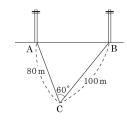

따라서 \triangle ABC 의 넓이는 $10 \times 9 \times \frac{1}{2} = 45 \text{(cm}^2)$ 이다.

25. 다음 그림에서 AB = 10, ∠A = 20° 일 때, 삼각형의 둘레를 구하여라.
 (단, sin 20° = 0.34, cos 20° = 0.94, tan 20° = 0.36 으로 계산하고, 계산 결과는 소숫점 둘째자리 까지 나타낸다.)

$$\cos 20^\circ = \frac{\overline{AB}}{\overline{AC}} = \frac{10}{\overline{AC}}, \ \overline{AC} = \frac{10}{\cos 20^\circ} = \frac{10}{0.94} = 10.64$$
 $\tan 20^\circ = \frac{\overline{BC}}{\overline{AB}} = \frac{\overline{BC}}{10}, \ \overline{BC} = 10\tan 20^\circ = 10 \times 0.36 = 3.6$ 따라서 삼각형의 둘레는 $10 + 10.64 + 3.6 = 24.24$ 이다.

26. 다음은 정육면체에서 ∠HAF = 60° 이고, △AFH 의 넓이가 $8\sqrt{3}$ cm² 일 때, 정육면 체의 한 변의 길이를 구하여라.

▶ 답:


▷ 정답: 4 cm

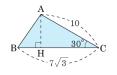
 $\angle {
m HAF} = 60\,^{\circ}$ 이고, $\overline{
m AF} = \overline{
m AH}$ 이므로 $\triangle {
m AFH}$ 는 정삼각형이다.

cm

따라서 $8\sqrt{3} = \frac{\sqrt{3}}{4} \times \overline{FH}^2$ 이므로 $\overline{FH} = 4\sqrt{2}$ cm $= \overline{AF} = \overline{AH}$ \Box EFGH 에서 \angle HFG = 45 ° 이므로 $\overline{FG} = \overline{FH} \times \sin 45$ ° = 4 cm 이다.

27. 학교 건물을 사이에 두고 두 지점 A, B 에 전봇대가 있는데. 전봇대 사이의 거리를 알아보려고 다음 그림과 같이 측정하였다, 두 전봇대 A. B 사이의 거리를 구하여라.

- $20\sqrt{21} \, \text{m}$
 - ② $20\sqrt{23}\,\mathrm{m}$ $4 21 \sqrt{23} \,\mathrm{m}$ (5) $22\sqrt{21}$ m
- ③ $21\sqrt{21} \,\mathrm{m}$


점 A 에서 \overline{BC} 에 내린 수선의 발을 H 라고 하면 $\triangle ACH$ 에서 $\overline{AH} = 80 \times \sin 60^{\circ} = 40 \sqrt{3} \text{ (m)}$

 $\overline{\text{CH}} = 80 \times \cos 60^{\circ} = 40 \text{ (m)}$

 $\triangle ABH$ 에서 $\overline{BH} = 100 - 40 = 60 \text{ (m)}$

$$\overline{AB} = \sqrt{\overline{AH}^2 + \overline{BH}^2}$$

= $\sqrt{(40\sqrt{3})^2 + (60)^2} = 20\sqrt{21}$ (m)

28. 다음 그림의 \triangle ABC 에서 \triangle ABH 둘레의 길이는?

①
$$5-2\sqrt{3}+\sqrt{37}$$

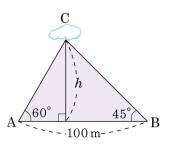
$$\bigcirc 5 + 2\sqrt{3} + \sqrt{37}$$

$$3 + 2\sqrt{3} - \sqrt{37}$$

$$4 5 + 3\sqrt{2} + \sqrt{37}$$

$$\bigcirc 6 + 2\sqrt{3} + \sqrt{37}$$

해설


$$\overline{AH} = 10\sin 30^{\circ} = 5$$

$$\overline{\mathrm{BH}} = 7\sqrt{3} - \overline{\mathrm{CH}} = 7\sqrt{3} - 10\mathrm{cos}30^{\circ} = 2\sqrt{3}$$

$$\overline{AB} = \sqrt{5^2 + (2\sqrt{3})^2} = \sqrt{37}$$

따라서 $\triangle ABH$ 둘레의 길이는 $5+2\sqrt{3}+\sqrt{37}$ 이다.

29. 다음 그림과 같이 100 m 떨어진 두 지점 A, B에서 하늘에 떠있는 구름 C를 올려다본 각도가 각각 60°, 45°였다. 이 때, 구름의 높이 h는?

① 100 m

 $2 50 \sqrt{3} \,\mathrm{m}$

③ $100\sqrt{3}\,\mathrm{m}$

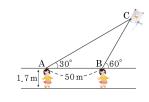
 $50(3-\sqrt{3}) \,\mathrm{m}$

4 $100(\sqrt{3}-1) \,\mathrm{m}$

h 라 하면 직각삼각형 ACH 에서 ∠ACH = 30° 이므로

점 C 에서 변 AB 에 내린 수선의 발을 H 라 하고. 구름의 높이를

$$\tan 30^\circ = \frac{\overline{AH}}{\overline{CH}}, \overline{AH} = \overline{CH} \times \tan 30^\circ = \frac{1}{\sqrt{2}}h$$

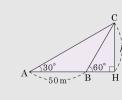

또, 직각삼각형 BCH 에서 ∠BCH = 45°이므로

$$\tan 45^{\circ} = \frac{\overline{BH}}{\overline{CH}}, \overline{BH} = \overline{CH} \times \tan 45^{\circ} = h$$

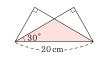
이 때,
$$\overline{AB} = \overline{AH} + \overline{BH} = \frac{h}{\sqrt{3}} + h = 100$$

$$h = \frac{100\sqrt{3}}{1+\sqrt{3}} = 50(3-\sqrt{3}) \,\mathrm{m}$$

30. A, B 두 사람이 다음 그림과 같이 연을 바라보았을 때, 연의 높이는?


- ① $(20\sqrt{2}+1.7)$ m
- $(2)(25\sqrt{3}+1.7)$ m $(28\sqrt{2}+1.7)$ m ③ $(25\sqrt{2}+1.7)$ m
- $(30\sqrt{3}+1.7)$ m

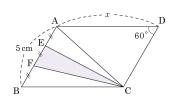
해설
다음 그림에서
$$\overline{\text{CH}} = h\text{m}$$
 라 하면 $\overline{\text{AH}} = \frac{h}{\tan 30^\circ}$, $\overline{\text{BH}} = \frac{h}{\tan 60^\circ}$ 에서
$$\overline{\text{AH}} - \overline{\text{BH}} = h \left(\frac{1}{\tan 30^\circ} - \frac{1}{\tan 60^\circ} \right)$$


$$50 = h\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right)$$

$$\therefore h = 50 \times \frac{\sqrt{3}}{2} = 25\sqrt{3} \text{(m)}$$

$$\therefore$$
 (높이)= $(25\sqrt{3} + 1.7)$ m

31. 다음 그림과 같이 합동인 두 직각삼각형의 빗변을 겹쳐 놓았을 때, 겹쳐진 부분의 넓이를 구하면?



① $\frac{100}{3} \text{ cm}^2$ ② $\frac{100\sqrt{2}}{3} \text{ cm}^2$ ③ $\frac{100\sqrt{3}}{3} \text{ cm}^2$ ④ $\frac{100\sqrt{5}}{3} \text{ cm}^2$ ⑤ $\frac{100\sqrt{6}}{3} \text{ cm}^2$

해설
$$(높 \circ) = 10 \tan 30^\circ = 10 \times \frac{1}{\sqrt{3}} = \frac{10\sqrt{3}}{3} \text{ (cm)}$$

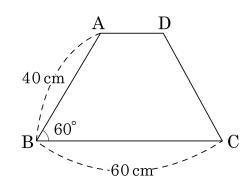
$$(ڍ) = 20 \times \frac{10\sqrt{3}}{3} \times \frac{1}{2} = \frac{100\sqrt{3}}{3} \text{ (cm}^2)$$

32. 다음 그림과 같은 평행사변형 ABCD 에서 $\overline{AB} = 5 \text{cm}$, $\angle D = 60^\circ$ 이고 $\overline{AE} = \overline{EF} = \overline{FB}$ 인 관계가 성립하고 ΔEFC 의 넓이가 10cm^2 일 때. \overline{AD} 의 길이를 구하여라.

cm

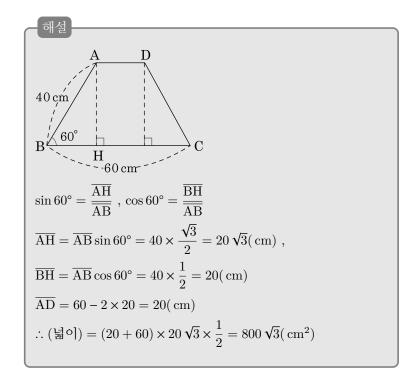
답:

> 정답: 8√3 cm


$$\triangle$$
EFC = $10 (cm^2)$ 이므로 \triangle ABC = $30 (cm^2)$ \square ABCD = $60 (cm^2)$ 이므로

 $5 \times x \times \sin 60^{\circ} = 60$

$$\frac{\sqrt{3}}{2} = 60$$


 $5 \times x \times \frac{\sqrt{3}}{2} = 60$ $\therefore x = 60 \times \frac{2}{5\sqrt{3}} = \frac{24}{\sqrt{3}} = 8\sqrt{3} \text{ (cm)}$

33. 다음 등변사다리꼴의 넓이를 구하여라.

<u>cm²</u>

ightharpoonup 정답: $800\sqrt{3}$ cm^2

