
. 다음 그림과 같은 직각삼각형 ABC 에서 $\tan A = \frac{4}{3}$ 이고, \overline{BC} 가 12 일 때, \overline{AC} 의 길이는?

$$an A = \frac{\overline{BC}}{\overline{AB}} = \frac{12}{\overline{AB}} = \frac{4}{3}$$
 이므로 $12 \times 3 = 4 \times \overline{AB}$ 이다.
$$\Rightarrow \overline{AB} = 9$$
따라서 $\overline{AC} = \sqrt{9^2 + 12^2} = 15$ 이다.

2. 경사면의 기울어진 정도를 나타내는 경사도는 수평거리와 수직거리의 비율에 의해 결정된다. 다음 중 경사도와 가장 관계가 깊은 것은?

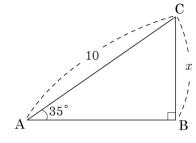
(2) cos A

sin A

(3) tan A

해설 수평거리와 수직거리의 비율은 직각삼각형에서 밑변과 높이의 비율로 생각할 수 있으므로 tan A 와 가장 관계가 깊다. **3.** 이차방정식 $x^2 - 3 = 0$ 을 만족하는 x 의 값이 $\tan A$ 의 값과 같을 때, $\sin A \cos A$ 의 값은? (단, $0^\circ < A < 90^\circ$)

①
$$\frac{1}{2}$$
 ② $\frac{\sqrt{3}}{2}$ ③ $\frac{1}{4}$ ④ $\frac{\sqrt{3}}{4}$ ⑤ $\frac{3\sqrt{3}}{4}$


$$x^{2} - 3 = 0 \text{ odd}$$

$$x^{2} = 3, \quad \therefore \quad x = \sqrt{3} \ (\because x > 0)$$

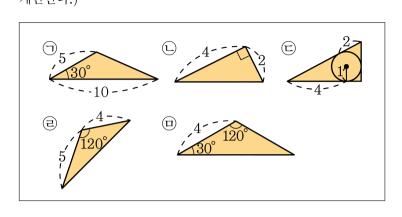
$$\tan A = \sqrt{3}, \quad \therefore \quad A = 60^{\circ} \ (\because 0^{\circ} < A < 90^{\circ})$$

$$\sin A \cos A = \sin 60^{\circ} \times \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$$

다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

① 8.192

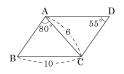

 $x = 10 \times \cos 55^{\circ} = 10 \times 0.5736 = 5.736$

5. 다음 그림과 같이
$$\angle C = 90^\circ$$
 인 직각삼 각형 ABC 에서 \overline{AC} 의 길이를 구하는 식은?

① $5\sin 40^\circ$ ② $5\cos 40^\circ$ ③ $5\tan 40^\circ$ ④ $\frac{5}{\tan 40^\circ}$ B

$$\frac{\overline{AC}}{\overline{BC}} \times \overline{BC} = \overline{AC}$$
 이므로
 $\therefore 5 \tan 40^{\circ}$

6. 다음 삼각형 중에서 넓이가 가장 큰 것을 골라라. (단, $\sqrt{3}$ = 1.732로 계산한다.)

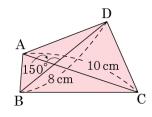


▶ 답:

$$\Im S = \frac{1}{2} \times 5 \times 10 \times \frac{1}{2} = \frac{25}{2}$$

©
$$S = \frac{1}{2} \times 4 \times 4 \times \frac{\sqrt{3}}{2} = 4\sqrt{3} = 6.928$$

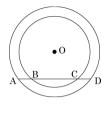
7. 다음 그림과 같은 평행사변형의 넓이를 구하면?


① 30 ② $30\sqrt{2}$ ③ $30\sqrt{3}$ ④ $32\sqrt{2}$ ⑤ $32\sqrt{3}$

해설
(평행사변형 ABCD 의 넓이)
$$= \frac{1}{2} \times 10 \times 6 \times \sin 45^{\circ} \times 2$$

$$= \frac{1}{2} \times 10 \times 6 \times \frac{\sqrt{2}}{2} \times 2$$

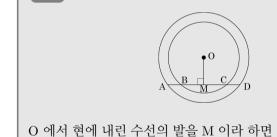
$$= 30\sqrt{2}$$


8. 다음 그림에서 □ABCD 의 넓이를 구하여 빈 칸을 채워 넣어라.

(사각형의 넓이) = 대각선 × 대각선 × $\frac{1}{2}$ × $\sin \theta$

따라서 $8 \times 10 \times \frac{1}{2} \times \sin 30$ ° = 20(cm²) 이다.

구하여라.



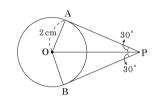
cm

다음 그림에서 두 원은 동심원이다. $\overline{BD} = 2cm$ 일 때, \overline{AC} 의 길이를

해설

9.

 $\overline{AM} = \overline{DM}$ $\overline{BM} = \overline{CM}$

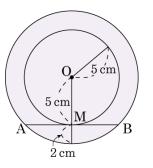

 $=\frac{\text{CN}}{\Lambda N}$

 $\overline{AB} = \overline{AM} - \overline{BM}$ $\overline{CD} = \overline{DM} - \overline{CM}$

 $\therefore \overline{\mathrm{AB}} = \overline{\mathrm{CD}}$

 $\overline{BD} = \overline{BC} + \overline{CD} = \overline{BC} + \overline{AB} = \overline{AC}$ $\therefore \overline{AC} = 2cm$

${f 10.}$ 다음 그림에서 ${f PA}$, ${f PB}$ 는 원 O 의 접선일 때, □APBO 의 둘레의 길이는?


① 6cm ②
$$(6+6\sqrt{2})$$
cm ③ $12\sqrt{3}$ cm

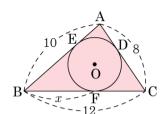
$$(4 + 4\sqrt{3})$$
cm $(8 + 6\sqrt{3})$ cm

$$\sqrt{3} \ \overline{OA} = \overline{AP} = 2\sqrt{3} \, \text{cm}$$

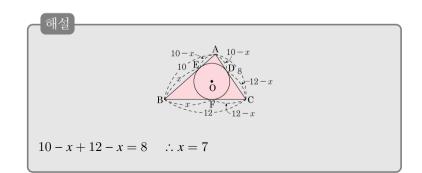
$$(2+2\sqrt{3}) \times 2 = (4+4\sqrt{3})$$
cm

11. 다음 그림과 같이 두 원의 중심이 일치하 고. 반지름의 길이는 각각 5cm, 7cm 이다. 현 AB 가 작은 원의 접선일 때, 현 AB 의 길이는?

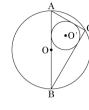
 $4\sqrt{6}$ cm


①
$$\sqrt{6}$$
cm ② $2\sqrt{6}$ cm

(4) 4cm

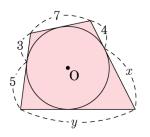

$$\overline{\mathrm{OA}} = 7 \,\mathrm{cm}, \ \overline{\mathrm{OM}} = 5 \,\mathrm{cm}, \ \overline{\mathrm{AM}} = \sqrt{7^2 - 5^2} = 2 \,\sqrt{6} (\,\mathrm{cm})$$

$$\therefore \ \overline{\mathrm{AB}} = 2 \,\sqrt{6} \times 2 = 4 \,\sqrt{6} (\,\mathrm{cm})$$


12. 원 O 가 △ABC 의 각 변과 점 D, E, F 에서 접할 때, *x* 의 값을 구하여라.

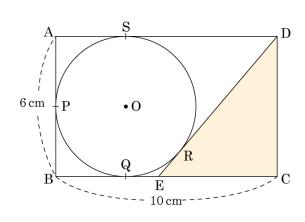
13. 다음 그림에서 ΔABC 의 외접원의 지름의 길이는 17cm 이고 내접원 의 지름의 길이는 6cm 이다. ĀB 가 외접원의 지름일 때, ΔABC 의 넓이를 구하여라. (단, ∠C 는 직각이다.)

 ${\rm cm}^2$


$$\triangle ABC = \frac{1}{2} \times 3 \times (\overline{AB} + \overline{BC} + \overline{CA})$$

$$= \frac{1}{2} \times 3 \times (17 \times 2 + 3 \times 2)$$

$$= \frac{1}{2} \times 3 \times 40$$


$$= 60(\text{cm}^2)$$

14. 다음 그림에서 y - x 의 값을 구하여라.

$$7 + y = 8 + 4 + x : y - x = 5$$

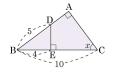
15. 다음 그림과 같은 직사각형 ABCD 안에 원 O 와 △CDE 가 접하고 있다. △CDE 의 둘레를 구하여라.

cm

 답:

 ▷ 정답:
 20 cm

해설


원 밖의 한 점에서 그은 두 접선의 길이는 같다. $\overline{AS}=3$ 이므로 $\overline{DS}=\overline{DR}=10-\overline{AS}=10-3=7, \overline{ER}=\overline{EQ}=x$ 라 하면

 $(\triangle CDE 의둘레) = \overline{CD} + \overline{DE} + \overline{EC}$

 $= \overline{CD} + (\overline{DR} + \overline{RE}) + \overline{EC}$ $= (6+7) + (x + \overline{EC})$ $= 13 + (\overline{BC} - \overline{BQ})$

= 13 + 10 - 3 = 20

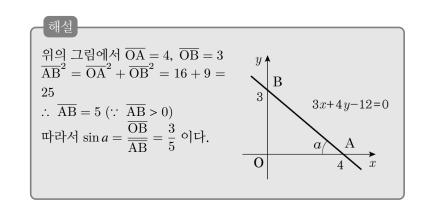
16. 다음 그림의 $\triangle ABC$ 에서 $\sin x$ 의 값을 구하여라.


- ▶ 답:
- \triangleright 정답: $\frac{4}{5}$

△ABC∽△EBD (AA 닮음)

 $\Rightarrow \angle x = \angle BCA = \angle BDE$ 또한, $\overline{DE} = \sqrt{5^2 - 4^2} = 3$ 이다.

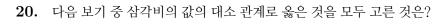
따라서 $\sin x = \frac{\overline{BE}}{\overline{BD}} = \frac{4}{5}$ 이다.


17. 다음 직사각형에서 \angle FDB 를 x 라고 하면, $\sin x \times \cos x = \frac{b}{a}$ 이다. a+b의 값을 구하시오. (단, a, b는 서로소)

$$\overline{\overline{DB}} = 10$$
 $\overline{\overline{BF}} = 12$
 $\overline{\overline{DF}} = 2\sqrt{61}$ 이므로
$$\sin x \times \cos x = \frac{12}{2\sqrt{61}} \times \frac{10}{2\sqrt{61}} = \frac{30}{61}$$
따라서 $a + b = 91$ 이다.

18. 직선 3x + 4y - 12 = 0 의 그래프가 x 축과 이루는 예각의 크기를 a 라할 때, $\sin a$ 의 값을 구하여라.

$$ightharpoons$$
 정답: $rac{3}{5}$



①
$$\frac{15\sqrt{3}+2}{\frac{4}{4}}$$
 ② $\frac{15\sqrt{3}+3}{4}$ ③ $\frac{17\sqrt{3}+2}{4}$
 ④ $\frac{17\sqrt{3}+3}{4}$ ⑤ $\frac{17\sqrt{3}+5}{4}$

$$3\sqrt{3}\sin 60^{\circ}\cos 30^{\circ} + 2\tan 60^{\circ} + \cos^{2} 45^{\circ}$$

$$= 3\sqrt{3} \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + 2 \times \sqrt{3} + \left(\frac{\sqrt{2}}{2}\right)^{2}$$

$$= \frac{9\sqrt{3}}{4} + 2\sqrt{3} + \frac{1}{2} = \frac{17\sqrt{3} + 2}{4}$$

 \bigcirc tan 46° < tan 45°

 \Box $\cos 0^{\circ} > \tan 50^{\circ}$

 \bigcirc $\sin 45^{\circ} = \cos 45^{\circ}$

 $\bigcirc \cos 47^{\circ} < \cos 77^{\circ}$

 \bigcirc $\sin 75^{\circ} > \sin 15^{\circ}$

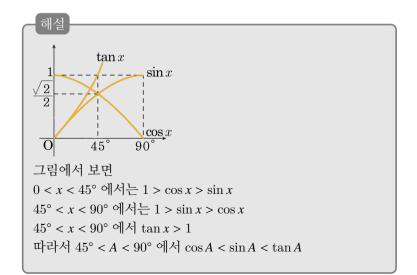
 \bigcirc 0° $\leq x \leq 90$ ° 인 범위에서 x 의 값이 증가하면 $\sin x$, $\tan x$ 의 값은 각각 증가한다.

 \bigcirc tan 46° > tan 45°

 $\bigcirc \cos 0^{\circ} = 1 \cdot \tan 50^{\circ} > 1$

 $\therefore \cos 0^{\circ} < \tan 50^{\circ}$

 \bigcirc 0° $\leq x \leq 90$ ° 인 범위에서 x 의 값이 증가하면 $\cos x$ 의 값은 감소한다.


 $\therefore \cos 47^{\circ} > \cos 77^{\circ}$

- $21. \ 45^{\circ} < A < 90^{\circ}$ 일 때, $\sin A$, $\cos A$, $\tan A$ 의 대소 관계로 옳은 것은?
 - ① $\tan A < \cos A < \sin A$

② $\cos A < \tan A < \sin A$

 $\Im \sin A < \cos A < \tan A$

 $\textcircled{4} \sin A < \tan A < \cos A$

22. 다음 표를 이용하여

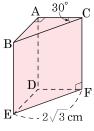
 $(\tan 44^\circ + \cos 46^\circ - 2\sin 45^\circ) \times 10000$ 의 값을 구하여라.

각도	sin	cos	tan
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355

① 246 ② 967 ③ 1760 ④ 2462 ⑤ 3240

$$\tan 44^{\circ} = 0.9657$$

 $\cos 46^{\circ} = 0.6947$


 $\sin 45^{\circ} = 0.7071$

 $\therefore (\tan 44^{\circ} + \cos 46^{\circ} - 2\sin 45^{\circ}) \times 10000$

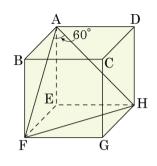
 $= \{0.9657 + 0.6947 - (2 \times 0.7071)\} \times 10000$

 $= (1.6604 - 1.4142) \times 10000 = 2462$

23. 정육면체을 밑면의 대각선 방향으로 잘랐더니 그림과 같이 □BEFC 가 정사각형인 삼각기둥이 되었다. 이 삼각기둥의 부피를 구하여라. B

▶ 답:

 $\underline{\mathrm{cm}^3}$


▷ 정답: 9 cm³

$$\angle ACB = 30$$
°이므로 $\overline{DE} = \overline{EF} \times \sin 30$ ° = $\sqrt{3}$, $\overline{DF} = \overline{EF} \times \cos 30$ ° = 3

 $\square BEFC$ 가 정사각형이므로 $\overline{CF}=2\sqrt{3}$ 따라서 구하고자 하는 삼각기둥의 부피는

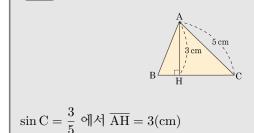
$$V = \frac{1}{2} \times \sqrt{3} \times 3 \times 2 \sqrt{3} = 9(\text{cm}^3)$$
 이다.

24. 다음은 정육면체에서 $\angle HAF = 60^{\circ}$ 이고, $\triangle AFH$ 의 넓이가 $8\sqrt{3}\,\mathrm{cm}^2$ 일 때, 정육면 체의 한 변의 길이를 구하여라.

▶ 답:

▷ 정답: 4 cm

 $\angle {
m HAF} = 60\,^{\circ}$ 이고, $\overline{
m AF} = \overline{
m AH}$ 이므로 $\triangle {
m AFH}$ 는 정삼각형이다.


cm

따라서 $8\sqrt{3} = \frac{\sqrt{3}}{4} \times \overline{FH}^2$ 이므로 $\overline{FH} = 4\sqrt{2}$ cm $= \overline{AF} = \overline{AH}$ \Box EFGH 에서 \angle HFG = 45 ° 이므로 $\overline{FG} = \overline{FH} \times \sin 45$ ° = 4 cm 이다.

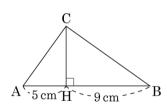
25. 다음 그림에서 $\overline{AC}=5$ cm 이고 $\sin B=\frac{4}{5}$, $\sin C=\frac{3}{5}$ 일 때, \overline{BC} 의 길이는?

①
$$\frac{21}{4}$$
 cm ② $\frac{23}{4}$ cm ④ $\frac{27}{4}$ cm ⑤ $\frac{31}{4}$ cm

$$\sin B = \frac{4}{5} = \frac{3}{\overline{AB}}$$

$$\therefore \overline{AB} = \frac{15}{4}$$

$$\overline{BH}^2 = \left(\frac{15}{4}\right)^2 - 3^2 = \frac{81}{16}$$

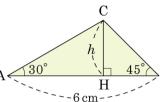

$$\therefore \overline{BH} = \frac{9}{4}(cm)$$

$$\overline{HC}^2 = 5^2 - 3^2 = 4^2$$

$$\therefore \overline{HC} = 4(cm)$$

$$\overline{BC} = \overline{BH} + \overline{HC} = \frac{9}{4} + 4 = \frac{25}{4} (cm)$$

. 다음 그림에서 $\frac{\tan B}{\tan A}$ 의 값을 구하여라.


$$\triangleright$$
 정답 : $\frac{5}{9}$

$$\tan B = \frac{\overline{\text{CH}}}{9}, \ \tan A = \frac{\overline{\text{CH}}}{5}$$

$$\therefore \ \tan B \div \tan A = \frac{\overline{\text{CH}}}{\frac{9}{5}} \div \frac{\overline{\text{CH}}}{\frac{5}{5}}$$

$$= \frac{\overline{\text{CH}}}{9} \times \frac{5}{\overline{\text{CH}}} = \frac{5}{9}$$

27. 다음 그림과 같은 △ABC 에서
$$\overline{AB} = 6 \text{cm}$$
, ∠A = 30°, ∠B = 45° 일 때, △ABC 의 높이 h 를 구하여 라.

①
$$2(\sqrt{2}-1)$$

(4)3 $(\sqrt{3}-1)$

②
$$2(\sqrt{3}-1)$$

③ $3(\sqrt{6}-1)$

$$-1)$$

$$\overline{AH} = h \tan 60^{\circ} = \sqrt{3}h$$

$$\overline{BH} = h \tan 60^{\circ}$$

$$\overline{BH} = \overline{CH} = h$$

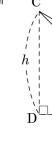
$$\overline{\overline{I}} = h$$

$$\overline{AB} = \overline{AH} + \overline{BH}$$

 $6 = \sqrt{3}h + h = (\sqrt{3} + 1)h$

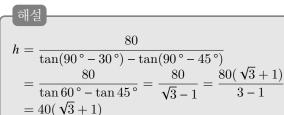
$$h = \frac{6}{\sqrt{3} + 1} = 3(\sqrt{3} - 1) \text{ (cm)}$$

$$\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$


28. 다음 그림의 삼각형 ABC에 서 △ABC 의 높이 *h*는?

①
$$30(\sqrt{3}+1)$$

②
$$40(\sqrt{3}+1)$$


③
$$50(\sqrt{3}+1)$$

④ $60(\sqrt{3}+1)$

$$5 80(\sqrt{3}+1)$$

 45°

30°

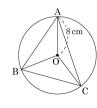
29. 다음 그림과 같은 $\square ABCD$ 에서 두 대각선 \overline{AC} 와 \overline{BD} 의 길이의 합은 11 이고, $\angle COD = 120^\circ$, $\overline{\mathrm{OD}} = \overline{\mathrm{OC}} = 2$ 라고 한다. $\triangle \mathrm{AOD}$ 의 넓이가

와 BD의 철어의 업는 11 이고, 2COD = 120 ,
$$\overline{OD} = \overline{OC} = 2$$
라고 한다. $\triangle AOD$ 의 넓이기 $\frac{3\sqrt{3}}{2}$ 일 때, $\Box ABCD$ 의 넓이는?

① $\frac{9\sqrt{3}}{2}$ ② $5\sqrt{3}$ ③ $10\sqrt{3}$

① $\frac{9\sqrt{3}}{2}$ ② $5\sqrt{3}$ ③ $10\sqrt{3}$ ② $\frac{15\sqrt{3}}{2}$ ⑤ $15\sqrt{3}$

120°


해설
$$\angle AOD = 60$$
 ° 이므로 $\triangle AOD = \frac{1}{2} \times \overline{AO} \times 2 \times \sin 60$ ° $= \frac{3\sqrt{3}}{2}$

따라서 $\overline{AO} = 3$ 이 나온다.

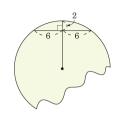
 \overline{AO} 와 \overline{BD} 의 길이의 합은 11이므로 $\overline{OB} = 4$ 따라서 DABCD의 넓이는

지 UABCD의 넓이는
$$S = \frac{1}{2} \times 5 \times 6 \times \sin 60^{\circ} = \frac{1}{2} \times 5 \times 6 \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2}$$
이다.

30. 다음 그림과 같이 ΔABC 가 반지름이 8cm 인 원 O 에 내접하고 있다. 5.0ptAB, 5.0ptBC, 5.0ptCA 의 길이의 비가 4 : 3 : 5 일 때, ΔAOC 의 넓이를 구하여라.

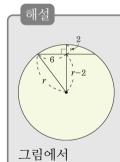
 ${\rm cm}^2$

$$\angle AOC = 360^{\circ} \times \frac{5}{4+3+5} = 150^{\circ}$$


$$\triangle AOC = \frac{1}{2} \times 8 \times 8 \times \sin(180^{\circ} - 150^{\circ})$$

$$= \frac{1}{2} \times 8 \times 8 \times \sin 30^{\circ}$$

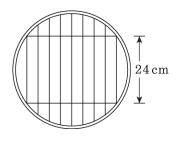
$$= \frac{1}{2} \times 8 \times 8 \times \frac{1}{2}$$


 $= 16 \, (\mathrm{cm}^2)$

31. 다음 그림과 같이 원모양의 토기 파편이 있을 때, 이 토기의 지름의 길이를 구하여라.

답:

▷ 정답: 20



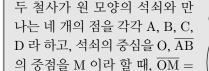
 $r^2 = 6^2 + (r-2)^2$ $r^2 = 36 + r^2 - 4r + 4$

4r = 40r = 10

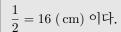
따라서 토기의 지름의 길이는 $2 \times 10 = 20$ 이다.

32. 경식이는 가족여행을 가서 다음 그림 과 같은 원 모양의 석쇠로 고기를 구 웠다. 굵은 두 철사는 평행하고 길이 가 32 cm 로 같았으며, 두 철사 사이의 간격은 24 cm 였다. 경식이가 사용한 석쇠의 반지름의 길이는?

③ 30 cm

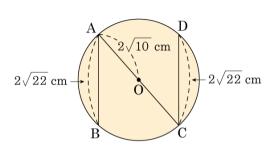

24 cm

① 20 cm

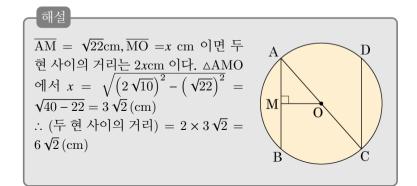

④ 40 cm

해설

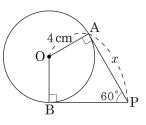
- ② 25 cm
- ⑤ 45 cm


$$12 \,\mathrm{cm}, \; \overline{\mathrm{MB}} = \overline{\mathrm{AB}} \times \frac{1}{2} = 32 \times$$

석쇠의 반지름의 길이는 △OMB


가 직각삼각형이므로 $\overline{OB} = \sqrt{12^2 + 16^2} = \sqrt{400} = 20$ (cm) 이다.

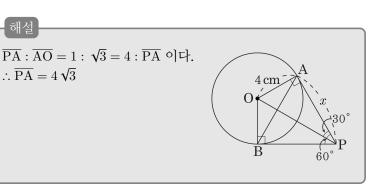
33. 반지름의 길이가 $2\sqrt{10}$ cm 인 원 O 에서 평행인 두 현 AB 와 CD 의 길이가 모두 $2\sqrt{22}$ cm 이다. 이 때, 두 현 사이의 거리는?



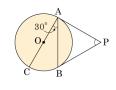
 $6\sqrt{2}$ cm

- ① $\frac{3\sqrt{2}}{2}$ cm ② $3\sqrt{2}$ cm
- (4) 6cm (5) $2\sqrt{11}$ cm

34. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선 이다. $\angle P = 60^{\circ}$, $\overline{OA} = 4$ cm 일 때, \overline{PA} 의 길이는?

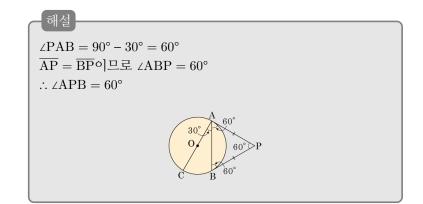

 $3 4\sqrt{2}$ cm

① 6cm

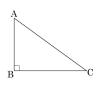

해설

 $\therefore \overline{PA} = 4\sqrt{3}$

- ② 7cm
- $4\sqrt{3}$ cm \bigcirc $3\sqrt{3}$ cm



35. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이고, \overline{AC} 는 원 O 의 지름이다. $\angle CAB = 30^\circ$ 일 때, $\angle APB$ 의 크기를 구하여라.



□ 답:

➢ 정답: 60 º

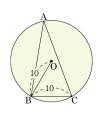
36. 다음 그림의 직각삼각형에 대하여 옳은 것은?

①
$$\cos A = \cos C$$

$$2 \tan C = \frac{1}{\tan C}$$

①
$$\cos A = \cos C$$
 ② $\tan C = \frac{1}{\tan C}$ ③ $\tan C = \frac{1}{\tan A}$ ④ $\sin A = \cos A$ ⑤ $\cos C = \frac{1}{\cos A}$

$$\tan C = \frac{\overline{AB}}{\overline{CB}}, \ \tan A = \frac{\overline{CB}}{\overline{AB}}$$
 이므로 $\tan C = \frac{1}{\tan A}$ 이다.

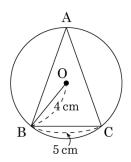

37. sin A : cos A = 4 : 5 일 때 tan A 의 값은?

① 0 ②
$$\frac{5}{4}$$
 ③ $\frac{\sqrt{2}}{2}$ ④ $\frac{\sqrt{3}}{2}$ ⑤ $\frac{4}{5}$

$$\sin A : \cos A = 4 : 5$$
 이므로 $5 \sin A = 4 \cos A$ 이다.
양변을 $5 \cos A$ 로 나누면 $\frac{\sin A}{\cos A} = \frac{4}{5}$ 이다.
따라서 $\tan A = \frac{4}{5}$ 이다.

38. 다음 그림과 같이 반지름의 길이가 10 인 원 O 에 내접하는 △ABC

에서 $\overline{\mathrm{BC}}=10$ 일 때, $\cos A imesrac{1}{\tan A}+\sin A$ 의 값을 구하여라.

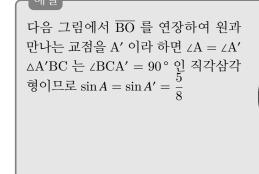


해설
$$\angle A = \angle A'$$

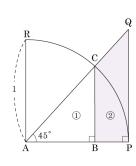
$$\overline{A'C} = \sqrt{20^2 - 10^2} = 10\sqrt{3}$$

$$\cos A \times \frac{1}{\tan A} + \sin A = \frac{\sqrt{3}}{2} \times \sqrt{3} + \frac{1}{2} = 2$$

39. 다음 그림과 같이 $\overline{BC} = 5 \, \mathrm{cm}$ 인 예각삼각형 ABC 에 외접하는 원 O 의 반지름의 길이가 $4 \, \mathrm{cm}$ 일 때, $\sin A$ 의 값을 구하여라.


8cm

В


5 cm

▶ 답:

$$ightharpoonup$$
 정답: $\frac{5}{8}$

40. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. ①과 ② 부분의 넓이를 구한 후 ②- ①의 값은?

① -2 ② -1

30

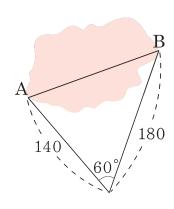
4 1

⑤ 2

$$\triangle ABC$$
 에서 $\overline{AC}=1, \angle A=45^\circ$ 이므로 $\overline{AB}=\cos 45^\circ=\frac{\sqrt{2}}{2}$, $\overline{BC}=\sin 45^\circ=\frac{\sqrt{2}}{2}$

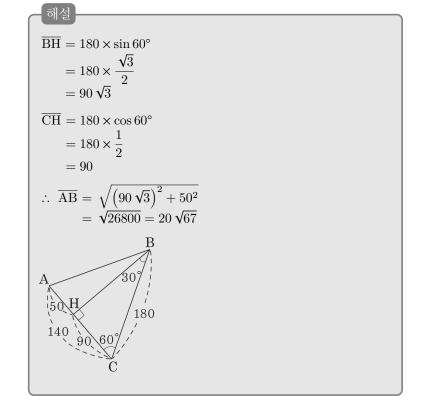
BC =
$$\sin 45^\circ = \frac{1}{2}$$

 $\triangle APQ$ 에서 $\overline{AP} = 1, \angle A = 45^\circ$ 이므로 $\overline{AQ} = \frac{1}{\cos 45^\circ} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

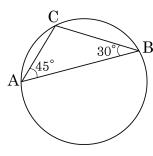

$$\sqrt{2}$$
 . $\overline{PO} = \tan 45^\circ = 1$

 $\triangle APQ$ 의 넓이= $\frac{1}{2} \times (1 \times 1) = \frac{1}{2}$

$$\triangle ABC$$
의 넓이= $\frac{1}{2} \times \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}\right) = \frac{1}{4} \cdots$ ①


$$\therefore @- @= \frac{1}{4} - \frac{1}{4} = 0$$

41. 직접 잴 수 없는 두 지점 A, B 사이의 거리를 구하기 위하여 다음 그림과 같이 측량하였다. 이 때, \overline{AB} 의 길이를 구하여라.



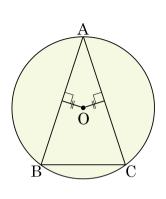
▶ 답:

정답: 20√67

42. 다음 그림과 같이 반지름의 길이가 2 인 원에 $\triangle ABC$ 가 내접하고 있다. $\angle A = 45^\circ$, $\angle B = 30^\circ$ 일 때, \overline{AB} 의 길이는?

①
$$\sqrt{2}$$
 ② $\sqrt{6}$ ③ $\sqrt{2} + \sqrt{6}$ ④ $\frac{\sqrt{2} + \sqrt{6}}{2}$ ⑤ $2(\sqrt{2} + \sqrt{6})$

해설
$$\overline{CA} = 4\cos 60^\circ = 2$$


$$\overline{A} \quad C \quad \text{에서 } \overline{AB} \quad \text{에 내린 수선의 발을 H 라 하면 } \overline{AH} = \overline{CA}\cos 45^\circ = \sqrt{2} \quad \text{이다.}$$

$$\therefore \overline{CH} = \overline{AH} = \sqrt{2}$$

$$\overline{BH} = \frac{\overline{CH}}{\tan 30^\circ} = \sqrt{2} \times \sqrt{3} = \sqrt{6}$$

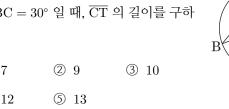
$$\therefore \overline{AB} = \sqrt{2} + \sqrt{6}$$

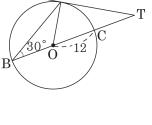
43. 다음 그림의 원 O 에서 5.0ptBC = 10π, ∠BAC = 30° 일 때, 5.0ptAC 의 길이는?

① 15π ② 18π ③ 22π ④ 25π ⑤ 30π

원의 중심에서 현이 이르는 거리가 같으면 두 현의 길이가 같으므로 $\overline{AB} = \overline{AC}$ 인 이등변 삼각형이다. $\angle A = 30^\circ$ 이므로 $\angle ABC = 75^\circ$

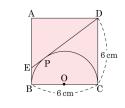
또한 원주각의 크기에 호의 길이는 비례하므로


$$5.0 \text{ptBC} : 5.0 \text{ptAC} = \angle BAC : \angle ABC$$


$$10\pi : 5.0 \text{ptAC} = 30^{\circ} : 75^{\circ}$$

$$\therefore 5.0 \text{ptAC} = 25\pi$$

해설


44. 그림에서 \overline{AT} 는 반지름의 길이가 12 인원 O의 접선이고 점 A는 접점이다. $\angle ABC = 30^{\circ}$ 일 때, \overline{CT} 의 길이를 구하면?

해설
$$\angle AOC = 60^{\circ}, \ \angle ATC = 30^{\circ}, \overline{OA} = 12$$
 $1: 2 = 12: \overline{OT} \ \therefore \overline{OT} = 24$ $\therefore \overline{CT} = 24 - 12 = 12$

45. 다음 그림에서 □ABCD 는 한 변의 길이가 $6 \mathrm{cm}$ 인 정사각형이다. $\overline{\mathrm{DE}}$ 가 $\overline{\mathrm{BC}}$ 를 지름으로 하는 원에 접할 때, $\overline{\mathrm{AE}}$ 의 길이는?

$$\bigcirc \frac{9}{2} \text{cm}$$

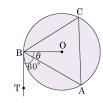
$$\bigcirc 27$$

$$2\frac{25}{2}$$
 cm

$$\overline{EP} = \overline{EB} = x$$

$$\overline{AE} = 6 - x$$

$$\triangle AED \circlearrowleft A$$


$$\overline{DE}^2 = \overline{AE}^2 + x$$

24x = 36

$$\overline{DE}^2 = \overline{AE}^2 + \overline{DA}^2$$
$$(x+6)^2 = (6-x)^2 + 6^2$$

$$x = \frac{3}{2}$$
 cm
따라서 $\overline{AE} = 6 - \frac{3}{2} = \frac{9}{2}$ (cm)

46. 다음 그림과 같이 원 O 에 내접하는 \triangle ABC 가 있다. 원 위의 점 B 에서 접선 \overline{BT} 를 그을 때 생기는 \angle ABT 의 값이 60° 일 때, \angle OBA 를 θ 라고 하면 $(\cos\theta + \sin C) \times \tan C = a$ 이다. a 의 값을 구하여라.

▶ 답:

(준식)= $\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) \times \sqrt{3} = 3$ 이다.

따라서 a=3 이다.

47. \triangle ABC 에서 $2\sin A = \sqrt{3}$, $3\sin B = \sqrt{3}$, b = 4 일 때, 이 삼각형의 넓이는 $a\sqrt{3} + b\sqrt{2}$ 이다. 이때, 유리수 a, b에 대하여 a + b 의 값은? (단. $0^{\circ} < A < 90^{\circ}$)

① -11 ② -1 ③ 1

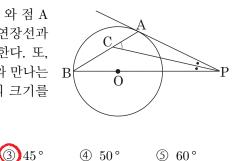
따라서 $\overline{AB} = \overline{AH} + \overline{BH} = 2 + 2\sqrt{6}$ 이므로 $\triangle ABC$ 의 넓이 S 를

⑤ 11

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
이므로 $a = b \sin A \times \frac{1}{\sin B} = 4 \times \frac{\sqrt{3}}{2} \times \frac{3}{\sqrt{3}} = 6$

이다.
또한,
$$\overline{\text{CH}} = b \sin A = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$
 이다.

$$\overline{AH} = \sqrt{\overline{AC}^2 - \overline{CH}^2} = \sqrt{16 - 12} = 2,$$

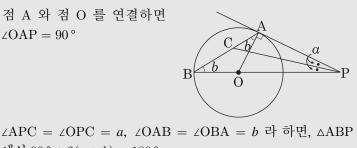

$$\overline{BH} = \sqrt{\overline{BC}^2 - \overline{CH}^2} = \sqrt{36 - 12} = 2\sqrt{6}$$

구하면 $S = \frac{1}{2}\overline{AB} \cdot \overline{CH}$

$$= \frac{1}{2}(2 + 2\sqrt{6}) \times 2\sqrt{3}$$
$$= 2\sqrt{3} + 6\sqrt{2}$$

$$\therefore a+b=2+6=8$$

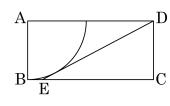
48. 다음 그림에서 \overline{PA} 는 원 O 와 점 A 에서 접하고, 선분 PO 의 연장선과 원 O 가 만나는 점을 B 라 한다. 또, $\angle APB$ 의 이등분선이 \overline{AB} 와 만나는 B 점을 C 라 할 때. ∠PCA 의 크기를 구하면?



④ 50° ⑤ 60°

점 A 와 점 O 를 연결하면 $/OAP = 90^{\circ}$

② 30°


① 25°

 $\therefore a + b = 45^{\circ}$ \triangle CBP 에서 \angle PCA = \angle CPB + \angle CBP $\therefore \angle PCA = a + b = 45^{\circ}$

에서 $90^{\circ} + 2(a+b) = 180^{\circ}$

49. 다음 그림은 직사각형 ABCD 에서 점 A 를 중심으로 사분원을 그린 것이다. 점 D 에서 사분원에 그은 접선과 선분 BC 가 만나는 점을 E 라 하고 직사각형의 가로, 세로의 길이가 각각 13, 5 일 때, 선분 EC 의 길이를 구하여라.

점 D 에서 사분원에 그은 접선의 접점을 P 라 하고 보조선 AP

▶ 답:

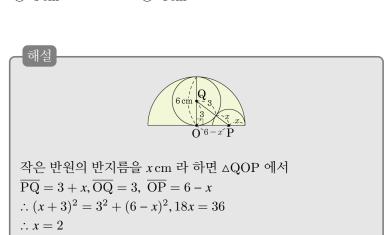
➢ 정답: 12

를 그으면
$$\overline{AP} = \overline{AB} = 5$$
 (원의 반지름)

삼각형 APD 에서
$$\overline{DP} = \sqrt{13^2 - 5^2} = 12$$

이 때 $\overline{EC} - r$ 라 하며 $\overline{BE} - \overline{DE} = 13 - r$

이 때
$$\overline{EC} = x$$
 라 하면 $\overline{BE} = \overline{DE} = 13 - x$
 $\therefore \overline{DE} = 12 + 13 - x = 25 - x$


$$625 - 50x + x^2 = x^2 + 25$$

$$\therefore x = 12$$

삼각형 DEC 에서 $(25 - x)^2 = x^2 + 5^2$

50. 다음 그림과 같이 반원 P 와 원 Q 가 외부에서 접하고 원 Q 가 반원 O 의 내 부에서 접하고 있다. 원 Q 의 지름의 길이가 6 cm 일 때, 반원 P 의 반지름의 길이는?

