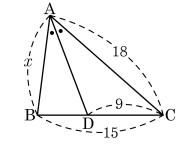

- **1.** 다음 중 항상 닮음인 도형이 <u>아닌</u> 것은?
 - ① 두원
 - ② 두 정사각형
 - ③ 합동인 두 다각형
 - ④ 두 정삼각형
 - ⑤ 반지름의 길이가 같은 두 부채꼴

항상 닮음이 되는 평면 도형은 두 원, 두직 각이등변삼각형, 두

정다각형이다. 반지름이 같은 두 부채꼴은 중심각에 따라 모양이 달라지므로 닮음이 될 수 없다.

넓음이 될 수 없다.

2. 다음 그림에서 \Box ABCD 와 \Box A'B'C'D' 은 닮음이다. x, y의 값은 ?


- ③ x = 85°, y = 15 cm
- ① $x = 72^{\circ}, y = 15 \text{ cm}$ ② $x = 72^{\circ}, y = 16 \text{ cm}$ $4 x = 85^{\circ}, y = 17 \text{ cm}$
- ⑤ $x = 72^{\circ}, y = 18 \text{ cm}$

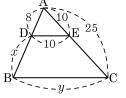
대응하는 각 $\angle B$, $\angle B'$ 의 크기는 같으므로 $\angle x=72^\circ$

대응하는 길이의 비는 일정하므로 $\overline{AB}:\overline{A'B'}=\overline{BC}:\overline{B'C'}$ 따라서 6:9=10:y

 $\therefore y = 15 \,\mathrm{cm}$

3. 다음 그림의 ΔABC 에서 \angle BAD = \angle DAC 일 때, x 의 값을 구하여라.

 답:


 ▷ 정답: x = 12

 $\overline{\mathrm{AB}}:\overline{\mathrm{AC}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ 이므로 x:18=2:3 이다. 따라서 x=12

해설

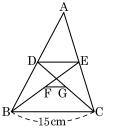
이다.

다음 그림에서 $\overline{
m DE}$ # # # 일 때, x,y의 값을 **4.** 구하여라.

답: 답:

▷ 정답: x = 12 ▷ 정답: y = 25

8: x = 10: 15, 10x = 120

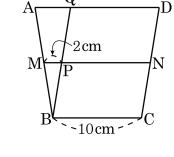

해설

 $\therefore x = 12$ 25:10 = y:10, 10y = 250

 $\therefore y = 25$

다음 그림에서 점 D, E 는 각각 $\overline{
m AB}$, $\overline{
m AC}$ 의 중 **5.** 점이고 점 F, G 는 각각 \overline{BE} , \overline{CD} 의 중점이다. $\overline{
m BC}=15\,{
m cm}$ 일 때, $\overline{
m DE}$ 와 $\overline{
m FG}$ 의 길이를 각각 구하여라.

 $\underline{\mathrm{cm}}$


▶ 답: $\underline{\mathrm{cm}}$

ightharpoonup 정답: $\overline{\mathrm{DE}} = \frac{15}{2} \underline{\mathrm{cm}}$ ightharpoonup 정답: $\overline{\mathrm{FG}} = \frac{15}{4} \underline{\mathrm{cm}}$

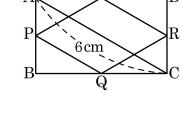
▶ 답:

 $\overline{DE} = \frac{1}{2}\overline{BC} = \frac{15}{2} \text{ (cm)}$ $3\overline{FG} = \frac{1}{2}\overline{DE} = \frac{15}{4} \text{ (cm)}$

6. 다음 그림과 같이 \overline{AD} // \overline{BC} 인 사다리꼴 ABCD 에서 점 M, N 이 각각 \overline{AB} , \overline{DC} 의 중점이고, 점 B 를 지나고 \overline{CD} 에 평행한 직선이 \overline{MN} , \overline{AD} 와 만나는 점을 각각 P, Q라 하고, $\overline{MP} = 2 \mathrm{cm}$, $\overline{BC} = 10 \mathrm{cm}$ 일 때, \overline{AD} 의 길이는?

해설

③ 16cm


④ 18cm

 $\overline{PN}=10$ 이므로 $\overline{MN}=12$ 이다. $12=\frac{1}{2}(\overline{AD}+10)$ 이므로 $\overline{AD}=14$ 이다.

②14cm

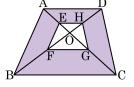
① 12cm

7. 다음 그림과 같은 직사각형 ABCD 에서 각 변의 중점을 각각 P, Q, R, S 라고 한다. 대각선 AC 의 길이가 6cm 일 때, 각 변의 중점을 차례로 이어서 만든 □PQRS 의 둘레의 길이는 얼마인지 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 12 cm

답:


 $\frac{1}{2}\overline{AC}$, $\overline{SR}=\frac{1}{2}\overline{AC}$ 이고, $\triangle ABD$ 와 $\triangle BCD$ 에서 삼각형의 중점 연결 정리에 의하여 $\overline{PS}=\frac{1}{2}\overline{BD}$, $\overline{QR}=\frac{1}{2}\overline{BD}$ 이다. $\Box ABCD$ 가 직사각형이므로 $\overline{AC}=\overline{BD}$,

 ΔABC 와 ΔACD 에서 삼각형의 중점연결 정리에 의하여 \overline{PQ} =

 $\overline{PQ} = \overline{SR} = \overline{PS} = \overline{QR} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 6 = 3 \text{ (cm)},$

따라서 (□PQRS의 둘레의 길이) = 3 × 4 = 12(cm)이다.

R. 다음 그림과 같은 두 사각형은 서로 닮음이다.
 OE : EA =2 : 3이고
 □ABCD 가 100 cm² 일 때, 색칠한 부분의 넓이를 구하여라.
 답 : cm²

 ▶ 정답:
 84<u>cm²</u>

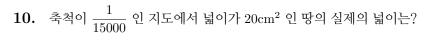
□ABCD ∽ □EFGH

해설

닮음비가 5 : 2이므로 넓이의 비는

5² : 2² 이다. 100 : □EFGH = 25 : 4

□EFGH = 16(cm²) ∴ (색칠한 부분의 넓이) = 100 - 16 = 84(cm²)


9. 큰 쇠구슬을 녹여서 같은 크기의 작은 쇠구슬을 여러 개 만들려고 한다. 이때, 작은 쇠구슬의 반지름의 길이는 큰 쇠구슬의 반지름의 길이는 $\frac{1}{3}$ 이다. 쇠구슬은 모두 몇 개 만들 수 있는가?

① 3 개 ② 6 개 ③ 9 개 ④ 18 개

해설

③27 개

닮음비가 1 : 3 이므로 부피의 비는 $1^3:3^3=1:27$ 따라서 쇠구슬은 27 개 만들 수 있다.

① 250000m^2 $400000 \,\mathrm{m}^2$ ② 300000m^2 ③ 350000m^2

 \bigcirc 450000 m^2

해설

닮음비가 1 : 15000 이므로 넓이의 비는 $1^2:15000^2=1:225000000$

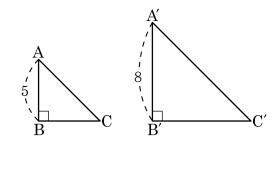
실제의 넓이를 $x \, \text{cm}^2$ 라 하면 1:225000000 = 20:x

 $\therefore x = 45000000000$

따라서 땅의 실제의 넓이는 $450000\,\mathrm{m}^2$

11. 조건을 만족하는 두 직각이등변삼각형 $\triangle ABC, \triangle A'B'C'$ 는 서로 닮음 이다. 이 때, 닮음비는?

 $\overline{\mathrm{BC}}=4,\ \overline{\mathrm{B'C'}}=12,\ \triangle\mathrm{ABC}$ \bigcirc $\triangle\mathrm{A'B'C'}$ 이다.

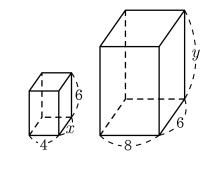

① 1:1 ② 1:2

31:3

③ 2:1
 ⑤ 2:2

 $\overline{BC}:\overline{B'C'}=4:12=1:3$

12. 다음 직각이등변 삼각형 $\triangle ABC$, $\triangle A'B'C'$ 이 닮음일 때, 둘레의 길이의 비는?


⑤ 8:5

45:8 ① 1:2 ② 1:3 ③ 4:5

 $\overline{\mathrm{AB}}$: $\overline{\mathrm{A'B'}}=5$: 8이므로 둘레의 길이의 비는 5 : 8이다.

해설

13. 다음 그림의 두 직육면체가 서로 닮은 도형일 때, x + y 의 값은?

① 12 ② 14

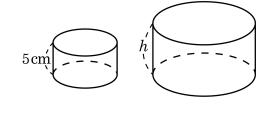
315

4 16 **5** 18

4:8=x:6

8x = 24

해설


 $\therefore x = 3$

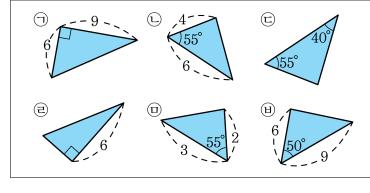
4:8=6:y

4y = 48

 $\therefore y = 12$ $\therefore x + y = 3 + 12 = 15$

14. 다음 그림에서 두 원기둥이 서로 닮은 도형이고, 각각의 밑면의 둘레 가 10πcm, 16πcm 일 때, 큰 원기둥의 높이와 작은 원기둥의 높이의 차는?

h = 8 , 따라서 큰 원기둥의 높이와 작은 원기둥의 높이의 차는

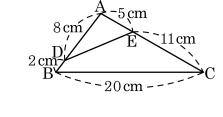

- ② 2cm
- $3\frac{5}{2}$ cm
- (4) 3CII

해설

밑면의 둘레가 각각 10π , 16π 이므로 밑면의 반지름의 길이는 각각 5cm, 8cm이다. 두 원기둥이 서로 닮은 도형이므로 밑면의 반지름의 길이의 비는 높이의 비와 같으므로 5:8=5:h

8-5=3(cm)이다.

15. 다음 삼각형 중에서 서로 닮은 삼각형은?



① ⑦, ⓒ ④ ⓒ, ⓒ, ⑩, ఱ ② L, D

③ □, 回, ⊎

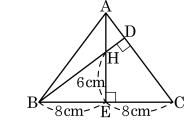
② SAS 닮음이다.

16. 다음 그림에서 $\overline{
m DE}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

➢ 정답: 10cm

▶ 답:

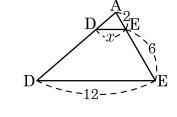

해설

AB: AE = AC: AD, ∠A 는 공통 이므로 △ABC ∽ △AED(SAS닭음) AB: AE = BC: DE, 10: 5 = 20: DE

 $AB : AE = BC : \overline{DE}, 10 :$ $\therefore \overline{DE} = 10 (cm)$

......

17. $\triangle ABC$ 에서 $\overline{BE} = \overline{CE} = 8 \mathrm{cm}$, $\overline{HE} = 6 \mathrm{cm}$ 일 때, \overline{AH} 의 길이는?



 \bigcirc 4cm \bigcirc 6cm

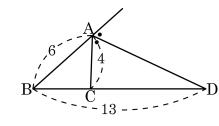
△HBE∽△CAE (AA 닮음) $\overline{\mathrm{HE}}:\overline{\mathrm{EB}}=\overline{\mathrm{CE}}:\overset{\widehat{}}{\overline{\mathrm{EA}}}$ 6:8 = 8:(x+6)6(x+6) = 64

6x = 28 : $x = \frac{14}{3}$ (cm)

 ${f 18}$. 다음 그림에서 ${\overline{
m BC}}//{\overline{
m DE}}$ 가 되도록 하려면 x 의 길이는 얼마로 정하 여야 하는가?

① 2

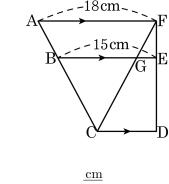
③ 4 ④ 5 ⑤ 6


 $\overline{\mathrm{BC}}//\overline{\mathrm{DE}}$ 가 되려면 $\overline{\mathrm{AE}}:\overline{\mathrm{AC}}=\overline{\mathrm{DE}}:\overline{\mathrm{BC}}$ 이다.

2:8=x:128x = 24

해설

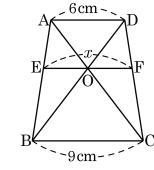
 $\therefore x = 3$


19. 다음 그림과 같은 삼각형에서 $\overline{AB}=6,\ \overline{AC}=4,\ \overline{BD}=13$ 일 때, \overline{CD} 의 길이를 구하여라.

- ① 7
- 2 -
- ③ 8
- (4)
- ⑤ 9

 $6: 4 = 13: \overline{CD}$ $\therefore \overline{CD} = \frac{26}{3}$

20. 다음 그림의 사다리꼴 ACDF 에서 \overline{AF} $/\!/$ \overline{CD} 이고, \overline{AB} : $\overline{BC}=1:2$ 일 때, \overline{CD} 의 길이를 구하여라.



▷ 정답: 9 cm

답:

삼각형의 닮음을 이용하면 $\overline{BG}=\frac{2}{3}\times 18=12 (\,\mathrm{cm})$ 이다. 따라서 $\overline{GE}=15-12=3 (\,\mathrm{cm})$ 이므로 $\overline{CD}=3\times 3=9 (\,\mathrm{cm})$ 이다.

21. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴의 대각선의 교점 O 를 지나 \overline{BC} 에 평행한 직선이 \overline{AB} , \overline{DC} 와 만나는 점을 각각 E, F 라고 할 때, \overline{EF} 의 길이는?

④ 7.4cm

① 7.1cm

② 7.2cm ⑤ 7.5cm

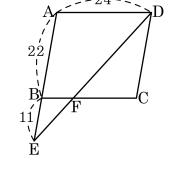
③ 7.3cm

AD//BC 이므로 △AOD ∽ △COB

해설

 $\therefore \overline{AO} : \overline{CO} = \overline{AD} : \overline{CB} = 6 : 9 = 2 : 3$ $\triangle AEO \bigcirc \triangle ABC$ 이므로

 $\overline{AO} : \overline{AC} = \overline{EO} : \overline{BC} = 2 : 5$


 $\overline{\mathrm{EO}}:9=2:5$ \therefore $\overline{\mathrm{EO}}=3.6(\mathrm{cm})$ $\Delta\mathrm{DOF}$ \bigcirc $\Delta\mathrm{DBC}$ 이므로

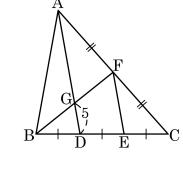
 $\overline{OF} : \overline{BC} = \overline{DO} : \overline{DB} = 2 : 5$

 $\overline{OF}: 9 = 2:5 \therefore \overline{OF} = 3.6 \text{(cm)}$

 $\therefore \overline{EF} = \overline{EO} + \overline{OF} = 3.6 + 3.6 = 7.2(cm)$

 ${f 22}$. 다음 그림의 평행사변형 ${
m ABCD}$ 에서 ${
m \overline{AB}}$ 와 ${
m \overline{DF}}$ 의 연장선과의 교점을 E 라고 할 때, \overline{CF} 의 길이를 구해라.

▷ 정답: 16


답:

 $\triangle \mathrm{BEF}$ \hookrightarrow $\triangle \mathrm{CDF}$ 이므로 $\overline{\mathrm{CF}} = x$ 라 하면

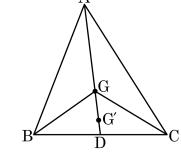
 $\overline{\mathrm{BE}}:\overline{\mathrm{CD}}=\overline{\mathrm{BF}}:\overline{\mathrm{CF}}$ 11:22 = (24-x):x

 $\therefore x = 16$

23. 다음 그림의 $\triangle ABC$ 에서 점 F 는 \overline{AC} 의 중점이고, 점 D, E 는 \overline{BC} 를 삼등분하는 점이다. $\overline{GD}=5$ 일 때, \overline{AG} 의 길이는?

① 10 ② 14

③15


④ 18

⑤ 20

삼각형의 중점연결정리에 의해 $\overline{ ext{FE}} = 2 imes \overline{ ext{GD}} = 10$, $\overline{ ext{AD}} =$

2×FE = 20 이므로 ∴ $\overline{AG} = \overline{AD} - \overline{GD} = 20 - 5 = 15$ 이다.

 ${f 24}$. 다음 그림과 같이 ΔABC 의 무게중심이 점 ${f G}$ 이고, $\Delta {f GBC}$ 의 무게중 심이 점 G'일 때, $\overline{\mathrm{G'D}}$ 의 길이가 $1\mathrm{cm}$ 이다. $\overline{\mathrm{AG}}$ 의 길이를 구하시오.

 $\underline{\mathrm{cm}}$

▷ 정답: 6<u>cm</u>

▶ 답:

 $\overline{\mathrm{GG'}}:\overline{\mathrm{G'D}}=2:1$ 이므로 $\overline{\mathrm{GG'}}=2\overline{\mathrm{G'D}}=2\,\mathrm{(cm)}$

해설

 $\overline{GD} = \overline{GG'} + \overline{G'D} = 3\,(cm)$ $\overline{AG}: \overline{GD} = 2:1$ 이므로 $\overline{AG} = 2\overline{GD} = 2 \times 3 = 6 \text{ (cm)}$

- ${f 25}$. 다음 그림에서 점 ${f G}$ 가 직각삼각형 ${f ABC}$ 의 무게중심일 때, $\overline{\mathrm{AG}}$ 의 길이는?

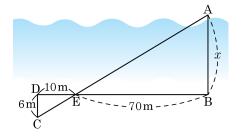
 - ① $\frac{5}{3}$ cm ② $\frac{7}{3}$ cm ③ $\frac{10}{3}$ cm ④ 2 cm
- ⑤ 3 cm

직각삼각형의 빗변의 중점은 외심이므로 $\overline{AD}=\overline{BD}=\overline{DC}$ $\overline{AD}=\frac{1}{2}\overline{BC}=5(\,\mathrm{cm})$, $\overline{AG}=\frac{2}{3}\times 5=\frac{10}{3}(\,\mathrm{cm})$

$$\overline{AG} = \frac{2}{\times} \times 5 = \frac{10}{10}$$

26. 닮은 두 직육면체 A 와 B 의 닮음비가 3:2 이고 B 의 겉넓이가 16 일 때, *A* 의 겉넓이는?

① 12 ② 18 ③ 24 ④ 27

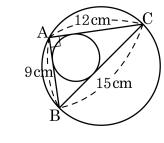


닮은 도형의 넓이의 비는 닮음비의 제곱이다.

해설

닮음비가 3:2 이므로, 겉넓이의 비는 $3^2:2^2=9:4$ 9:4=x:16 $\therefore \ x = 36$

27. 다음 그림은 강의 양쪽에 있는 두 지점 A,B 사이의 거리를 알아보기 위하여 측정한 것이다. 이때, x를 구하여라.(단, 단위는 생략한다.)


답:▷ 정답: 42

 $\triangle ABE$ $\bigcirc \triangle CDE$ 이므로 $\overline{AB}:\overline{CD}=\overline{BE}:\overline{DE}$

해설

x: 6 = 70: 10 $\therefore x = 42 \text{ (m)}$

28. 다음 그림과 같은 직각삼각형 ABC 의 내접원과 외접원의 닮음비는?

① 3:5 ② 4:7 ③ 6:15 ④ 9:13 ⑤ 5:11

내접원의 반지름의 길이를 r라 하면

외접원의 반지름의 길이는 $\frac{15}{2}$ cm

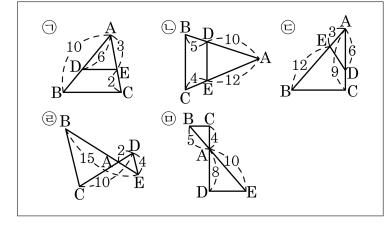
:. 내접원과 외접원의 닮음비는 6 : 15 이다.

29. 다음 그림과 같이 직사각형 ABCD 에서 꼭짓점 B 가 $\overline{\rm AD}$ 위에 오도록 접었을 때, x 의 값을 구하여라.

E C

답:▷ 정답: 15

∠AB'E + ∠AEB' = 90°, ∠AB'E + ∠DB'C = 90° 이므로


∠AEB' = ∠DB'C 따라서 ΔAB'E 와 ΔDCB' 에서

∠A = ∠D = 90°, ∠AEB′ = ∠DB′C이므로

 $\triangle AB'E \hookrightarrow \triangle DCB' (AA 닮음)$ $\overline{AB'} : \overline{DC} = 3 : 9 = 4 : (x - 3)$

 $36 = 3(x-3) \qquad \therefore \ x = 15$

 ${f 30}$. 다음 그림에서 ${f \overline{BC}}\,/\!/\,{f \overline{DE}}$ 인 것을 모두 골라라.

답:

▷ 정답: つ

▷ 정답: □

답:

$\overline{\mathrm{BC}}\,/\!/\,\overline{\mathrm{DE}}$ 이므로 꼭짓점 A 를 기준으로 대응하는 변의 길이가

같아야 한다. ① : 6:10 = 3:5 가 성립하므로 \overline{BC} // \overline{DE} 이다. ② : 5:4 = 10:8 이 성립하므로 \overline{BC} // \overline{DE} 이다.

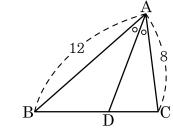
31. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 할 때, \overline{BC} 의 길이는?

① 10 cm ④ 10.6 cm ② 10.2 cm ③ 10.8 cm

③ 10.4 cm

해설

 $\overline{AB} : \overline{AC} = \overline{BD} : \overline{DC}$


BC = x라 하면 10:8=6:(BC-6)

 $10(\overline{BC} - 6) = 48$

 $10\overline{BC} - 60 = 48$ $10\overline{BC} = 108$

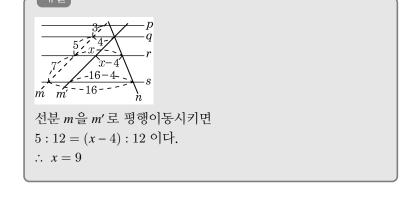
 $\overline{BC} = 10.8 (cm)$

32. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} 가 $\angle A$ 의 이등분선이고, $\triangle ABC$ 의 넓이 가 $35 \mathrm{cm}^2$ 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?

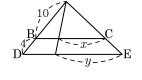
- ② 9cm^2 ③ 24cm^2
- $3 14 \text{cm}^2$

 \overline{AD} 는 A 의 이등분선이므로 \overline{AB} : $\overline{AC} = \overline{BD}$: $\overline{DC} = 3:2$

 \triangle ABD 와 \triangle ADC 에서 높이는 같고, 밑변이 3:2 이므로 \triangle ABD : \triangle BDC =3:2 이다. \triangle ABD $=\frac{3}{5}\triangle$ ABC $=\frac{3}{5}\times35=21$


$$\triangle ACD = \frac{2}{5} \triangle ABC = \frac{2}{5} \times 35 = 14$$

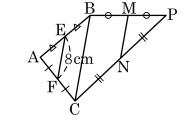
33. 다음 그림에서 직선 p, q, r, s 가 서로 평행할 때, x 의 길이를 구하여라.


 $\frac{5}{7} \cdot x - r$ $\frac{7}{7} \cdot x - r$ $\frac{7}{7} \cdot r$

 ► 답:

 ▷ 정답:
 9

34. 다음 그림과 같은 삼각형에서 $\overline{\rm DE}$ # $\overline{\rm BC}$ 일 때, $\frac{x}{y}$ 의 값을 구하여라.


ightharpoonup 답: $rac{5}{7}$

10: (10+4) = x: y 14x = 10y

 $\therefore \frac{x}{y} = \frac{10}{14} = \frac{5}{7}$

y 14

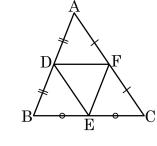
35. 다음 그림에서 점 E, F는 각각 \overline{AB} , \overline{AC} 의 중점이고, 점 M, N은 \overline{BP} , \overline{CP} 의 중점이다. $\overline{EF}=8$ cm 일 때, \overline{MN} 의 길이는?

① 6cm

② 7cm

③8cm

4 9cm

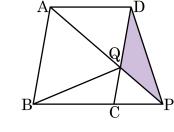

⑤ 10cm

- 해설 정 E

점 E, F는 각각 \overline{AB} , \overline{AC} 의 중점이므로 $\overline{BC}=2\overline{EF}=2\times 8=16 (\mathrm{cm})$ 점 M, N은 각각 \overline{BP} , \overline{CP} 의 중점이므로 $\overline{MN}=\frac{1}{2}\overline{BC}=\frac{1}{2}\times 16=8 (\mathrm{cm})$ 이다.

2 2

36. 다음 그림과 같은 $\triangle ABC$ 에서 점 D, E, F는 \overline{AB} , \overline{BC} , \overline{CA} 의 중점일 때, 다음 중 옳지 <u>않은</u> 것은?

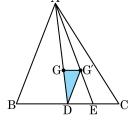

- $\bigcirc \overline{DE} = \overline{AF}$ $\textcircled{4} \ \triangle DBE \equiv \triangle EFD$
- $\bigcirc \angle ADF = \angle BDE$

중점연결정리에 의해

 $\overline{\mathrm{EF}} = rac{1}{2}\overline{\mathrm{BA}},\, \overline{\mathrm{FD}} = rac{1}{2}\overline{\mathrm{CB}},\, \overline{\mathrm{DE}} = rac{1}{2}\overline{\mathrm{AC}}$ 이다.

 $\overline{\mathrm{AB}}//\overline{\mathrm{FE}}$, $\overline{\mathrm{BC}}//\overline{\mathrm{DF}}$, $\overline{\mathrm{CA}}//\overline{\mathrm{ED}}$ 이므로 $\Delta \mathrm{DEF} \equiv \Delta \mathrm{FAD} \equiv \Delta \mathrm{EDB} \equiv \Delta \mathrm{CFE} \; (\mathrm{SSS} \; \text{합동})$ 이다.

37. 다음 그림의 평행사변형 ABCD 에서 \overline{BC} 의 연장선 위에 한 점 P 를 잡아 \overline{AP} 를 이을 때, \overline{DC} 와의 교점을 Q 라고 하면 $\Delta BCQ = 30~{\rm cm}^2$ 이다. 이때, ΔDQP 의 넓이를 구하면?

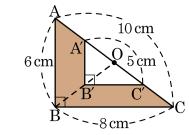

 $4 28 \,\mathrm{cm}^2$

- $20\,\mathrm{cm}^2$
- $3 24 \,\mathrm{cm}^2$
- $30\,\mathrm{cm}^2$

AC 를 이으면 △ACP = △DCP

 $\triangle DQP = \triangle ACQ = \triangle BCQ = 30 (\text{ cm}^2)$

38. 다음 그림에서 점 G, G' 는 각각 $\triangle ABC$, $\Delta {
m ADC}$ 의 무게중심이다. $\Delta {
m GDG'} = 10\,{
m cm}^2$ 일 때, △ABC 의 넓이를 구하여라.


▷ 정답: 180<u>cm²</u>

 $\underline{\mathrm{cm}^2}$

▶ 답:

$$\triangle GDG' = \frac{1}{3} \triangle ADG' = \frac{1}{3} \times \frac{1}{3} \triangle ADC$$
$$= \frac{1}{9} \times \frac{1}{2} \triangle ABC = \frac{1}{18} \triangle ABC$$
$$\therefore \triangle ABC = 18 \triangle GDG' = 18 \times 10 = 180 \text{ (cm}^2\text{)}$$

39. 다음 그림의 두 직각 삼각형이 닮은 도형일 때, 색칠된 부분의 넓이 는?(점 O 는 닮음의 중심이다.)

- \bigcirc 6cm²
- \bigcirc 12cm^2 \bigcirc 24cm²
- 318cm^2
- $4 20 \text{cm}^2$

 $\triangle ABC$ \bigcirc $\triangle A'B'C'$ 이므로 $\overline{AC}:\overline{A'C'}=10:5=1:2$ 이고

해설

넓이의 비는 1:4 이다. $\triangle ABC$ 의 넓이는 $6\times 8\times \frac{1}{2}=24$ 이고 $\Delta A'B'C'$ 넓이를 x 라 하면 1:4=x:24따라서 색칠된 부분의 넓이는 $24-6=18(\mathrm{cm}^2)$ 이다.

40. 다음 그림에서 \overline{AD} : \overline{DB} =2 : 1 이다. $\overline{\rm DE}\,/\!/\,\overline{\rm BC}$, ${\it \triangle}{
m DCE}\,=\,50\,{
m cm}^2\,$ 일 때, ${\it \triangle}{
m ABC}$ 의 넓이는?

> 210 cm^2

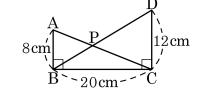
 $\ \ \ \ \ 300\ \mathrm{cm^2}$

 $\Delta DCE = \frac{2}{5}\Box DBCE = 50 \left(\, cm^2 \right)$

 $\therefore \Box DBCE = 50 \times \frac{5}{2} = 125 \text{ (cm}^2\text{)}$ $4:(9-4) = \triangle ADE:125$

 $\triangle ADE = 100 \, (\, cm^2)$ $\therefore \triangle ABC = 100 + 125 = 225 (cm^2)$

- 41. 다음 그림의 직사각형 ABCD 에서 $\overline{AB}=3$, $\overline{BD}=5$, $\overline{AD}=4$ 이다. \overline{BC} 의 중점을 M, \overline{AM} 과 \overline{BD} 의 교점을 P 라고 할 때, \overline{BP} 의 길이는?
- ① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$

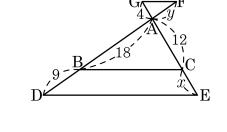

△BPM 과 △DPA 에서 ∠BMP = ∠DAP (∵ 엇각)

∠BPM = ∠DPA (∵ 맞꼭지각)

∴ △BPM ∽△DPA (AA 닮음) $\overline{\mathrm{BP}}:\overline{\mathrm{DP}}=\overline{\mathrm{BM}}:\overline{\mathrm{DA}}$ 이므로

 $\overline{BP} : \overline{DP} = 2 : 4 = 1 : 2$ $\therefore \overline{BP} = \frac{1}{3}\overline{BD} = \frac{1}{3} \times 5 = \frac{5}{3}$

42. 다음 그림에서 점 P 가 \overline{AC} , \overline{BD} 의 교점일 때, ΔPBC 의 넓이를 구하 여라.



 $\underline{\mathrm{cm}^2}$ 답: ▷ 정답: 48 cm²

점 P 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면 $\overline{AP} : \overline{CP} = 2 : 3, \ \overline{BH} : \overline{CH} = 2 : 3$ $\overline{PH} : \overline{AB} = \overline{CH} : \overline{CB}$

 $\overline{PH}: AB = CH \cdot CB$ $\overline{PH}: 8 = 3:5, \ \overline{PH} = \frac{24}{5} (cm)$ $\therefore \triangle PBC = \frac{1}{2} \times 20 \times \frac{24}{5} = 48 (cm^2)$

43. 다음 그림에서 $\overline{\mathrm{BC}} \, / \! / \, \overline{\mathrm{DE}} \, / \! / \, \overline{\mathrm{FG}}$ 일 때, x-y 의 값은?

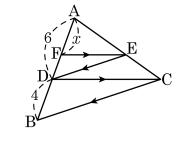
 $\bigcirc 0$

② 1 ③ 2 ④ 3 ⑤ 4

 $\therefore y = 6$

 $\overline{\mathrm{AB}}:\overline{\mathrm{BD}}=\overline{\mathrm{AC}}:\overline{\mathrm{CE}}$

해설


 $\Leftrightarrow 18:9=12:x \qquad \therefore x=6$

 $\overline{\mathrm{AF}}:\overline{\mathrm{AB}}=\overline{\mathrm{AG}}:\overline{\mathrm{AC}}$

 $\Leftrightarrow y: 18 = 4: 12$

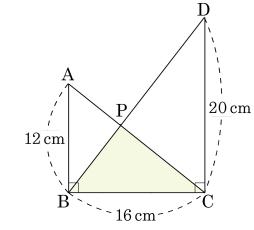
 $\therefore x - y = 6 - 6 = 0$

44. 다음 그림에서 $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$, $\overline{\mathrm{FE}} / / \overline{\mathrm{DC}}$ 이다. 이때, x 의 길이는?

① 3 ② 3.2

33.6

4

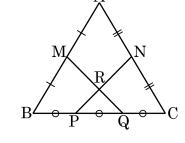

⑤ 4.2

 $\overline{\mathrm{AD}}:\overline{\mathrm{DB}}=\overline{\mathrm{AE}}:\overline{\mathrm{EC}}=3:2$

 $\overline{\mathrm{AF}}:\overline{\mathrm{FD}}=\overline{\mathrm{AE}}:\overline{\mathrm{EC}}=3:2=x:(6-x)$

 $\therefore x = 3.6$

45. 다음 그림에서 $\angle B = \angle C = 90^{\circ}$ 일 때, $\triangle PBC$ 의 넓이는?


- $4 50 \text{cm}^2$
- \bigcirc 30cm^2 \bigcirc 60cm^2
- $3 40 \text{cm}^2$

점 P 에서 \overline{BC} 에 내린 수선의 발을 H라 하면 $\overline{AB}//\overline{PH}//\overline{DC}$ 이므로

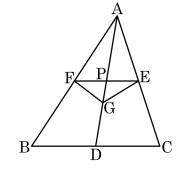
$$\overline{PH} = \frac{\overline{AB} \times \overline{DC}}{\overline{AB} + \overline{DC}} = \frac{12 \times 20}{12 + 20} = \frac{15}{2} \text{(cm)} \text{ 이다.}$$

$$\therefore \Delta PBC = \frac{1}{2} \times \overline{PH} \times \overline{BC} = \frac{1}{2} \times \frac{15}{2} \times 16 = 60 \text{(cm}^2)$$

46. 다음 그림과 같이 $\triangle ABC$ 에서 \overline{AB} 와 \overline{AC} 의 중점을 각각 M, N 이라 하고, \overline{BC} 의 삼등분점을 각각 P, Q , \overline{MQ} 와 \overline{NP} 의 교점을 R 이라 할 때, $\overline{\mathrm{MR}}:\overline{\mathrm{RQ}}=x:y$ 이다. x,y값을 차례대로 써라.

답:

답:

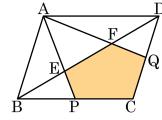

▷ 정답: 3

▷ 정답: 2

삼각형의 중점연결정리에 의해 $\overline{MN}//\overline{PQ}$ 이므로 $\Delta MRN \hookrightarrow \Delta QRP$ (AA닮음) 이다. $\overline{\mathrm{MN}}:\overline{\mathrm{PQ}}=\frac{1}{2}\;\overline{\mathrm{BC}}:\frac{1}{3}\;\overline{\mathrm{BC}}=3:2$

따라서 $\overline{\text{MR}}$: $\overline{\text{RQ}}$ = $\overline{\text{MN}}$: $\overline{\text{PQ}}$ = 3 : 2 = x : y이므로 x=3,y=2이다.

47. 다음 그림에서 점 G 는 $\triangle ABC$ 의 무게중심이다. 점 F, E 는 \overline{AB} , \overline{AC} 의 중점이고 $\overline{AP}=\overline{DP}$ 이고 $\triangle FGE=3cm^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.



- $\textcircled{4} \ \ 34\,\mathrm{cm}^2$
- $2 36 \, \mathrm{cm}^2$ \bigcirc 46 cm²
- $348 \,\mathrm{cm}^2$

 $\triangle FGE = \frac{1}{4} \square AFGE = \frac{1}{4} \times \frac{1}{3} \times \triangle ABC = \frac{1}{12} \times \triangle ABC$

 $\triangle ABC = 12 \times \triangle FGE = 12 \times 3 = 36 (\,\mathrm{cm}^2)$

48. 다음 그림과 같은 평행사변형 ABCD 에서 변 BC , CD 의 중점을 각각 P , Q 라 하고, □ABCD 의 넓이가 90cm² 일 때, 오각형 EPCQF 의 넓이는?

- \bigcirc 20cm² $4 35 \text{cm}^2$
- $25 \, \mathrm{cm}^2$ $5 40 \text{cm}^2$
- 30cm^2

 \overline{AC} 와 \overline{BD} 의 교점을 G 라 하면, $\triangle ABC$ 에서 점 E 는 무게중심

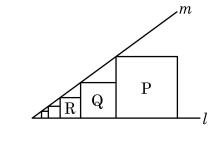
해설

무게중심의 성질에 의해 $\overline{\mathrm{GE}}$: $\overline{\mathrm{EB}}$ = 1 : 2 이다.

 $\square ABCD$ 의 넓이가 $90\,\mathrm{cm}^2$ 이므로 $\Delta BCD = 45\,\mathrm{cm}^2$, $\Delta BGC = 22.5(\,\mathrm{cm}^2)$ 이코

 $\Delta BEC = \frac{2}{3}\Delta BGC = 15 (= DDcmsq)$

 $\Delta BEP = \Delta BEC \times \frac{1}{2} = 7.5 (\,\mathrm{cm}^2)$


따라서

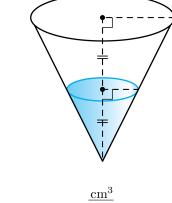
(오각형EPCQF)

 $= \triangle BCD - (\triangle BEP + \triangle FQD)$ $= 45 - 7.5 \times 2 = 30 ($ cm²)

이다.

 $\mathbf{49}$. 다음 그림과 같이 직선 l 위에 한 변이 있고, 직선 m 위에 한 꼭짓점이 있는 정사각형 P, Q, R 에서 P, R 의 넓이가 각각 $27 \mathrm{cm}^2, 3 \mathrm{cm}^2$ 이다. 이 때, Q 의 넓이는?

- \bigcirc 7cm² 4 10cm^2
- $\odot 8 \text{cm}^2$ \Im 11cm^2
- 9cm^2


$$c: b = (b - c): (a - b), b^{2} = ac$$

$$a^{2} = 27, c^{2} = 3$$

$$a^{2}c^{2} = b^{4} = 81$$

$$b^2 = 9$$

50. 다음 그림과 같은 원뿔 모양의 그릇에 높이의 $\frac{1}{2}$ 까지 물을 부었다. 물의 부피가 $16~\mathrm{cm}^3$ 일 때, 그릇을 가득 채우려면 물은 얼마만큼 더 부어야 하는지 구하여라.

답:
 ▷ 정답: 112 cm³

해설 1³: 2³ = 1:8

더 부어야 하는 부피를 x 라고 하면 16: x = 1: (8-1) x = 112 (cm³)