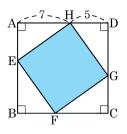
다음 그림과 같이 ∠A = 90°인 △AEH 와 이와 합동인 세 개의 삼각형을 이용하여 정사각형 ABCD 를 만들었다.이때, 정사각형 EFGH의 넓이를 구하여라.



$$\overline{AH} = 7, \overline{HD} = \overline{AE} = 5$$
 이고 $\triangle AEH$ 는 직각삼각형이므로 $\overline{EH}^2 = \overline{AH}^2 + \overline{AE}^2 = 7^2 + 5^2 = 74$ 이다.

사각형 EFGH 는 정사각형이므로 $\overline{EH} = \overline{FE} = \overline{GF} = \overline{GH}$ 이다. 따라서 정사각형 EFGH 의 넓이는 $\overline{EH}^2 = 74$ 이다.

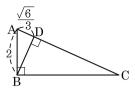
2. 두 변의 길이가 6 cm, 7 cm 인 직각삼각형에서 남은 한 변의 길이를 모두 고르면? (정답 2개)

① 8 cm ②
$$\sqrt{13}$$
 cm ③ 13 cm
④ $5\sqrt{3}$ cm

직각삼각형에서 세변의 길이를
$$6,7,x$$
 라고 두자. 7을 가장 긴 변으로 하면 $7^2 = 6^2 + x^2$ 에서 $x^2 = 7^2 - 6^2 = 13$ $\therefore x = \sqrt{13}$ x 를 가장 긴 변으로 하면 $x = \sqrt{7^2 + 6^2} = \sqrt{85}$ $\therefore x = \sqrt{13}$ 또는 $\sqrt{85}$ (cm)

선을 내린 것이다. $\overline{AC} = x$ 라고 했을 때, x의 값을 구하여라.

3.



닮은 삼각형의 성질을 이용하면

다음은 직각삼각형 ABC 의 점 B 에서 수

$$\therefore x = 4 \times \frac{3}{\sqrt{6}} = 2\sqrt{6}$$

4. 넓이가 75 인 정사각형의 대각선의 길이가 $a\sqrt{b}$ 일 때, a+b 의 값을 구하시오. (단, b는 최소의 자연수이다.)

$$ightharpoonup$$
 정답: $a + b = 11$

한 변의 길이는 $\sqrt{75} = 5\sqrt{3}$ 이다.

피타고라스 정리를 적용하여
$$(5\sqrt{3})^2 + (5\sqrt{3})^2 = x^2$$
 $x^2 = 150$

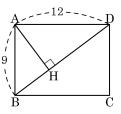
그런데, x > 0 이므로 $x = \sqrt{150} = \sqrt{5^2 \times 6} = 5\sqrt{6}$

따라서 a = 5, b = 6 이므로 a + b = 11 이다.

 $\overline{\mathrm{AD}} = 12$ 일 때, 꼭짓점 A 에서 대각선 BD까지의 거리 $\overline{\mathrm{AH}}$ 를 구하여라. (소수로 표현할것)

 \bigcirc 7.0

5.



② 7.1

다음 그림의 직사각형 ABCD 에서 $\overline{AB} = 9$,

4 7.4
5 7.6

$$\overline{BD} = \sqrt{9^2 + 12^2} = 15$$

$$9 \times 12 = 15 \times \overline{AH}$$

$$\therefore \overline{AH} = 7.2$$

6. 넓이가 $12\sqrt{3}$ cm² 인 정삼각형의 높이는?

① $\frac{3\sqrt{3}}{2}$ cm

② $6\sqrt{3}$ cm

 $3 6\sqrt{2}$ cm

4 8cm

6cm

해설

정삼각형의 넓이는
$$\frac{\sqrt{3}}{4}a^2$$
이므로

정삼각형의 한 변의 길이를 a 라고 하면

$$\frac{\sqrt{3}}{4}a^2 = 12\sqrt{3}$$

$$a^2 = 48$$

$$\therefore a = \sqrt{48} = 4\sqrt{3}$$

따라서 정삼각형의 높이는

$$\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 4\sqrt{3} = 6$$
(cm)

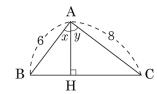
7. 다음 그림과 같이 모선의 길이가 12 cm 인 원 물에서 ∠AOB = 30°일 때, 원뿔의 부피를 구하여라.

$$ightharpoonup$$
 정답: $72\sqrt{3}\pi \ \mathrm{cm}^3$

$$\overline{AB} = 6 \text{ cm} , \overline{OB} = 6 \sqrt{3} \text{ cm}$$

$$(\stackrel{\boxminus}{-} \overline{\square}) = \frac{1}{3} \times 6x^2 \times \pi \times 6 \sqrt{3} = 72 \sqrt{3}\pi (\text{ cm}^3)$$

8. 다음 그림에서 $\overline{AH} \perp \overline{BC}$, $\angle BAC = 90^{\circ}$ 일 때, $\cos x + \sin y$ 의 값을 구하여라.



$$\triangleright$$
 정답: $\frac{8}{5}$

$$\overline{BC} = \sqrt{6^2 + 8^2} = 10$$

$$\angle ABH = y$$
, $\angle ACH = x$

$$\cos x = \frac{\overline{AC}}{\overline{BC}} = \frac{8}{10} = \frac{4}{5}, \sin y = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{5}$$

$$\therefore \cos x + \sin y = \frac{8}{5}$$

△ABC 에서

다음 그림과 같은 직각삼각형 ABC 에서 $\tan A = \frac{4}{3}$ 이고, \overline{AB} 가 9 cm 일 때, \overline{BC} 의 길이를 구하여라.

cm

답:

$$\overline{BC} = \overline{AB} \times \tan A$$
 이므로 $\overline{BC} = 9 \times \frac{4}{3} = 12 (\text{cm})$ 이다.

①
$$x = 5, y = \sqrt{3}$$

② $x = 5, y = 2\sqrt{3}$
③ $x = 6, y = \sqrt{3}$
③ $x = 6, y = 3\sqrt{3}$

$$\triangle ADC | | | | | \sin 30^{\circ} = \frac{1}{2}$$

$$\frac{x}{12} = \frac{1}{2} \qquad \therefore \quad x = 6$$

$$\triangle ABD | | | | | | \tan 60^{\circ} = \sqrt{3}$$

$$\frac{x}{y} = \sqrt{3}, \quad \frac{6}{y} = \sqrt{3}$$

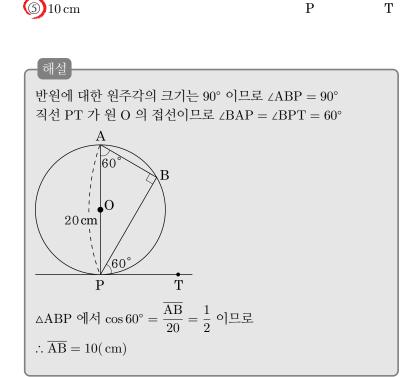
$$\therefore \quad y = \frac{6}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$$

해설

11. 다음 그림과 같이 PT 는 지름의 길이가 20cm 인원 이의 접선이다.

∠BPT = 60°일때, AB의길이는?

① 3 cm ② 5 cm
③ 6 cm ④ 8 cm



12. 다음 그래프를 보고 직선의 기울기의 값을 x, a 의 크기를 y° 라 할 때, x + y 의 값을 구하면?

① 16 ② 31 ③ 46 ④ 61 ⑤ 91

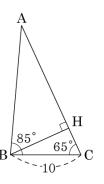
해설
$$(직선의 기울기) = \frac{2}{2} = 1$$

$$\tan a = 1$$

$$\therefore a = 45^{\circ}$$

따라서 x + y = 1 + 45 = 46 이다.

13. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=85^\circ$, $\angle C=65^\circ$, $\overline{BC}=10$ 일 때, \overline{AB} 의 길이를 소수점 아래 셋째 자리까지 구하여라. (단, $\sin 65^\circ=0.9063$)



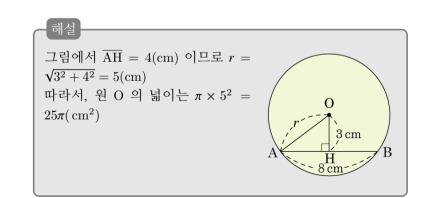
$$\angle A = 180^{\circ} - (85^{\circ} + 65^{\circ}) = 30^{\circ}$$

 $\overline{BH} = 10\sin 65^{\circ} = 9.063$

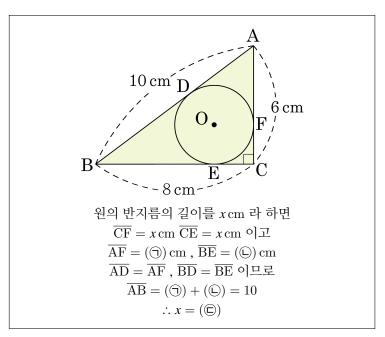
$$\therefore \overline{AB} = \frac{\overline{BH}}{\sin 30^{\circ}} = 9.063 \times 2 = 18.126$$

14. 원의 중심에서 3 cm 떨어져 있는 현의 길이가 8 cm 일 때, 이 원의 넓이는?

①
$$25\pi \,\mathrm{cm}^2$$
 ② $28\pi \,\mathrm{cm}^2$ ③ $32\pi \,\mathrm{cm}^2$
④ $36\pi \,\mathrm{cm}^2$ ⑤ $38\pi \,\mathrm{cm}^2$



15. 다음 그림의 원 O 는 $\overline{AB}=10\mathrm{cm}$, $\overline{BC}=8\mathrm{cm}$, $\overline{AC}=6\mathrm{cm}$ 이고 $\angle C=90^\circ$ 인 직각삼각형에 내접하고 있다. 원의 반지름의 길이를 구하는 과정이다. 다음 중 옳지 <u>않은</u> 것은?

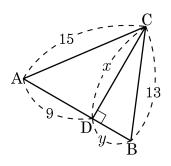


$$\textcircled{4} \ \overline{BD} = 6 \, \text{cm}$$
 $\textcircled{5} \ \overline{BE} = 6 \, \text{cm}$

© 3

해설 x=2

16. 다음은 $\overline{AB} \bot \overline{CD}$ 인 삼각형 $\triangle ABC$ 이다. 2x - y의 값을 구하면?



① 18

3 20

4 21

⑤ 22

해설____

△ADC 가 직각삼각형이므로

 $x = \sqrt{15^2 - 9^2} = \sqrt{144} = 12$ $y = \sqrt{13^2 - 12^2} = \sqrt{25} = 5$

 $\therefore 2x - y = 2 \times 12 - 5 = 19$

17. 다음 그림은 직각삼각형 ABC 에서 각 변을 한 변으로 하는 정사각형을 그린 것이다.
 □BFGC = 40 cm², □DEBA = 30 cm² 일 때, △ABC 의 넓이를 구하여라. (단, 단위는

 $\frac{30 \text{cm}^2}{\text{B}}$ $\frac{\text{I}}{40 \text{cm}^2}$ $\frac{\text{G}}{\text{G}}$

<u>cm</u>²

ightharpoonup 정답: $5\sqrt{3}$ cm^2

해설

생략한다.)

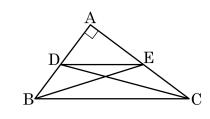
= (□BFGC의 넓이)

공식을 적용하면 □ACHI = 10 cm² 이다. □DEBA = 30 cm² 이므로 한 변의 길이는 √30 cm 이고,

□ACHI = $10 \, \mathrm{cm}^2$ 이므로 한 변의 길이는 $\sqrt{10} \, \mathrm{cm}$ 이다.

$$\triangle ABC$$
의 넓이 = $\sqrt{30} \times \sqrt{10} \times \frac{1}{2}$
= $\sqrt{300} \times \frac{1}{2}$
= $5\sqrt{3}$ cm²

18. 다음 그림에서 $\angle A=90^\circ, \overline{DE}=5 \mathrm{cm}, \ \overline{BE}=6 \mathrm{cm}, \ \overline{CD}=8 \mathrm{cm}$ 일 때, \overline{BC} 의 길이는?



①
$$3\sqrt{3}$$
 cm

②
$$3\sqrt{5}$$
 cm

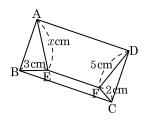
$$3 4\sqrt{3} \text{ cm}$$

$$4 5\sqrt{2} \,\mathrm{cm}$$

$$\bigcirc$$
 5 $\sqrt{3}$ cm

$$5^2 + x^2 = 6^2 + 8^2$$
$$x = 5\sqrt{3} \text{ cm}$$

19. 다음 그림과 같이 직사각형 ABCD 의 내부의 $\overline{\text{EF}}$ 는 $\overline{\text{AD}}$, $\overline{\text{BC}}$ 와 평행하다. 선분의 끝점과 꼭짓점 사이의 거리가 각각 다음과 같을 때, x의 값은?

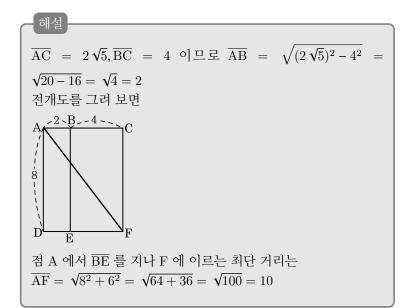


① 5 ②
$$3\sqrt{3}$$
 ④ $4\sqrt{2}$ ⑤ $\sqrt{37}$

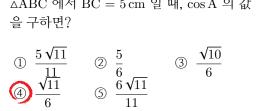
20. 다음 그림과 같은 삼각기둥의 한 꼭짓점 A 에서 \overline{BE} 를 지나 꼭짓점 F 에 이르는 최단거리를 구하면?

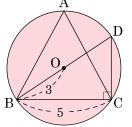


① 6 ② 8 ③ 10 ④ 11 ⑤ 12



21. 반지름의 길이가 3cm 인 원에 내접하는 $\triangle ABC$ 에서 $\overline{BC} = 5 \text{ cm}$ 일 때, $\cos A$ 의 값 을 구하면?

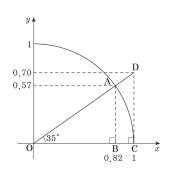




꼭짓점 A 를 \overline{BD} 가 지름이 되도록 이동시키면, $\angle C = 90^\circ$ ∠A 는 5.0ptBC 에 대한 원주각이므로 변하지 않는다. $\overline{\mathrm{BD}} = 6$, $\overline{\mathrm{BC}} = 5$ 이므로 $\overline{\mathrm{DC}} = \sqrt{11}$

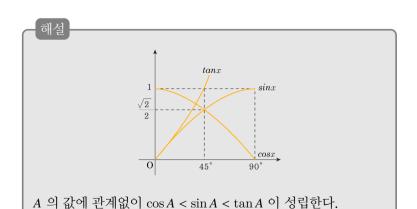
$$\therefore \cos A = \frac{\sqrt{11}}{6}$$

2. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\cos 35^{\circ} + \tan 35^{\circ} + \sin 55^{\circ}$ 의 값은?



 $\cos 35^{\circ} + \tan 35^{\circ} + \sin 55^{\circ} = 0.82 + 0.70 + 0.82 = 2.34$

- **23.** 45° ≤ A < 90° 일 때, 다음 설명 중 옳은 것은?
 - ① A 의 값이 커질수록 $\sin A$, $\cos A$, $\tan A$ 의 값도 모두 증가한다.
 - ② A 의 값이 커질수록 $\cos A$ 의 값만 증가하고, $\sin A$, $\tan A$ 의 값은 감소하다.
 - ③ cos A 의 최댓값은 1 이다.
 - 4A 의 값에 관계없이 $\cos A < \sin A < \tan A$ 이 성립한다.
 - ⑤ tan A 의 최솟값은 0이다.



24. 다음 삼각비의 표를 보고 주어진 다음을 만족하는 $\angle x$ 와 $\angle y$ 에 대하여 $\angle x + \angle y$ 의 크기를 구하여라.

 $\tan y = 0.3640$

각도	\sin	cos	an
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16°	0.2756	0.9613	0.2867
17°	0.2924	0.9563	0.3057
18°	0.3090	0.9511	0.3249
19°	0.3256	0.9455	0.3443
20°	0.3420	0.9397	0.3640
21°	0.3584	0.9336	0.3839

다:

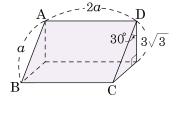
 $\sin x = 0.2588$

해설

 $\sin 15^{\circ} = 0.2588$ 이므로 x = 15 이고, $\tan 20 = 0.3640$ 이므로 y = 20 이다.

따라서 $\angle x + \angle y = 15^{\circ} + 20^{\circ} = 35^{\circ}$ 이다.

25. 다음 그림과 같은 삼각기둥에서 □ABCD 의 넓이를 구하여라.



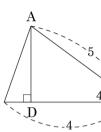
해설

 $\cos 30^\circ = \frac{3\sqrt{3}}{a}$ 이므로 a = 6따라서 $\Box ABCD$ 의 넓이는 $2a^2 = 72$ 이다.

다음과 같이 $\triangle ABC$ 에서 $\overline{AC} = 5$, $\overline{BC} = 4$, $\angle C = 45^{\circ}$, $\overline{AD} \bot \overline{BC}$ 일 때,

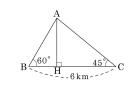
BD 의 길이를 구하면?

①
$$\frac{1}{2}$$
 ② $\frac{6-\sqrt{5}}{2}$ ③ $\frac{6-2\sqrt{5}}{2}$ ④ $\frac{8-\sqrt{5}}{2}$



$$\cos 45^{\circ} = \frac{\overline{CD}}{5} = \frac{1}{\sqrt{2}} \text{ 이므로 } \overline{CD} = \frac{5\sqrt{2}}{2}$$
$$\therefore \overline{BD} = 4 - \frac{5\sqrt{2}}{2} = \frac{8 - 5\sqrt{2}}{2}$$

27. 다음 그림과 같이 6km 떨어진 두 지점 B, C 에서 A 지점에 있는 비행기를 올려다 본 각도가 각각 60°, 45° 일 때, 비행기까지의 높이 AH 를 구하여라.



①
$$9 - \sqrt{2}$$
 (km) ② $9 - 2\sqrt{2}$ (km) ③ $9 - \sqrt{3}$ (km)

④
$$9-2\sqrt{3}$$
 (km) ⑤ $9-3\sqrt{3}$ (km)

$$\overline{CH} = \overline{AH} = x \text{ 라면}$$

$$\overline{BH} = 6-x$$

$$\tan 60^\circ = \frac{\overline{AH}}{\overline{BH}} = \frac{x}{6-x} = \sqrt{3}$$

$$x = \sqrt{3}(6-x)$$

$$x = 6\sqrt{3} - \sqrt{3}x$$

$$(1+\sqrt{3})x = 6\sqrt{3}$$

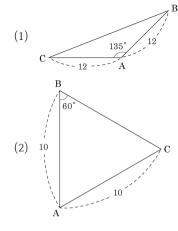
$$x = \frac{6\sqrt{3}(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$$

$$= \frac{6\sqrt{3}(1-\sqrt{3})}{-2}$$

$$= -3\sqrt{3}(1-\sqrt{3})$$

$$= 9-3\sqrt{3}$$
 (km)

다음 두 삼각형의 넓이로 바르게 짝지어진 것은?.



- ① $(1)34\sqrt{2}, (2)26\sqrt{3}$ $(3)(1)36\sqrt{2}, (2)25\sqrt{3}$

②
$$(1)35\sqrt{2}, (2)26\sqrt{3}$$

④ $(1)36\sqrt{2}, (2)24\sqrt{3}$

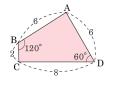
 \bigcirc (1)37 $\sqrt{2}$, (2)26 $\sqrt{3}$

(1)
$$\frac{1}{2} \times 12 \times 12 \times \sin(180^{\circ} - 135^{\circ})$$

= $\frac{1}{2} \times 12 \times 12 \times \sin 45^{\circ}$
= $\frac{1}{2} \times 12 \times 12 \times \frac{\sqrt{2}}{2}$
= $36\sqrt{2}$

(2)
$$\frac{1}{2} \times 10 \times 10 \times \sin 60^{\circ}$$
$$= \frac{1}{2} \times 10 \times 10 \times \frac{\sqrt{3}}{2}$$
$$= 25\sqrt{3}$$

29. 다음 그림의 □ABCD 의 넓이는?



① $9 + \sqrt{2}$

② $10 + \sqrt{2}$

③ $12\sqrt{2}$

4 $14\sqrt{2}$

⑤ 15 $\sqrt{3}$

따라서 □ABCD

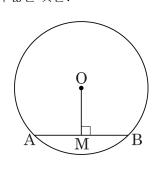
 $= \triangle ABC + \triangle ACD$

$$= \frac{1}{2} \times 2 \times 6 \times \sin 120^{\circ} + \frac{1}{2} \times 6 \times 8 \times \sin 60^{\circ}$$

$$=6\times\frac{\sqrt{3}}{2}+24\times\frac{\sqrt{3}}{2}$$

$$= 3\sqrt{3} + 12\sqrt{3} = 15\sqrt{3}$$

30. 다음 그림에서 원의 중심O 에서 현AB 에 내린 수선은 현을 이등분함을 설명할 때, 쓰이지 않는 것은?



①
$$\angle OMA = \angle OMB$$

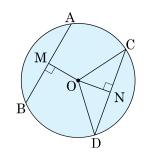
②
$$\overline{OA} = \overline{OB}$$

$$\overline{\text{3}}\overline{\text{AM}} = \overline{\text{BM}}$$

$$\bigcirc$$
 \triangle OAM \equiv \triangle OBM

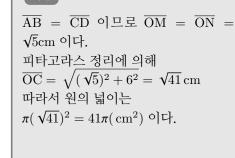
 $\overline{AM} = \overline{BM}$ 은 결론이다.

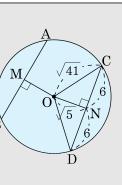
31. 다음 그림의 원 O 에서 AB⊥OM 이고 AB = CD 이다. AM = 6cm, OM = √5cm 일 때, 원 O 의 넓이는?



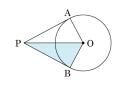
(3) $56\pi \text{cm}^2$

- $141\pi \text{cm}^2$
 - ① $41\pi \text{cm}^2$ ② $49\pi \text{cm}^2$ ④ $60\pi \text{cm}^2$ ⑤ $64\pi \text{cm}^2$





32. 다음 그림에서 \overline{PA} , \overline{PB} 는 원 O 의 접선이고 $\overline{OP} = 9 \mathrm{cm}$, $\overline{OA} = 5 \mathrm{cm}$ 일 때, △OPB 의 넓이는?



 $\overline{OA} = \overline{OB} = 5$ cm 이고, $\overline{OB} \perp \overline{PB}$ 이므로 $\triangle OPB$ 는 직각삼각형

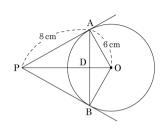
 $\overline{PA} = \overline{PB}$ 이므로 $\triangle OPB = 2\sqrt{14} \times 5 \times \frac{1}{2} = 5\sqrt{14}(cm^2)$

 $3 \frac{5\sqrt{14}}{2} \text{cm}^2$

- ① $5\sqrt{7}$ cm²
- ② $5\sqrt{14}$ cm² $4 2\sqrt{14} \text{cm}^2$ $5 10 \sqrt{7} \text{cm}^2$

이다. $\overline{PA} = \sqrt{9^2 - 5^2} = 2\sqrt{14} (cm)$

33. 다음 그림에서 두 직선 PA, PB 는 반지름의 길이가 6cm 인 원 O 의 접선이고 점 A, B 는 접점이다. $\overline{PA} = 8cm$ 일 때, \overline{AB} 의 길이는?



① 10cm

- ②9.6cm
 - cm ③ 12cm

④ 12.4cm

⑤ 25cm

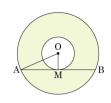
- 해설

삼각형 PAO 는 직각삼각형이므로 $\overline{PO} = 10$ cm 이다. 또한, $\overline{AB} \perp \overline{PO}$ 이므로

 $\overrightarrow{PA} \times \overrightarrow{AO} = \overrightarrow{PO} \times \overrightarrow{AD} \Rightarrow 8 \times 6 = 10 \times \overrightarrow{AD} : \overrightarrow{AD} = 4.8 \text{cm}$

따라서 수선 OD 는 현 AB 를 이등분하므로 $\overline{AB}=2\overline{AD}=9.6\mathrm{cm}$ 이다.

34. 다음 그림에서 두 원의 중심이 점 0 로 같고. 색칠한 부분의 넓이가 $48\pi \text{cm}^2$ 일 때, 작은 원에 접하는 $\overline{\text{AB}}$ 의 길이는?



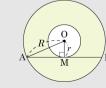
 $3 8\sqrt{3}\pi \text{cm}$

- $1 \times \sqrt{3}$ cm
 - ② $4\sqrt{3}$ cm
 - $4\sqrt{3}\pi cm$ \bigcirc 6 $\sqrt{3}$ cm

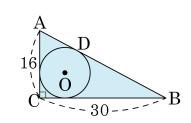
큰 원의 반지름을
$$R$$
 , 작은 원의 반지름을 r 이라 두면, $R=\overline{OA}$, $r=\overline{OM}$ 이다. (색칠한 부분의 넓이) = π (R^2-r^2) = 48π 이므로 $R^2-r^2=48$

 \overline{OA} , $r = \overline{OM}$ 이다.

 $\overline{\text{AM}} = \sqrt{\overline{\text{OA}^2} - \overline{\text{OM}^2}} = \sqrt{R^2 - r^2} = \sqrt{48} = 4\sqrt{3}$ $\overline{AB} = 2\overline{AM} = 2 \times 4\sqrt{3} = 8\sqrt{3}$ (cm)



35. 다음 그림에서 원 O 는 직각삼각형 ABC 의 내접원이다. 원 O 의 반지름의 길이는?



원 O 의 반지름을
$$r$$
 이라 하면 $\overline{\text{CE}} = \overline{\text{CF}} = r$, $\overline{\text{AD}} = 16 - r$, $\overline{\text{BD}} = 30 - r$ $\overline{\text{AB}} = \sqrt{30^2 + 16^2} = 34$ $\overline{\text{AB}} = \overline{\text{AD}} + \overline{\text{BD}}$

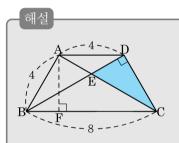
34 = (16 - r) + (30 - r) : r = 6

36. 다음 그림과 같은 등변사다리꼴 ABCD 에서 \triangle CDE 의 넓이는 $\frac{b\sqrt{3}}{a}$ 이다. 이 때, b-a 의 값을 구하여라.(단, a,b는

B E C

유리수)

▷ 정답: 5



2√3 이다.

따라서 $\triangle ADC$ 의 넓이는 $\frac{1}{2} \times 4 \times 2\sqrt{3} = 4\sqrt{3}$

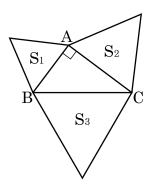
 \triangle ADE 와 \triangle BCE 는 닮음이고 \overline{AE} : $\overline{EC} = 4:8=1:2$ 이다. 따라서 \triangle AED, \triangle DEC 는 높이가 일정하고, 밑변의 길이가 1:2 이므로 넓이의 비가 1:2 이다.

점 A 에서 \overline{BC} 에 내린 수선의 발을 F 라고 하면 $\overline{AF} = \sqrt{16-4} =$

 \triangle CDE 의 넓이는 $4\sqrt{3} \times \frac{2}{3} = \frac{8\sqrt{3}}{3}$ 이므로 a = 3, b = 8 이다.

$$b - a = 8 - 3 = 5$$

37. $\angle A$ 가 90° 인 직각삼각형 ABC 에서 각 변을 한 변으로 하는 세 정 삼각형을 작도하였다. 각각의 정삼각형의 넓이를 S_1, S_2, S_3 라 하고, $S_1=5, S_2=6$ 일 때, S_3 의 값을 구하여라.



▶ 답:

▷ 정답: 11

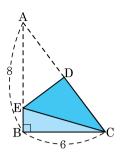
해설

세 정삼각형은 모두 닮음이므로 넓이가 S_1 인 정삼각형과 S_2 인 정삼각형의 닮음비는 $\sqrt{5}$: $\sqrt{6}$ $\overline{AB}=\sqrt{5}a$, $\overline{AC}=\sqrt{6}a$ 라고 하면 $\overline{BC}=\sqrt{5}a^2+6a^2=\sqrt{11}a$

따라서, S_1 , S_2 , S_3 의 닮음비는 $\sqrt{5}$: $\sqrt{6}$: $\sqrt{11}$ 이므로

넓이의 비는 5:6:11 이 되어 $S_3=11$ 즉, $S_1+S_2=S_3$ 이다.

38. 다음 그림과 같이 ∠B 가 직각인 직각삼각형이고 DE 를 접선으로 점 A 가 점 C 와 겹쳐지도록 접었을 때, △CDE 의 넓이와 △ECB 의



▶ 답:

 \triangleright 정답: $\frac{117}{8}$

넓이의 합을 구하여라

$$\overline{\text{EB}} = x$$
 라 두면 $\overline{\text{AE}} = \overline{\text{EC}} = 8 - x$ 이고

$$(8-x)^2 = x^2 + 6^2, x = \frac{7}{4} \circ] \mathbb{Z},$$

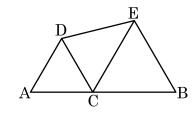
$$\triangle ABC$$
가 직각삼각형이므로 $\overline{AC}^2 = 8^2 + 6^2$. $\overline{AC} = 10$ 이다

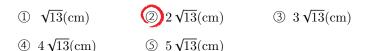
$$\overline{\mathrm{DE}}^2 = \left(\frac{25}{4}\right)^2 - 5^2, \ \overline{\mathrm{DE}} = \frac{15}{4} \$$
이다.

$$\triangle$$
EDC 의 넓이는 $\frac{1}{2} \times 5 \times \frac{15}{4} = \frac{75}{8}$ 이고, \triangle EBC 의 넓이는 $\frac{1}{2} \times \frac{7}{4} \times 6 = \frac{21}{4}$ 이다.

따라서 합은
$$\frac{75}{8} + \frac{21}{4} = \frac{117}{8}$$
 이다.

39. 길이가 14 cm 인 $\overline{\text{AB}}$ 위에 $\overline{\text{AC}} = 6 \text{cm}$, $\overline{\text{BC}} = 8 \text{cm}$ 인 점 C 를 잡아서 다음 그림과 같이 정삼각형 DAC, ECB 를 그렸을 때, $\overline{\text{DE}}$ 의 길이를 구하면?





제설

점 D 에서
$$\overline{\text{EI}}$$
 에 내린 수선의 발을 K 라 하면

 $\overline{\text{DH}} = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3} \text{(cm)}$
 $\overline{\text{EI}} = \frac{\sqrt{3}}{2} \times 8 = 4\sqrt{3} \text{(cm)}$
 ΔEDK 에서 $\overline{\text{DK}} = 7 \text{cm}$
 $\overline{\text{EK}} = 4\sqrt{3} - 3\sqrt{3} = \sqrt{3} \text{(cm)}$
 $\therefore \overline{\text{DE}} = \sqrt{7^2 + (\sqrt{3})^2} = \sqrt{52} = 2\sqrt{13} \text{(cm)}$

40. 두점 A(1, 2) B(-5, 0) 에서 같은 거리에 있는 y 축 위의 점 P 의 좌표를 구하여라.

(0,-3)

①
$$(0,-5)$$
 ② $(0,-4)$ ④ $(0,-2)$ ⑤ $(0,-1)$

 \bigcirc (0,-1)

해설 점 P의 좌표를
$$(0, p)$$
라 하면 $\overline{BP} = \sqrt{25 + p^2}$ $\overline{AP} = \sqrt{1 + (p-2)^2}$ $\overline{BP} = \overline{AP}$ 이므로

-4p = 20

p = -5: P(0, -5)

$$\frac{\frac{1}{2}}{(-2)^2}$$

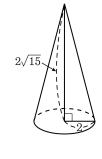
BP = AP
$$0$$
 | E $\sqrt{25 + p^2} = \sqrt{1 + (p-2)^2}$ $25 + p^2 = 1 + (p-2)^2$

$$\sqrt{25 + p^2} = \sqrt{1 + (p - 2)^2}$$

$$25 + p^2 = 1 + (p - 2)^2$$

$$-4p - 20$$

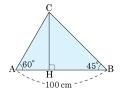
41. 다음 그림과 같이 밑면의 반지름의 길이가 2, 높이가 2√15 인 원뿔의 전개도를 그렸을 때 생기는 부채꼴의 중심각의 크기를 구하여라.



원뿔의 모선의 길이는
$$\sqrt{\left(2\sqrt{15}\right)^2+2^2}=\sqrt{64}=8$$
 옆면의 호의 길이는 밑면의 둘레와 같으므로 부채꼴의 중심각의

크기를
$$x$$
 라 하면 $2\pi \times 8 \times \frac{x}{360^{\circ}} = 2\pi \times 2$ $\therefore x = 90^{\circ}$

42. 다음 그림의 $\triangle ABC$ 에서 \overline{CH} 의 길이를 구하여라.



▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $150 - 50\sqrt{3}$ $\underline{\mathrm{cm}}$

$$\overline{\text{CH}} = \frac{100}{\tan(90^{\circ} - 60^{\circ}) + \tan(90^{\circ} - 45^{\circ})}$$

$$= \frac{100}{\sqrt{3}} = 50(3 - \sqrt{3})(\text{cm})$$

43. 다음 그림에서 학교와 도서관 사이의 거리 x 값은?

- ① $2\sqrt{2}$ ② $3\sqrt{2}$ ③ $2\sqrt{3}$ ④ $3\sqrt{3}$

점 A 에서 내린 수선의 발을 H 라 할 때

$$\overline{AH} = 8 \times \sin 45^{\circ} = 4\sqrt{2}$$

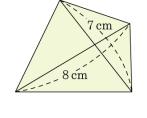
$$\overline{BH} = 8 \times \cos 45^{\circ} = 4\sqrt{2}$$

$$\overline{\mathrm{CH}} = \overline{\mathrm{BC}} - \overline{\mathrm{BH}} = 7\sqrt{2} - 4\sqrt{2} = 3\sqrt{2}$$

$$x = \sqrt{(4\sqrt{2})^2 + (3\sqrt{2})^2} = 5\sqrt{2}$$
 $\therefore 5\sqrt{2}$

44. 다음 그림과 같이 두 대각선의 길이가 각각 7 cm, 8 cm 인 사각형의 넓이의 최댓값은?

- ① $14\sqrt{2} \text{ cm}^2$ ② 28 cm^2
- ③ $14\sqrt{3} \text{ cm}^2$ ④ $28\sqrt{3} \text{ cm}^2$
- $\odot 56 \,\mathrm{cm}^2$

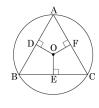


해설

 $S = \frac{1}{2} \times 7 \times 8 \times \sin \theta = 28 \sin \theta$

이때 $\theta=90\,^{\circ}$ 일 때, 최대이므로 최댓값은 $\sin 90\,^{\circ}$ 일 때이다. 따라서 S 의 최댓값은 $28\,\mathrm{cm}^2$ 이다.

45. 다음 그림과 같은 원 O에서 $\overline{OD} = \overline{OE} = \overline{OF}$ 이고 $\overline{AB} = 4\sqrt{3}$ 일 때, 원 O 의 넓이를 구하여라.



답:

▷ 정답: 16π

$$\overline{\mathrm{OD}} = \overline{\mathrm{OE}} = \overline{\mathrm{OF}}$$
 이므로 $\overline{\mathrm{AB}} = \overline{\mathrm{BC}} = \overline{\mathrm{CA}}$
 $\triangle \mathrm{ABC}$ 가 정삼각형이므로 $\overline{\mathrm{AB}}: \overline{\mathrm{AE}} = 2: \sqrt{3}$

 $\overline{AE} = \frac{\sqrt{3}}{2} \times 4\sqrt{3} = 6$ 정삼각형의 외심은 내심이며, 또 무게중심이므로

$$\overline{OA} = \frac{2}{3}\overline{AE} = \frac{2}{3} \times 6 = 4 \text{ (cm)}$$

(원의 넓이)= $\pi \times (4)^2 = 16\pi$