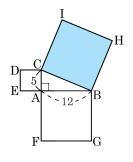
1. 철수는 철사로 빗변의 길이가 20cm, 한 변의 길이가 10cm 인 직각삼 각형을 만들었다. 나머지 한 변의 길이는?

①
$$9\sqrt{3}$$
cm ② $10\sqrt{2}$ cm ③ $10\sqrt{3}$ cm ④ $11\sqrt{3}$ cm

아설
나머지 한 변의 길이를
$$x$$
 라고 하면 $x^2 = 20^2 - 10^2 = 300$ $x = \sqrt{300} = 10\sqrt{3}$ (cm)

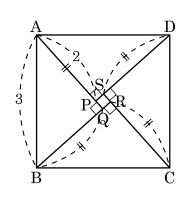
2. 다음 그림과 같이 직각삼각형의 세 변을 각각 한 변으로 하는 정사각형을 그렸을 때, □BHIC 의 넓이를 구하여라.



- ▶ 답:
- ▷ 정답: 169

$$\overline{\overline{BC}}^2 = \overline{\overline{AC}}^2 + \overline{\overline{AB}}^2$$
 이므로

 $\overline{BC}^2 = 5^2 + 12^2 = 169$ $\overline{BC} = \sqrt{169} = 13(\because \overline{BC} > 0)$ $\therefore \Box BHIC = 13^2 = 169$ **3.** 다음 그림과 같은 정사각형 ABCD 에서 $\overline{AP} = \overline{BQ} = \overline{CR} = \overline{DS}$ 일 때, □ABCD 와 □PQRS 의 넓이의 합을 구하여라.



$$ightharpoonup$$
 정답: $18 - 4\sqrt{5}$

$$\overline{AQ} = \sqrt{3^2 - 2^2} = \sqrt{5}$$

$$AQ = \sqrt{5} - 2^2 = \sqrt{5}$$
$$\therefore \overline{PQ} = \sqrt{5} - 2$$

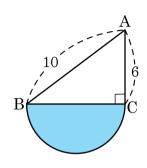
(
$$\square PQRS$$
 의 넓이) = $(\sqrt{5} - 2)^2$
= $5 + 4 - 4\sqrt{5}$
= $9 - 4\sqrt{5}$

4. 세 변의 길이가 $8 {
m cm}$, $15 {
m cm}$, $a {
m cm}$ 일 때, 직각삼각형이 되는 a 의 값을 구하여라. (단, a > 15)

▷ 정답: 17

 $\therefore a = \sqrt{225 + 64} = \sqrt{289} = 17$

5. 다음 그림에서 ΔABC 는 직각삼각형이다. 나머지 한 변의 길이를 지름으로 하는 반원의 넓이는?



①
$$5\pi$$
 ② 6π ③ 7π ④ 8π ⑤ 9π

$$\overline{\mathrm{BC}} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = 8$$

따라서 반지름이 4 인 반원의 넓이는 $\frac{1}{2} \times \pi \times 4^2 = 8\pi$

해설

6. 가로, 세로의 길이가 각각 7 cm, 19 cm 인 직사각형의 대각선의 길이를 구하여라.

답:	cm

$$ightharpoonup$$
 정답: $\sqrt{410}$ cm

```
대각선의 길이는 \sqrt{7^2 + 19^2} = \sqrt{49 + 361} = \sqrt{410} \text{(cm)}
∴ \sqrt{410} \text{ cm}
```

- 7. 한 변의 길이가 2인 정삼각형의 넓이를 구하여라.

 - ▷ 정답: √3

답:

(정삼각형의 넓이) = $\frac{\sqrt{3}}{4} \times 2^2 = \sqrt{3}$

8. 두 점 A(2, 3), B(7, -5) 사이의 거리를 구하여라.

$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(7 - 2)^2 + (-5 - 3)^2}$$

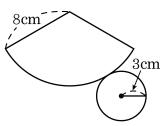
$$= \sqrt{25 + 64} = \sqrt{89}$$

9. 다음 정육면체의 한 변의 길이가 10 cm 일 때, AG 의 길이를 구하여라.

▷ 정답 :	$10\sqrt{3}$ cm
V 00.	10 10 0111

- 해설 한 모서리의 길이를 a 라 하면 $\overline{AG} = \sqrt{3}a = 10\sqrt{3}$ (cm)

10. 다음 전개도로 만든 원뿔의 높이와 부피를 구한 것으로 알맞은 것은?



② $\sqrt{3}$ cm. $3\sqrt{3}\pi$ cm³

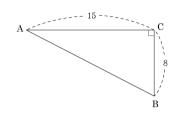
- ① $2\sqrt{55}$ cm, $2\sqrt{55}\pi$ cm³
- ③ $\sqrt{50} \text{ cm}, \sqrt{55}\pi \text{ cm}^3$ ④ $\sqrt{35} \text{ cm}, 3\sqrt{35}\pi \text{ cm}^3$
- $\sqrt{55} \, \text{cm}, \, 3 \, \sqrt{55} \pi \, \text{cm}^3$

해설

$$\frac{1}{25}$$
 \circ]: $\sqrt{8^2 - 3^2} = \sqrt{64 - 9} = \sqrt{55}$ (cm)

부피: $9\pi \times \sqrt{55} \times \frac{1}{3} = 3\sqrt{55}\pi \left(\text{cm}^3\right)$

11. 다음 그림의 $\triangle ABC$ 에서 $\angle C=90^\circ$ 일 때, $\sin A+\tan A$ 의 값을 구하여라.



$$ightharpoonup$$
 정답: $\frac{250}{258}$

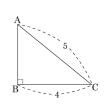
$$\overline{AB} = \sqrt{15^2 + 8^2} = 17 \text{ (cm)}$$

 $\sin A = \frac{8}{17}$
 $\tan A = \frac{8}{15}$

$$\tan A = \frac{8}{15}$$

$$\therefore \sin A + \tan A = \frac{8}{17} + \frac{8}{15} = \frac{256}{255}$$

12. 다음 그림과 같은 직각삼각형 ABC 에 대하여 sin C, cos C, tan C 의 값을 구하여라.



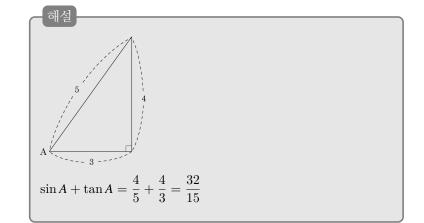
- ▶ 답:
- ▶ 답:
- ▶ 답:
- ightharpoonup 정답: $\sin C = rac{3}{5}$
 - ightharpoonup 정답: $\cos C = \frac{4}{5}$
- \triangleright 정답: $\tan C = \frac{3}{4}$

직각삼각형이므로 피타고라스 정리에 의해 높이의 길이는 3 이다.

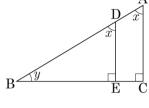
높이가 3, 빗변이 5, 밑변이 4 이므로 $\sin C = \frac{3}{5}$, $\cos C = \frac{4}{5}$, $\tan C = \frac{3}{4}$ 이다.

13. $\cos A = \frac{3}{5}$ 일 때, $\sin A + \tan A$ 의 값을 구하여라.(단, $\angle A$ 는 예각)

$$ightharpoonup$$
 정답: $rac{32}{15}$



14. 다음 보기 중 $\cos x$ 와 같은 값을 갖는 것을 모두 골라라.



回 $\frac{\overline{DE}}{\overline{BD}}$ \overline{DE} \overline{BC} \overline{AB} \overline{C} $\overline{Sin}y$ \overline{BE} \overline{BE} \overline{BE} \overline{BE} \overline{AB} \overline{BE}

해설 △ABC∽△DBE이므로

 $\cos x = \frac{\overline{\overline{DE}}}{\overline{\overline{BD}}} = \frac{\overline{\overline{AC}}}{\overline{\overline{AB}}}, \sin y = \frac{\overline{\overline{DE}}}{\overline{\overline{BD}}} = \frac{\overline{\overline{AC}}}{\overline{\overline{AB}}}$ 이다.

따라서 $\cos x$ 와 같은 것은 $\frac{\overline{DE}}{\overline{BD}}$, $\sin y$ 이다.

15. 다음 삼각비의 표를 보고 $\sin x = 0.6691$ 일 때, x 의 값은?

각도	사인(sin)	코사인(cos)	탄젠트(tan)
39°	0.6293	0.7771	0.8098
40°	0.6428	0.7660	0.8391
41°	0.6561	0.7547	0.8693
42°	0.6691	0.7431	0.9004

② 40° ③ 41°

 $\sin 42^{\circ} = 0.6691$

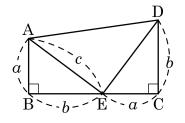
16. 다음 그림에서 $\angle C = 90^{\circ}$, $\overline{BM} = \overline{CM}$, $\overline{AB} = 25 \, \mathrm{cm}$, $\overline{AC} = 7 \, \mathrm{cm}$ 이다. 이때, \overline{AM} 의 길이는?

①
$$\sqrt{190} \text{ cm}$$
 ② $\sqrt{191} \text{ cm}$
④ $\sqrt{194} \text{ cm}$ ⑤ $\sqrt{199} \text{ cm}$

$$\triangle ABC$$
 에서
 $\overline{BC}^2 = 25^2 - 7^2 = 576$
 $\therefore \overline{BC} = 24$
 $\overline{MC} = \frac{1}{2}\overline{BC} \therefore \overline{MC} = 12 \text{ (cm)}$
 $\triangle AMC$ 에서
 $\overline{AM}^2 = 7^2 + 12^2 = 193$

 $\therefore \overline{AM} = \sqrt{193} (cm)$

17. 다음은 그림을 이용하여 피타고라스 정리를 설명한 것이다.



(가),(나) 에 알맞은 것을 차례대로 쓴 것을 고르면?

$$\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$$
 이므로 $\frac{1}{2}ab + (7) + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$ 따라서 (나)이다.

(1)
$$\frac{1}{2}c^2$$
 (1) $a^2 + b^2 = c^2$

②
$$(7)$$
 c^2 (4) $b^2 + c^2 = a^2$

③
$$(7)$$
 $\frac{1}{2}c^2$ (4) $a^2 + b^2 = c$

④
$$(7)$$
 c^2 (1) $b^2 - a^2 = c^2$

⑤ (가)
$$\frac{1}{2}c^2$$
 (나) $a+b=c$

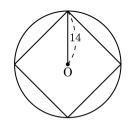
해설

 $\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$ 이므로

$$\frac{1}{2}ab + \frac{1}{2}c^2 + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$$

따라서 $a^2 + b^2 = c^2$ 이다

18. 반지름의 길이가 14 인 원 안에 정사각형이 내접해 있다. 정사각형의 한 변의 길이는 ?

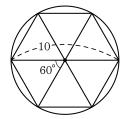


①
$$10\sqrt{2}$$
 ② $12\sqrt{3}$ ③ $12\sqrt{2}$ ④ $14\sqrt{3}$ ⑤ $14\sqrt{2}$

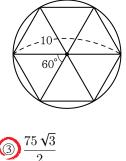
한 변의 길이를
$$a$$
 라고 하면 $\sqrt{2}a = 28$ 이므로 $a = \frac{28}{\sqrt{2}} = \frac{28\sqrt{2}}{2} = 14\sqrt{2}$

해설

19. 지름이 10인 원 안에, 다음과 같이 정육각형이 내접해 있다. 이때, 정육각형의 넓이는?

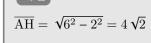


$$\begin{array}{c} \textcircled{1} \quad \frac{71\sqrt{3}}{2} \\ \textcircled{2} \quad 77\sqrt{3} \end{array}$$

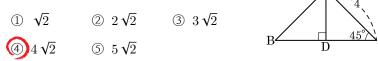


(정육각형의 넓이) = (정삼각형의 넓이)
$$\times$$
 6 이므로
$$\frac{\sqrt{3}}{4} \times 25 \times 6 = \frac{75\sqrt{3}}{2}$$

20. 다음 그림의 이등변삼각형 ABC 에서 높이 ĀĦ 는?
 ① √2
 ② 2√2
 ③ 3√3



21. 다음 그림에서 BC 를 구하면?



 $1: \sqrt{2} = \overline{DC}: 4, \overline{DC} = 2\sqrt{2}$ 이다. 따라서 $\overline{AD} = 2\sqrt{2}$ 이고 $\overline{BD} = 2\sqrt{2}$ 이므로 $\overline{BC} = 2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2}$ 이다. **22.** 다음 그림에서 △ABC 의 넓이는?

①
$$4\sqrt{3}$$

$$36\sqrt{3}$$

B 60° C

 $4 7\sqrt{3} \qquad \boxed{3} 8\sqrt{3}$

 $\therefore \overline{AH} = 2\sqrt{3}$

점 A 에서
$$\overline{BC}$$
에 내린 수선의 발을 H 라 하면 $\triangle ABH$ 에서 $\overline{AH}:\overline{AB}=\overline{AH}:4=\sqrt{3}:2$

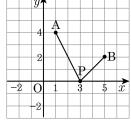
 $\begin{array}{c}
A \\
2\sqrt{3} \\
B \\
H - 8 - - - 0
\end{array}$

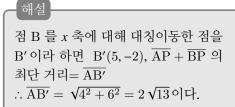
 $\therefore \triangle ABC = \frac{1}{2} \times 8 \times 2\sqrt{3} = 8\sqrt{3}$

23. 좌표평면 위의 두 점 A(1, 4), B(5, 2) 와 x 축 위의 임의의 점 P 에 대하여 $\overline{AP} + \overline{BP}$ 의 최솟값을 구하면?

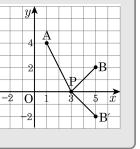
(3) 3

(4) $2\sqrt{6}$





 $2\sqrt{13}$



24. 다음 그림의 정육면체의 한 변의 길이를 구하여 라.

①
$$8\sqrt{3}$$
 cm

$$\bigcirc 9\sqrt{3}\,\mathrm{cm}$$

③
$$10\sqrt{3}$$
 cm

⑤
$$12\sqrt{3}$$
 cm

F_f

****27cm

한 변의 길이를
$$a$$
 라고 하면 $\sqrt{3}a = 27$

$$\therefore \ a = \frac{27}{\sqrt{3}} = \frac{27\sqrt{3}}{3} = 9\sqrt{3} \text{ (cm)}$$

25. 다음 그림과 같이 반지름의 길이가 4√3 cm 이고 모선의 길이가 13 cm 인 원뿔의 부피는?

⑤ $528\pi \, \text{cm}^3$

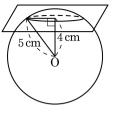
(1) $44\pi \, \text{cm}^3$

② $88\pi \, \text{cm}^3$

원뿔의 높이
$$h = \sqrt{13^2 - (4\sqrt{3})^2} = \sqrt{169 - 48} = \sqrt{121} = 11$$
(cm) 이다.

따라서 $V = \frac{1}{3} \times (4\sqrt{3})^2 \times \pi \times 11 = 176\pi \text{(cm}^3)$ 이다.

26. 다음 그림은 반지름의 길이가 5cm 인 구이다. 구의 중심 O 로부터 4cm 거리에 있는 평면에 의해서 잘린 단면의 넓이를 구하여라.



 $3\pi \text{ cm}^2$

①
$$\sqrt{41}\pi \, \text{cm}^2$$

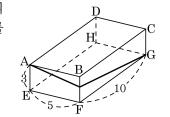
④ $41\pi \, \text{cm}^2$

$$\odot 6\pi \,\mathrm{cm}^2$$

 $9\pi\,\mathrm{cm}^2$

(단면 원의 반지름) =
$$\sqrt{5^2 - 4^2} = 3$$
(cm) 이므로
(원의 넓이) = $\pi \times 3^2 = 9\pi$ (cm²)

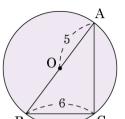
27. 다음 직육면체에서 꼭짓점 A 에서 모서리 BF를 거쳐 점 G에 이르는 최단거리를 구하면?



① $\sqrt{243}$ ② $3\sqrt{26}$ ③ $2\sqrt{89}$ ④ $2\sqrt{41}$ ⑤ $5\sqrt{10}$

해설
$$\overline{AG} = \sqrt{3^2 + (5+10)^2} = \sqrt{9+225} = \sqrt{234} = 3\sqrt{26}$$

28. 다음 그림에서 원 O 의 반지름의 길이가 5, $\overline{BC} = 6$ 일 때, $\cos A$ 의 값을 구하면?



$$\overline{AC} = \sqrt{10^2 - 6^2} = 8$$

$$\therefore \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5}$$

①
$$\sin 0^{\circ} = 0$$
, $\sin 90^{\circ} = 1$

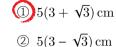
②
$$\cos 0^{\circ} = 1$$
, $\cos 90^{\circ} = 0$

(3)
$$\sin 45^{\circ} = \cos 45^{\circ}$$

$$4 \tan 0^{\circ} = 0$$
, $\tan 45^{\circ} = 1$

$$(5) \sin 30^\circ = \frac{1}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}, \frac{\sin 30^\circ}{\cos 30^\circ} = \frac{1}{\sqrt{3}} = \tan 30^\circ$$

30. 다음 그림에서 BO = 5 cm , ∠B = 60° 일 때, 직각삼각형 ABC 의 둘레의 길이 는?



$$3 5(3 + \sqrt{2}) \text{ cm}$$

$$4 5(2\sqrt{3}-1) \text{ cm}$$

⑤
$$5(3+2\sqrt{3})$$
 cm

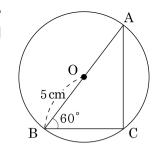
 $\overline{AB} = 10 \text{ cm}$

$$\overline{AC} = \sin 60^{\circ} \times 10 = 5\sqrt{3} \text{ (cm)}$$

 $\overline{BC} = \cos 60^{\circ} \times 10 = 5 \text{ (cm)}$

$$\therefore$$
 (직각삼각형 ABC 의 둘레의 길이)
= $\overline{AB} + \overline{AC} + \overline{BC} = 10 + 5\sqrt{3} + 5$

$$=5\sqrt{3}+15=5(\sqrt{3}+3)$$
 cm



31. $\sin 0^{\circ} \times \tan 0^{\circ} - \cos 0^{\circ}$ 의 값을 A , $\sin 90^{\circ} \times \cos 90^{\circ} + \tan 0^{\circ}$ 의 값을 B 라 할 때, B – A 의 값은?

해설
$$A = 0 \times 0 - 1 = -1$$
, $B = 1 \times 0 + 0 = 0$ 이므로 $B - A = 0 - (-1) = 1$

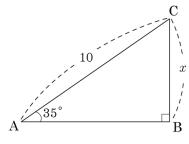
- **32.** $0^{\circ} \le x \le 90^{\circ}$ 일 때, 다음 중 옳은 것은?

 - ② $\cos x \ge \tan x$
 - $3\sin x$ 의 최댓값은 1이다.
 - ④ $\tan x$ 의 최댓값은 1이다.
 - ⑤ x의 값이 커지면 $\cos x$ 의 값도 커진다.

해설

- $2 \cos 60^{\circ} < \tan 60^{\circ}$
- ④ $\tan x$ 의 최댓값은 없다.
- ⑤ x의 값이 커지면 $\cos x$ 의 값은 작아진다.

33. 다음 그림의 \triangle ABC 에서 삼각비의 표를 보고 x 의 값을 구하면?



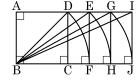
각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

- ① 8.192
- ② 5.736 ③ 5.878 ④ 8.09 ⑤ 8.29

 $x = 10 \times \cos 55^{\circ} = 10 \times 0.5736 = 5.736$

34. 다음 그림에서 $\square ABCD$ 는 정사각형이고, A \square $\overline{BD}=\overline{BF}, \ \overline{BE}=\overline{BH}, \ \overline{BG}=\overline{BJ}$ 이고,

BE = 3√3 일 때, △BIJ 의 넓이를 구하여 라.



▶ 답:

이다.

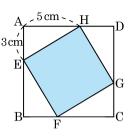
 $\overline{BC} = x$ 라고 두면 $\overline{BE} = \sqrt{x^2 + x^2 + x^2} = x\sqrt{3} = 3\sqrt{3}, x = 3$

하다.
$$\overline{BJ} = \sqrt{3^2 + 3^2 + 3^2 + 3^2} = 6$$
이다.

따라서 $\triangle BIJ$ 의 넓이는 $\frac{1}{2} \times 3 \times 6 = 9$ 이다.

35. 다음 그림과 같은 정사각형 ABCD 에서 $\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = 3\,\mathrm{cm}$, $\overline{AH} = \overline{BE} = \overline{CF} = \overline{DG} = 5\,\mathrm{cm}$ 일 때, □EFGH 의 넓이를 구하여라.

 cm^2



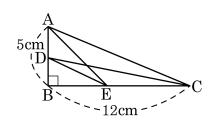
▷ 정답: 34 cm²

답:

01<u>011</u>

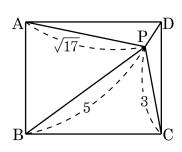
$$\overline{\mathrm{EH}} = \sqrt{3^2 + 5^2} = \sqrt{34} \mathrm{(cm)}$$
□EFGH 는 정사각형이므로
∴ □EFGH = 34(cm²)

36. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AE}=7\mathrm{cm}$ 일 때, $\overline{CD}^2-\overline{DE}^2$ 의 값은?(단, 단위는 생략)



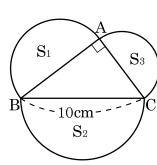
$$\overline{AC} = \sqrt{5^2 + 12^2} = 13$$
 이므로 $\overline{CD}^2 - \overline{DE}^2 = 13^2 - 7^2 = 120$

37. 다음 그림과 같이 점 P 가 직사각형 ABCD 내부의 점이다. $\overline{AP} = \sqrt{17}, \overline{BP} = 5, \overline{CP} = 3$ 일 때, \overline{DP} 의 길이를 구하여라.



$$\overline{AP}^2 + \overline{CP}^2 = \overline{BP}^2 + \overline{DP}^2$$
 이므로 $(\sqrt{17})^2 + 3^2 = 5^2 + \overline{DP}^2$, $\overline{DP}^2 = 1$
 $\therefore \overline{DP} = 1$

38. 그림과 같이 빗변의 길이가 10 cm 인 $\triangle ABC$ 의 각 변을 지름으로 하는 반원의 넓이를 각각 S_1 , S_2 , S_3 라고 할 때, $S_1 + S_2 + S_3$ 의 값을 구하면?



①
$$10\pi\mathrm{cm}^2$$

$$2 15\pi \text{cm}^2$$

$$3 20\pi \text{cm}^2$$

$$425\pi \text{cm}^2$$

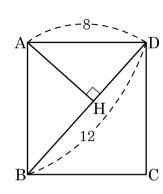
$$\Im 30\pi \text{cm}^2$$

$$S_1 + S_3 = S_2$$

 $S_1 + S_2 + S_3 = 2S_2$

$$\therefore 2 \times \pi \times 5^2 \times \frac{1}{2} = 25\pi (\text{cm}^2)$$

39. 다음 그림에서 □ABCD 는 직사각형이고, \overline{AH} \overline{BD} 이다. \overline{AH} 의 길이를 구하여라.



①
$$16\sqrt{5}$$

 $4 \frac{16\sqrt{5}}{3}$

② $8\sqrt{5}$

해설
$$\Delta ABD$$
 에서 $\overline{AB} = \sqrt{12^2 - 8^2} = 4\sqrt{5}$

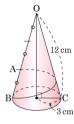
 $\triangle ABD = \frac{1}{2} \times \overline{BD} \times \overline{AH} = \frac{1}{2} \times \overline{AB} \times \overline{AD}$ 이므로 $\frac{1}{2} \times 12 \times \overline{AH} = \overline{ABD}$

$$\frac{1}{2} \times 4\sqrt{5} \times 8$$
$$\therefore \overline{AH} = \frac{8\sqrt{5}}{3}$$

$$=\frac{8\sqrt{5}}{3}$$

원뿔이다. 점 B 에서부터 출발하여 모선 OC 를 거쳐 모선 OB의 $\frac{1}{3}$ 지점인 A 까지 가는 최단거리를 구하여라.

40. 다음 그림은 모선의 길이가 $12 \, \text{cm}$ 이고, 반지름의 길이가 $3 \, \text{cm}$ 인



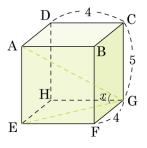
cm

▷ 정답: 4√13cm

최단거리는
$$\overline{AB}$$
 의 길이와 같다. \overline{AB} 의 길이와 같다. \overline{AB} 이 길이와 같다.

$$\therefore \overline{AB} = \sqrt{12^2 + 8^2} = \sqrt{208} = 4\sqrt{13} (\text{cm})$$

41. 다음 그림의 직육면체에서 ∠AGE = x 라고 할 때, sin x × cos x 의 값을 구한 것으로 옳은 것은?



①
$$\frac{10\sqrt{2}}{57}$$
 ② $20\sqrt{2}$

$$\frac{\sqrt{2}}{7}$$
 $\sqrt{2}$
 $\sqrt{2}$
 $\sqrt{2}$
 $\sqrt{2}$
 $\sqrt{3}$
 $\sqrt{2}$

$$\overline{EG} = 4\sqrt{2}$$

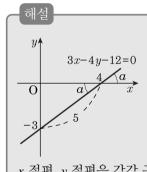
$$\frac{\overline{EG}}{\overline{AE}} = 4\sqrt{3}$$

 $\overline{AG} = \sqrt{57}$

따라서
$$\sin x \times \cos x = \frac{5}{\sqrt{57}} \times \frac{4\sqrt{2}}{\sqrt{57}} = \frac{20\sqrt{2}}{57}$$
 이다

- **42.** 일차방정식 3x 4y 12 = 0 의 그래프가 x 축과 이루는 예각의 크기를 a 라 할 때, $\sin a + \cos a$ 의 값은?
- ② $\frac{4}{5}$
- ③ 1

 $\frac{4}{5}$

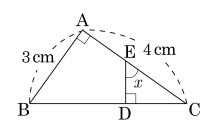


x 절편, y 절편을 각각 구하면 4, -3 이고 두 절편 사이의 거리는 $\sqrt{3^2+4^2}=5$ 이므로 $\sin a=\frac{3}{5},\;\cos a=$

 $\frac{4}{5}$ 이다.

따라서 $\sin a + \cos a = \frac{3}{5} + \frac{4}{5} = \frac{7}{5}$ 이다.

43. 다음 그림에서 $\sin x$ 의 값은?

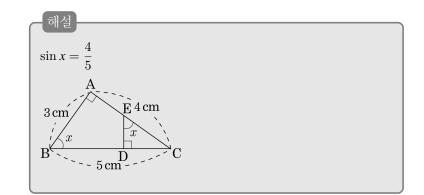


 $\bigcirc \frac{4}{5}$

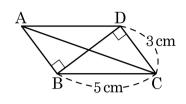
 $2\frac{5}{3}$

 $\frac{1}{4}$

 $4) \frac{1}{2}$



44. 다음 그림과 같은 평행사변형 ABCD 에서 $\overline{BC} = 5 \text{cm}$, $\overline{CD} = 3 \text{cm}$ 일 때. $\overline{AC} + \overline{BD}$ 의 값은?



- ① $(2\sqrt{13}+2)$ cm
- $(3)(2\sqrt{13}+4)$ cm $4 (4\sqrt{13} + 4) \text{ cm}$

② $(4\sqrt{13}+2)$ cm

⑤ 10 cm

해설

 $5^2 = 3^2 + \overline{BD}^2$

대각선끼리의 교점을 O 라 할 때.

삼각형 BCD 에서 피타고라스 정리에 따라

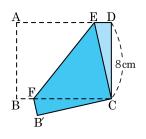
 $\overline{BD} > 0$ 이므로 $\overline{BD} = 4 \text{ cm}$ 이다. 평행사변형의 대각선은 다른 대각선을 이등분하므로

삼각형 ABO 에 대해서

 $\overline{AB} = 3 \text{ cm}, \ \overline{BO} = 2 \text{ cm}$ 피타고라스 정리에 의해서 $\overline{AO} = \sqrt{3^2 + 2^2} = \sqrt{13}$ (cm)

 $\therefore \overline{AC} + \overline{BD} = (4 + 2\sqrt{13}) \text{ cm}$ 이다.

45. BC : CD = 5 : 4 가 성립하는 직사각 형 ABCD 를 다음 그림과 같이 접었을 때, ΔCDE 의 넓이를 구하여라.



▶ 답:

▷ 정답: 7.2 cm²

 $\overline{\mathrm{BC}}:\overline{\mathrm{CD}}=5:4$, $\overline{\mathrm{CD}}=8\,\mathrm{cm}$ 이므로 $\overline{\mathrm{BC}}=10\,\mathrm{cm}$ 이다.

 cm^2

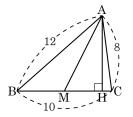
 $\overline{DE} = x$ 라 하면 접은 선분의 길이는 변함이 없으므로

 $\overline{\rm AE}=\overline{\rm CE}=10$ - x따라서 $\Delta {\rm CDE}$ 에 피타고라스 정리를 적용하면 $(10-x)^2=$

 $x^2 + 8^2$ 이를 정리하면 $x = \frac{9}{5}$ cm 이므로 \triangle CDE 의 넓이는 $\frac{1}{2} \times \frac{9}{5} \times 8 =$

 $7.2({\rm \,cm^2})$

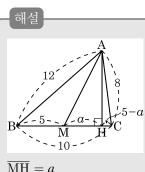
46. 다음 그림의 삼각형 ABC 에서 점 A 에서 \overline{BC} 에 내린 수선의 발을 \overline{H} 라 하고, 점 \overline{M} 은 \overline{BC} 의 중점일 때, $\overline{MH}+\overline{AH}$ 의 길이는?



(3) $3 + 2\sqrt{7}$

②
$$2 + \sqrt{7}$$

⑤
$$5 + \sqrt{7}$$



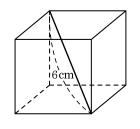
MH =
$$a$$

 $12^2 - (5+a)^2 = 8^2 - (5-a)^2$

144
$$-(25+10a+a^2)=64-(25-10a+a^2),\ 20a=80,\ a=4$$

따라서 $\overline{\rm MH}=a=4,\ \overline{\rm AH}=\sqrt{8^2-1^2}=\sqrt{63}=3\sqrt{7}$
이므로 $\overline{\rm MH}+\overline{\rm AH}=4+3\sqrt{7}$

47. 다음 그림과 같이 대각선의 길이가 $6 \, \mathrm{cm}$ 인 정육면체의 부피 V를 구하여라.



 cm^3

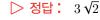
$$ightharpoonup$$
 정답: $24\sqrt{3}$ $ext{cm}^3$

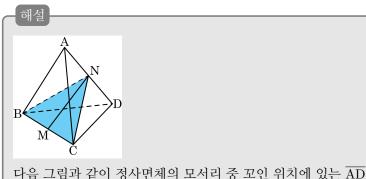
해설

$$\sqrt{3}a = 6, \ a = 2\sqrt{3} \text{ (cm)}$$

$$\therefore \ V = (2\sqrt{3})^3 = 24\sqrt{3} \text{ (cm}^3)$$

48. 한 모서리의 길이가 6 인 정사면체의 모서리 중 꼬인 위치에 있는 두 모서리의 중점을 연결한 선분의 길이를 구하여라.





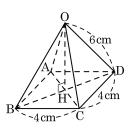
와 \overline{BC} 의 중점을 각각 N, M 이라 하면 $\triangle NBC \leftarrow \overline{NB} = \overline{NC}$ 인 이등변삼각형이므로 $/NMC = 90^{\circ}$ 이다.

따라서 $\overline{\text{CN}}$ 과 $\overline{\text{BN}}$ 은 각각 정삼각형 ACD 와 ABD 의 높이이므로

$$\overline{NC} = \overline{NB} = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3}$$

 $\overline{\text{BM}} = 3$ 이므로 $\overline{\text{MN}} = \sqrt{(3\sqrt{3})^2 - 3^2} = 3\sqrt{2}$

49. 다음 그림과 같이 밑면은 한 변이 4 cm 인 정 사각형이고, 옆면의 모서리의 길이는 6 cm 일 때, ΔOHD 의 넓이를 구하여라.



▶ 답:

 cm^2

ightharpoonup 정답: $2\sqrt{14}$ cm²

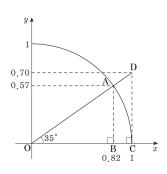
 $\square ABCD$ 가 정사각형이므로 $\overline{BD} = \sqrt{4^2 + 4^2} = 4\sqrt{2} \text{(cm)}$

$$\overline{\mathrm{DH}} = \frac{1}{2}\overline{\mathrm{BD}} = 2\sqrt{2}(\mathrm{\,cm})$$

$$\therefore$$
 $\overline{\rm OH} = \sqrt{6^2 - (2\sqrt{2})^2} = 2\sqrt{7} (\,{\rm cm})$
 $\triangle {\rm OHD}$ 의 넓이는

 $S = \frac{1}{2} \times 2\sqrt{2} \times 2\sqrt{7} = 2\sqrt{14} (\text{cm}^2)$ 이다.

50. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 옳지 <u>않은</u> 것을 모두 고르면?(정답 2개)



$$2 \tan 35^{\circ} = \tan 55^{\circ}$$

$$3 \sin 55^{\circ} = 0.82$$

해설

$$4 \sin 35^{\circ} = 0.70$$

②
$$\tan 35^\circ = \frac{\overline{CD}}{\overline{OC}} = 0.70, \tan 55^\circ = \frac{\overline{OC}}{\overline{CD}} = \frac{1}{0.70}$$
 이므로 $\tan 35^\circ \neq \tan 55^\circ$

 $\text{(4) } \sin 35^{\circ} = \frac{\overline{AB}}{\overline{OA}} = \frac{\overline{AB}}{1} = 0.57$