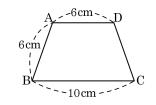
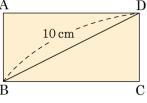

1. 다음은 A, B, C 세 사람의 3 회에 걸친 턱걸이 횟수의 기록을 나타낸 그래프이다. 이 중 표준편차가 다른 한 사람은 누구인지 구하여라.


▷ 정답: B

▶ 답:

표준편차는 자료가 흩어진 정도를 나타내므로 A, C 의 표준편

차는 같다.


- 다음과 같은 등변사다리꼴 ABCD 의 넓이 2.

- $4 33 \sqrt{2} \text{ cm}^2$ $34 \sqrt{2} \text{ cm}^2$
- ① $30\sqrt{2} \, \mathrm{cm}^2$ ② $31\sqrt{2} \, \mathrm{cm}^2$
- $\boxed{3}32\sqrt{2}\,\mathrm{cm}^2$

점 A 와 점 D 에서 \overline{BC} 에 내린 수선의 발을 각각 E, F 라 하자. □ABCD 가 등변사다리꼴이므로 6cm △ABE = △DCF 이다 따라서 BE = 1/ △ABE ≡ △DCF 이다. 따라서 $\overline{\mathrm{BE}}$ = $\overline{\mathrm{CF}} = 2 (\,\mathrm{cm})$ ΔABE 에 피타고라스 정리를 적용하면 $\overline{AE} = \sqrt{36 - 4} = \sqrt{32} = 4\sqrt{2} (\text{cm})$ 따라서 $\square ABCD$ 의 넓이는 $\frac{1}{2} \times (10+6) \times 4\sqrt{2} = 32\sqrt{2} (\,\mathrm{cm}^2)$

다음 직사각형 ABCD 에서 가로의 길 3. 이는 세로의 길이의 2배이다. 대각선 의 길이가 $10\,\mathrm{cm}$ 일 때, 이 직사각형의 가로의 길이를 구하여라.

 $\bigcirc 4\sqrt{5}\,\mathrm{cm}$ $4 8\sqrt{5} \text{ cm}$

 $2\sqrt{5}$ cm $\Im \sqrt{5} \,\mathrm{cm}$

 $3 5\sqrt{2} \text{ cm}$

해설

세로의 길이를 $x \, \mathrm{cm}$ 라고 하면

 $\sqrt{x^2 + (2x)^2} = 10$ $5x^2 = 100$

 $x = 2\sqrt{5}\,\mathrm{cm}$

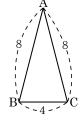
따라서 가로의 길이는 $2x = 4\sqrt{5} \,\mathrm{cm}$ 이다.

4. 대각선의 길이가 12 인 정사각형의 넓이는?

① 36 ② 56 ③ 64 ④ 72 ⑤ 144

정사각형 한 변을 a 라 하면 대각선은 $\sqrt{2}a$ 이므로

 $\sqrt{2}a=12,\,a=\frac{12\,\sqrt{2}}{2}=6\,\sqrt{2}$ 따라서, 정사각형의 넓이는 $6\,\sqrt{2}\times6\,\sqrt{2}=72$ 이다.

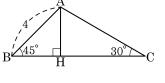

5. 넓이가 $48\sqrt{3}$ cm² 인 정삼각형이 높이를 구하여라.

▶ 답: $\underline{\mathrm{cm}}$

▷ 정답: 12 cm

정삼각형의 넓이 = $\frac{\sqrt{3}}{4}a^2 = 48\sqrt{3}$ $a^2 = 192$ $a = 8\sqrt{3}$ 이므로 정삼각형의 높이는 $\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 8\sqrt{3} = 12 \text{ (cm)}$ 이다.

6. 다음과 같이 두 변의 길이가 8, 밑변의 길이가 4인 이등변삼각형의 넓이는?


해설

① $4\sqrt{13}$ ② $4\sqrt{15}$ ③ $4\sqrt{17}$ ④ $4\sqrt{19}$ ⑤ $4\sqrt{21}$

이등변삼각형의 높이는 $\sqrt{8^2-2^2}=\sqrt{64-4}=\sqrt{60}=2\sqrt{15}$

(넓이) = $4 \times 2\sqrt{15} \times \frac{1}{2} = 4\sqrt{15}$

7. 다음 그림의 AB = 4, ∠B = 45°, ∠C = 30° 인 △ABC 에서 꼭짓점 A 에서 BC 에 내린 수선의 발을 H 라고 할 때, BC 의 길이는?

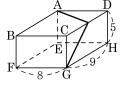
- ① $4\sqrt{2}$
- ② $4\sqrt{6}$ ③ $8\sqrt{2}$
- $3 2\sqrt{2} + \frac{2\sqrt{6}}{3}$

 $4 2\sqrt{2} + 2\sqrt{6}$

해설

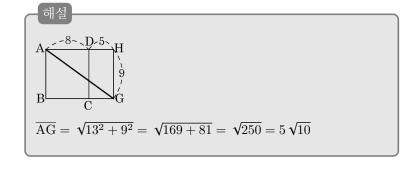
© 0 **1-**

 $1: \sqrt{2} = \overline{BH}: 4, \overline{BH} = 2\sqrt{2} = \overline{AH}$


 $1: \sqrt{3} = 2\sqrt{2}: \overline{CH}, \overline{CH} = 2\sqrt{6}$ $\therefore \overline{BC} = \overline{BH} + \overline{CH} = 2\sqrt{2} + 2\sqrt{6}$ 8. 좌표평면 위의 두 점 (-2, 1), (3, a) 사이의 거리가 $\sqrt{34}$ 일 때, a 의 값은? (단, a > 0)

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설


두 점 사이의 거리는 $\sqrt{(3+2)^2+(a-1)^2}=\sqrt{34}$ 이다. $a^2-2a-8=0$, (a-4)(a+2)=0 $\therefore a=4$

9. 다음 그림과 같은 직육면체 모양의 상자가 있다. 점A 에서 모서리 CD 를 거쳐 점 G 에이르는 가장 짧은 거리를 구하여라.



답:

ightharpoonup 정답: $5\sqrt{10}$

10. $\sin A = \frac{\sqrt{2}}{2} \text{ 인 직각삼각형 ABC 에서 } x+y$ 의 값은? (단, 0° < A < 90°)

① $\sqrt{2} + 2$ ② $2\sqrt{2} - 2$ ③ $4\sqrt{2}$ ④ $4\sqrt{2} - 2$ ⑤ $5\sqrt{2} - 2$

sin A =
$$\frac{x}{4} = \frac{\sqrt{2}}{2}$$
 \Rightarrow $x = 2\sqrt{2}$
 $y = \sqrt{4^2 - (2\sqrt{2})^2} = 2\sqrt{2}$
따라서 $x = 2\sqrt{2}$, $y = 2\sqrt{2}$ 이다.

따라서
$$x = 2\sqrt{2}$$
, $y = 2\sqrt{2}$

11. 다음 중 삼각비의 값의 대소 관계로 옳은 것을 고르면?

- ① $\sin 20^{\circ} > \sin 49^{\circ}$
- $2 \sin 31^{\circ} > \cos 31^{\circ}$
- $\boxed{\$ \sin 23^{\circ} < \cos 23^{\circ}}$
- $\oplus \sin 45^{\circ} > \cos 45^{\circ}$

 $0\,^{\circ} \le x \le 45\,^{\circ}$ 인 범위에서 $\sin x < \cos x$ 이고, $x = 45\,^{\circ}$ 일 때,

 $\sin x = \cos x < \tan x$ 이다.

- 12. 영웅이의 4 회에 걸친 수학 쪽지 시험의 성적이 평균이 45 점이었다. 5 회의 시험 성적이 떨어져 5 회까지의 평균이 4 회까지의 평균보다 5 점 내렸다면 5 회의 성적은 몇 점인가?
 - ① 14 점 ② 16 점 ③ 18 점 ④ 20 점 ⑤ 22 점

4 회까지의 평균이 45 이므로 4회 시험까지의 총점은 $45 \times 4 = 180($ 점)

45 × 4 = 180(점) 5 회까지의 평균은

해설

5 회까지의 평균은 45 점에서 5 점이 내린 40 점이므로 5 회째의 성적을 x 점이라고 하면 $\frac{180+x}{5}=40,\ 180+x=200\quad \therefore x=20(\ \mathrm{A})$

13. 다음 표는 정수가 올해 시험을 쳐서 받은 수학점수이다. 평균이 80 점, 분산이 146/7 일 때, 4 월과 7 월 시험성적을 구하여라. (단, 4 월 보다 7 월 시험 성적이 더 우수하다.)

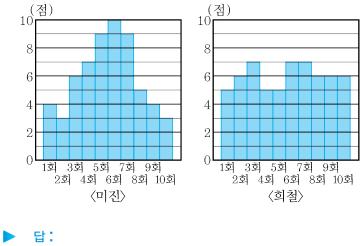
월 3 4 5

점수(점)	72	а	80	84	b	81	86

점

 ■ 답:
 점

 ▷ 정답:
 4월 시험 성적: 75점

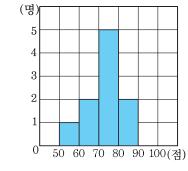

▶ 답:

▶ 정답: 7월 시험 성적: 82점

 $\frac{72+a+80+84+b+81+86}{7}=80,$ a+b=157이다. $\frac{64+(a-80)^2+0+16+(b-80)^2+1+36}{7}=\frac{146}{7},$

(a - 80)² + (b - 80)² = 29 이다. 두 식을 연립해서 풀면, a = 75, b = 82 이다.

14. 다음은 미진이와 희철이가 10 회에 걸친 수학 시험에서 얻은 점수를 히스토그램으로 나타낸 것이다. 어느 학생의 성적이 더 고르다고 할 수 있는가?

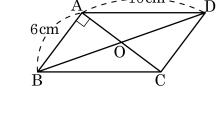


▷ 정답 : 희철

희철의 성적이 평균을 중심으로 변량의 분포가 더 고르다.

해설

15. 다음 히스토그램은 학생 10명의 영어 성적을 나타낸 것이다. 이 자료의 분산은?


- ① 72 ② 74 ③ 76 ④ 78 ⑤ 80
- (평균) = $\frac{55 \times 1 + 65 \times 2 + 75 \times 5 + 85 \times 2}{10} = \frac{730}{10} = 73$ (점) (분산) = $\frac{1}{10} \left\{ (55 - 73)^2 \times 1 + (65 - 73)^2 \times 2 \right\}$ + $\frac{1}{10} \left\{ (75 - 73)^2 \times 5 + (85 - 73)^2 \times 2 \right\}$ = $\frac{760}{10} = 76$

16. 다음 도수 분포표는 어느 반 32명의 일주일 간 영어 공부 시간을 나타 낸 것이다. 평균, 표준편차를 차례대로 나열한 것은?

공부시	간(학생 수(명)		
0이상	~	2미만	4	
2이상	~	4 ^{미만}	2	
4 ^{이상}	~	6미만	18	
6 ^{이상}	~	8미만	6	
8이상	~	10 ^{미만}	2	
	합계	32		

① 5,1 ② 5,2 ③ 5,4 ④ 6,3 ⑤ 6,4

(평균)= $\frac{1 \times 4 + 3 \times 2 + 5 \times 18 + 7 \times 6 + 9 \times 2}{32}$ = 5 (분산)= $\frac{(-4)^2 \times 4 + (-2)^2 \times 2}{32}$ + $\frac{0^2 \times 18 + 2^2 \times 6 + 4^2 \times 2}{32}$ = 4 ∴ (표준편차)= $\sqrt{4}$ = 2 ${f 17.}$ 평행사변형 ABCD 에서 $\angle {
m BAC}=90^\circ$ 이고, $\overline{
m AB}=6{
m cm}$, $\overline{
m AD}=10{
m cm}$ 일 때, 대각선 BD 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

▷ 정답: 4√13 cm

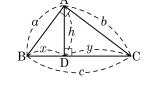
 $\overline{AC} = \sqrt{10^2 - 6^2} = 8(cm), \ \therefore \overline{AO} = 4(cm)$ △ABO 에서 $\overline{BO} = \sqrt{6^2 + 4^2} = \sqrt{52} = 2\sqrt{13} \text{(cm)}$

▶ 답:

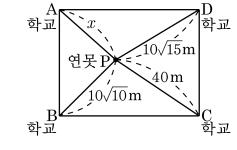
 $\therefore \overline{BD} = 4\sqrt{13}(cm)$

- **18.** 다음 그림과 같이 □OABC 는 정사각형이고 두 점 D , F 는 각각 점 O 를 중심으로 하고, $\overline{\mathrm{OB}}$, $\overline{\mathrm{OE}}$ 를 반지름으로 하는 원을 그릴 때 x 축과 만나는 교점이다. \triangle ODE 의 넓이가 $\sqrt{2}$ 일 때, 점 D 의 x 좌표는?

① 2 $\sqrt{2}$ 3 $\sqrt{3}$ 4 $\sqrt{5}$


⑤ 4

 $\overline{\mathrm{OA}} = x$ 라고 두면 $\Delta\mathrm{ODE}$ 의 넓이는 $\frac{1}{2} \times x \sqrt{2} \times x = \sqrt{2}, x^2 =$

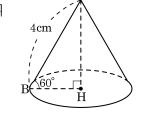

 $2, x = \sqrt{2}$ 이다. 따라서 점 D의 x좌표는 $x\sqrt{2} = \sqrt{2} \times \sqrt{2} = 2$ 이다.

- 19. 다음 그림의 $\triangle ABC$ 에서 $\angle BAC = 90$ °, $\overline{\mathrm{AD}}$ $\bot\overline{\mathrm{BC}}$ 일 때, 옳지 <u>않은</u> 것을 고르면?

해설

20. 다음 그림과 같이 A,B,C,D 네 학교가 선으로 연결하면 직사각형이 된다. 연못에서 네 학교까지의 거리가 다음과 같을 때, A 학교에서 시속 9km 로 출발하여 연못에 도착하는데 걸리는 시간은 몇 초인가?

① 6초 ② 8초 ③ 10초


④12 초

⑤ 14 초

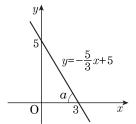
 $x^2+40^2=(10\sqrt{5})^2+(10\sqrt{10})^2, x^2=900, x=30\text{m 이다.}$ (시간)= $\frac{(거리)}{(속력)}$ 이므로 구하는 시간은 $\frac{30}{9000}\times60\times60=12$ (초) 이다.

- **21.** 다음 그림과 같이 모선의 길이가 $4 \, \mathrm{cm}$ 인 원 뿔이 있다. $\angle ABH = 60$ ° 일 때, 원뿔의 부피 는?

 - ① $\frac{2\sqrt{3}}{3}\pi \text{ cm}^3$ ② $\frac{3\sqrt{2}}{5}\pi \text{ cm}^3$ ③ $2\sqrt{3}\pi \text{ cm}^3$ ④ $\frac{8\sqrt{3}}{3}\pi \text{ cm}^3$ ⑤ $\frac{10\sqrt{2}}{3}\pi \text{ cm}^3$

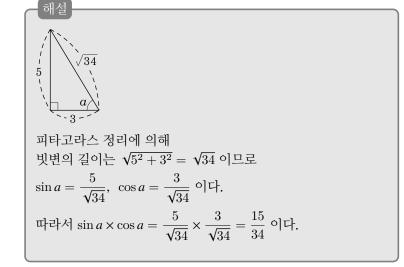
해설 $\triangle ABH$ 에서 $\overline{AB}: \overline{AH}: \overline{BH}=2: \sqrt{3}:1$

 $\therefore \overline{AH} = 2\sqrt{3} \text{ (cm)}$

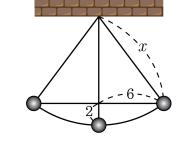

 $\overline{AB}:\overline{BH}=2:1$ 에서 $4:\overline{BH}=2:1$

∴ BH = 2 (cm)따라서 원뿔의 부피는

 $\frac{1}{3} imes \pi imes 2^2 imes 2\sqrt{3} = \frac{8\sqrt{3}}{3}\pi \; (\,\mathrm{cm}^3)$ 이다.


 $\overline{\mathrm{AB}}:\overline{\mathrm{AH}}=2:\sqrt{3}$ 에서 $4:\overline{\mathrm{AH}}=2:\sqrt{3}$

- **22.** 다음 그림과 같이 $y = -\frac{5}{3}x + 5$ 의 그래프가 x 축의 음의 방향과 이루는 각의 크기를 a 라고 할 때, $\sin a \times \cos a$ 의 값을 구하여라.



▶ 답:

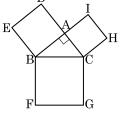
ightharpoonup 정답: $rac{15}{34}$

23. 다음 그림처럼 길이가 x 인 줄에 매달린 추가 좌우로 왕복운동을 하고 있다. 추가 천장과 가장 가까울 때와, 가장 멀 때의 차이가 2 일 때, 추가 매달려 있는 줄의 길이를 구하여라. (단 추의 크기는 무시한다.)

▷ 정답: 10

▶ 답:

밑변이 2 이고 빗변이 x 인 직각삼각형으로 생각하면 높이가


x – 2 이므로 피타고라스 정리에 따라

 $x^2 = (x-2)^2 + 6^2$

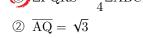
4x = 4 + 36

x = 10 이다.

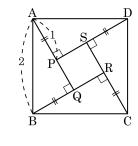
24. 다음 그림은 직각삼각형 ABC 의 각 변을 한 변으로 하는 정사각형을 그린 것이다. △ABC 의 넓이가 10 이고 □ADEB 의 넓이가 25 일 때, 두 정사각형 BFGC, ACHI의 넓이의 차 를 구하면?

21
 24

325

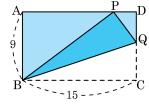

② 22

③ 23


 \square ADEB + \square ACHI = \square BFGC \square BFGC - \square ACHI = \square ADEB

□BFGC – □ACHI = □ADEB 따라서 구하는 넓이는 □ADEB = 25이다.

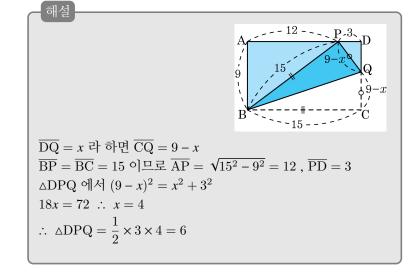
- ${f 25.}$ 다음 그림과 같은 정사각형 ABCD 에서 $\overline{
 m AP}=\overline{
 m BQ}=\overline{
 m CR}=\overline{
 m DS}$ 일 때, 다음 설명 중에서 옳지 <u>않은</u> 것은?



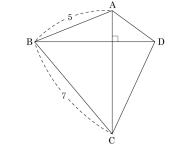
- ⑤ \Box PQRS 는 한 변의 길이가 $\sqrt{3}$ – 1 인
- 정사각형이다.

- ① $\square PQRS = (\sqrt{3} 1)^2 = 4 2\sqrt{3}$ $\square ABCD = 4$ $\therefore \square PQRS \neq \frac{1}{4} \square ABCD$

 ${f 26}$. 직사각형 ABCD 에서 ${f \overline{BQ}}$ 를 접는 선으 로 하여 접었더니 꼭짓점 C 가 \overline{AD} 위의점 P 에 겹쳐졌다. 이 때, ΔDPQ 의 넓이 는?



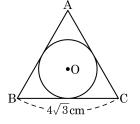
1)6


② $6\sqrt{2}$ ③ 12

 $4 12\sqrt{2}$

⑤ 24

27. 다음 그림과 같이 $\square ABCD$ 에서 두 대각선이 서로 직교하고, $\overline{AB}=5$, $\overline{BC}=7$ 일 때, $\overline{\mathrm{CD}}^2$ – $\overline{\mathrm{AD}}^2$ 의 값을 구하여라.



▷ 정답: 24

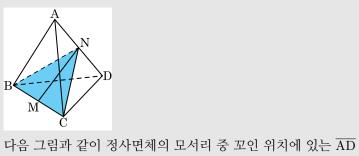
▶ 답:

□ABCD 의 두 대각선이 서로 직교하므로 $\overline{AB}^2 + \overline{CD}^2 = \overline{BC}^2 + \overline{AD}^2$ $5^2 + \overline{CD}^2 = 7^2 + \overline{AD}^2$ $\therefore \overline{CD}^2 - \overline{AD}^2 = 24$

28. 다음 그림과 같이 한 변의 길이가 $4\sqrt{3}\,\mathrm{cm}$ 인 정삼각형에 원 O 가 내접하고 있다. 이 내접원의 넓이를 구하여라.

▶ 답: $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $4\pi \underline{
m cm}^2$

정삼각형의 한 변의 길이가 $4\sqrt{3}$ cm 이므로, 높이는 $\frac{\sqrt{3}}{2}$ × $4\sqrt{3}$ = 내접원의 중심은 삼각형의 무게중심과 일치하므로 높이를 2:1


로 내분한다.

그러므로 반지름의 길이는 $6 \times \frac{1}{3} = 2 (\text{cm})$ 따라서 내접원의 넓이는 $2^2\pi=4\pi ({
m \,cm}^2)$

29. 한 모서리의 길이가 6 인 정사면체의 모서리 중 꼬인 위치에 있는 두 모서리의 중점을 연결한 선분의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $3\sqrt{2}$

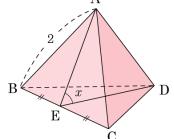
와 \overline{BC} 의 중점을 각각 N, M 이라 하면 $\Delta \mathrm{NBC}$ 는 $\overline{\mathrm{NB}} = \overline{\mathrm{NC}}$ 인 이등변삼각형이므로 \angle NMC = 90° 이다.

따라서 $\overline{\text{CN}}$ 과 $\overline{\text{BN}}$ 은 각각 정삼각형 ACD 와 ABD 의 높이이므

 $\overline{\mathrm{NC}} = \overline{\mathrm{NB}} = \frac{\sqrt{3}}{2} \times 6 = 3\sqrt{3}$ $\overline{\mathrm{BM}}=3$ 이므로 $\overline{\mathrm{MN}}=\sqrt{(3\,\sqrt{3})^2-3^2}=3\,\sqrt{2}$

$$BM = 3$$
 이므로 $MN = \sqrt{(3\sqrt{3})^2 - 3^2} = 3$

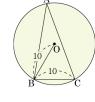
30. $\tan A = \frac{1}{2}$ 일 때, $\frac{\sin A + 2\cos A}{\sin A - \cos A}$ 의 값을 구하면?


- ① 5 ② 3 ③ 1 ④ -1 ⑤ -5

주어진 식의 분모, 분자를 각각 $\cos A$ 로 나눈 후, $\frac{\sin A}{\cos A} = \tan A$ 로 고치면

$$\frac{\tan A + 2}{\tan A - 1} = \frac{\frac{1}{2} + 2}{\frac{1}{2} - 1} = \frac{5}{2} \times (-2) = -5 \text{ ord.}$$

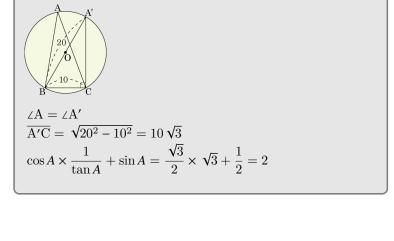
31. 다음 그림과 같이 한 변의 길이가 2 인 정사면체 A - BCD 에서 \overline{BC} 의 중점을 E 라 하고, $\angle AED = x$ 일 때, $\cos x$ 의 값은?



- ① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{4}$ ④ $\frac{1}{5}$ ⑤ $\frac{1}{6}$

 $\overline{\mathrm{BE}}=1$ 이고 점 H 는 $\Delta\mathrm{BCD}$ 의 무케중심이므로 $\overline{\mathrm{EH}}=\frac{1}{3}\overline{\mathrm{ED}},$ $\overline{\mathrm{ED}} = \sqrt{3}$

 $\overline{\mathrm{EH}} = \frac{1}{3} \times \sqrt{3} = \frac{\sqrt{3}}{3} , \overline{\mathrm{AE}} = \sqrt{3}$ $\cos x = \frac{\overline{\overline{EH}}}{\overline{\overline{AE}}} = \frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3\sqrt{3}} = \frac{1}{3}$ 이다.


32. 다음 그림과 같이 반지름의 길이가 10 인 원 O 에 내접하는 $\triangle ABC$ 에서 $\overline{BC} = 10$ 일 때, $\cos A \times \frac{1}{\tan A} + \sin A$ 의 값을 구하여라.

 답:

 ▷ 정답:
 2

V 08.

33. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

- ① 14 ② 13 ③ 12 ④ 11 ⑤ 10

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2 11 \times 2 + a = 0$ $8 - 22 + a = 0, \ a = 14$

34. 다음 중 *x*의 개수가 가장 많은 것을 구하여라.

 \bigcirc $-3\sqrt{2} \le -\sqrt{x} < -2\sqrt{2}$, 단 x는 정수

 \bigcirc $\sqrt{2} < x < \sqrt{4}$, 단 x는 자연수

- $\bigcirc -3 \ \sqrt{2} \le -\sqrt{x} < -2 \ \sqrt{2}, \ \exists \ x \in \ 8$
- © $2\sqrt{3} \le \sqrt{x} \le 4$, 단 x는 자연수

▷ 정답: □

▶ 답:

 $\sqrt{2} < x < \sqrt{4}$ 이므로 $2 < x^2 < 4$ 이다.

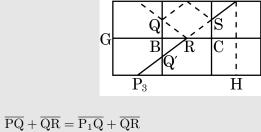
해설

따라서 자연수 x는 없다. $-3\sqrt{2} \le -\sqrt{x} < -2\sqrt{2}$ 이므로 $\sqrt{8} = 2\sqrt{2} < \sqrt{x} \le 3\sqrt{2} = \sqrt{18}$

이다. 따라서 8 < x ≤ 18 이므로

따라서 정수 *x* 의 개수는 10개이다.

 $2\sqrt{3} \le \sqrt{x} \le 4$ 이므로 $12 \le x \le 16$ 이다.


따라서 정수 x의 개수는 5개이다.

35. 한 변의 길이가 $3\sqrt{2}$ 인 정사각형 ABCD 의 각 변 위에 점 P, Q, R, S 를 잡을 때, 사각형 PQRS 의 둘레의 최솟값을 구하여라.

 ► 답:

 ▷ 정답:
 12

다음 그림과 같이 $\square ABCD$ 와 합동인 직사각형을 작도하여 점 P를 각각 변 AB 와 CD 에 대해 대칭이동한 점 $P_1,\ P_2$ 를 잡으면

 $\overline{PS} + \overline{SR} = \overline{P_2S} + \overline{SR}$ 다시, 점 P_1 , Q 를 GB 에 대해 대칭이동한 점 P_3 , Q' 를 잡으면

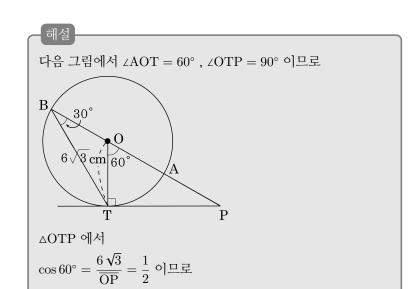
이다.

 $\overline{P_1Q} + \overline{QR} = \overline{P_3Q'} + \overline{Q'R}$ 이 되어 $\square PQRS$ 의 둘레의 길이의 최솟값은 $\overline{P_2P_3}$ 의 길이가 된다. 따라서 $\overline{P_2P_3} = \sqrt{\overline{P_3H^2} + \overline{P_2H^2}} = \sqrt{(6\sqrt{2})^2 + (6\sqrt{2})^2} = 12$

36. $\sqrt{(\cos A - \sin A)^2} + \sqrt{(\sin A + \cos A)^2} = \sqrt{2}$ 일 때, $\tan A$ 의 값은? (단, $0^\circ \le A \le 45^\circ$)

① $2\sqrt{2}$ ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ 1 ⑤ 0

 $0^{\circ} \le A \le 45^{\circ}$ 에서 $\cos A - \sin A \ge 0$ 이므로 (즉성) = $(\cos A - \sin A) + (\sin A + \cos A)$


(준식) = $(\cos A - \sin A) + (\sin A + \cos A)$ = $2\cos A = \sqrt{2}$ $\stackrel{\sim}{\neg}, \cos A = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ 에서 $\angle A = 45^\circ$

 $\therefore \tan A = \tan 45^{\circ} = 1$

- **37.** 다음 그림에서 직선 PT 는 반 지름의 길이가 $6\sqrt{3}\,\mathrm{cm}$ 인 원 O
 - 의 접선이고 ∠PBT = 30° 일
 - 때, $\overline{\mathrm{PA}}$ 의 길이는?
 - ① $3\sqrt{3}$ cm
 - $36\sqrt{3}\,\mathrm{cm}$

② 6 cm

- 4 12 cm
- \bigcirc 12 $\sqrt{3}$ cm

В

308

 $-6\sqrt{3}$ cm