1. 다음은 A, B, C 가 3 회에 걸쳐 활을 쏜 기록을 나타낸 그래프이다.

(4) a = b > c (5) a < b < c

 \bigcirc a < b < c

해설

차는 같고, C 의 표준편차는 A, B 의 표준편차보다 크다.

표준편차는 자료가 흩어진 정도를 나타내므로 A, B 의 표준편

다음 표는 A, B, C, D, E 인 5 명의 학생의 음악 실기 점수를 나타낸 2. 것이다. 이 자료의 분산은? 학생 A B C D E

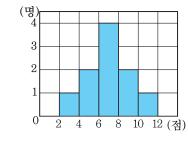
1 0						
변량(점)	72	75	77	76	80	

① 5 ② 5.4 ③ 6.2 ④ 6.6 ⑤ 6.8

주어진 자료의 평균은
$$\frac{72+75+77+76+80}{5}=\frac{380}{5}=76(점)$$
이므로 각 자료의 편차는 -4, -1, 1,0,4

이므로 각 자료의 편차는 -4, -1, 1,0, 4 이다. 따라서 분산은 $\frac{(-4)^2 + (-1)^2 + 1^2 + 0^2 + 4^2}{5} = \frac{34}{5} = 6.8$

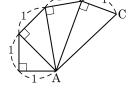
3. 다음 히스토그램은 우리 반 10명의 학생이 한달동안 읽은 책의 수를 조사한 것이다. 이 자료의 분산은?



① 3.5 ② 3.7 ③ 3.9 ④ 4.5 ⑤ 4.8

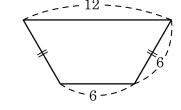
(평균) = $\frac{3 \times 1 + 5 \times 2 + 7 \times 4 + 9 \times 2 + 11 \times 1}{10} = \frac{70}{10} = 7$ (분산) = $\frac{(3-7)^2 \cdot 1 + (5-7)^2 \cdot 2}{10}$ $+\frac{(9-7)^2 \cdot 2 + (11-7)^2 \cdot 1}{10} = 4.8$

- 4. 다음 그림에서 \overline{AC} 의 길이는 ?
 - ① 2 ② $\sqrt{5}$ ③ $\sqrt{6}$
 - (4) $\sqrt{7}$ (5) $2\sqrt{2}$

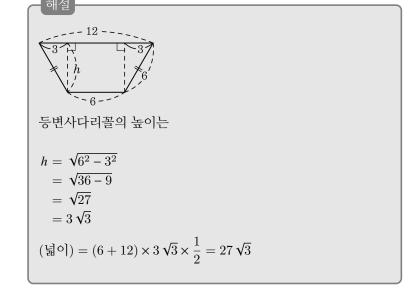


 $\overline{\mathrm{AC}} = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2} = \sqrt{5}$ 이다.

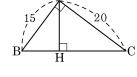
5. 윗변의 길이가 12, 아랫변의 길이가 6, 나머지 두변의 길이가 6 인 등변사다리꼴의 넓이는?



① $21\sqrt{3}$ ② $22\sqrt{3}$ ③ $23\sqrt{3}$ ④ $25\sqrt{3}$ ⑤ $27\sqrt{3}$



6. 다음 그림과 같이 $\triangle ABC$ 의 꼭짓점 A 에서 빗변에 내린 수선의 발을 H 라 하고, $\overline{AB}=15$, $\overline{AC}=20$ 일 때, \overline{AH} 의 길이를 구하여 라.



 ► 답:

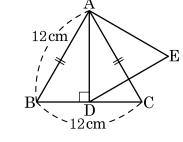
 ▷ 정답:
 12

 $\overline{BC} = \sqrt{15^2 + 20^2} = 25$

해설

 $25 \times \overline{AH} = 15 \times 20$ $\therefore \overline{AH} = 12$

7. 다음 그림과 같이 한 변의 길이가 $12\,\mathrm{cm}$ 인 정삼각형 ABC 에서 $\overline{\mathrm{BC}}$ 의 중점을 D 라 할 때, $\overline{\mathrm{AD}}$ 를 한 변으로 하는 정삼각형 ADE 의 넓이를 구하여라.



 $\underline{\rm cm^2}$

ightharpoonup 정답: $27\sqrt{3}$ cm^2

답:

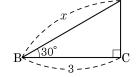
 $\overline{AD} = \frac{\sqrt{3}}{2} \times 12 = 6\sqrt{3} \text{ (cm)}$

 $\triangle ADE$ 는 한 변의 길이가 $6\sqrt{3}\,\mathrm{cm}$ 인 정삼각형이므로 $\frac{\sqrt{3}}{4}\times(6\sqrt{3})^2=27\,\sqrt{3}(\,\mathrm{cm}^2)$

T

다음 그림과 같은 직각삼각형에서 *x* 의 값을 8. 구하면?

① 5 ② $2\sqrt{2}$ $4 \ 3\sqrt{3}$ $5 \ 9$



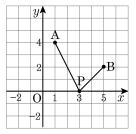
해설

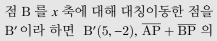
 $x:3=2:\sqrt{3}$ $x = 2\sqrt{3}$

- 9. 좌표평면 위의 두 점 A(1, 4), B(5, 2) 와 x 축 위의 임의의 점 P 에 대하여 $\overline{AP} + \overline{BP}$ 의 최솟값을 구하면? ② 2 ③ 3
 - ① $\sqrt{13}$ $4 2\sqrt{6}$

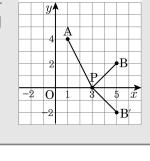
해설

- $\bigcirc 2\sqrt{13}$





최단 거리 $=\overline{AB'}$ $\therefore \overline{AB'} = \sqrt{4^2 + 6^2} = 2\sqrt{13}$ 이다.



10. 어떤 정육면체의 대각선의 길이가 9 일 때, 이 정육면체의 한 모서리의 길이는?

① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $6\sqrt{3}$ ④ 6 ⑤ $2\sqrt{6}$

한 모서리의 길이가 a인 정육면체의 대각선의 길이는 $\sqrt{a^2+a^2+a^2}=\sqrt{3}a$ 이므로 $\sqrt{3}a=9$ 에서 $a=3\sqrt{3}$ 이다.

11. 다음 삼각비의 값을 크기가 작은 것부터 차례로 나열한 것은?

○ sin 90°	\bigcirc $\cos 60^{\circ}$	\bigcirc $\cos 90^{\circ}$
② tan 60°	© sin 60°	
1 70200	2 UBTEE	(3) CLQ72
4 8786	3 9706	
해설		

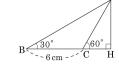
া প্র $\bigcirc \sin 90^\circ = 1$ $\bigcirc \cos 60^\circ = \frac{1}{2}$ $\bigcirc \cos 90^\circ = 0$ $\textcircled{2} \tan 60^\circ = \sqrt{3}$ 3 $\textcircled{2} \sin 60^\circ = \frac{\sqrt{3}}{2}$ $\textcircled{2} \cos 90^\circ < \textcircled{2} \cos 60^\circ < \textcircled{2} \sin 60^\circ < \textcircled{3} \sin 90^\circ < \textcircled{2} \tan 60^\circ$ 12. $\sin 0^{\circ} \times \tan 0^{\circ} - \cos 0^{\circ}$ 의 값을 A , $\sin 90^{\circ} \times \cos 90^{\circ} + \tan 0^{\circ}$ 의 값을 B 라 할 때, B – A 의 값은?

- ① -2 ② -1 ③ 0 ④ 1
- ⑤ 2

 $A = 0 \times 0 - 1 = -1$, $B = 1 \times 0 + 0 = 0$ 이므로 B - A = 0 - (-1) = 1

13. 다음 삼각비 중 가장 큰 것은?

 $\cos 30^{\circ} = 0.8660, \sin 40^{\circ} = 0.6428$ $\sin 45^{\circ} = 0.7071, \cos 40^{\circ} = 0.7660$ $\tan 45^{\circ} = 1.000$ 14. 다음 그림에서 $\overline{
m AH}$ 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

▷ 정답: 3√3 cm

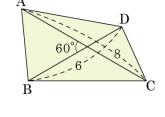
▶ 답:

$$\overline{AH} = \frac{6}{\tan (90^{\circ} - 30^{\circ}) - \tan (90^{\circ} - 60^{\circ})}$$

$$= \frac{6}{\tan 60^{\circ} - \tan 30^{\circ}}$$

$$= \frac{6}{\sqrt{3} - \frac{\sqrt{3}}{3}} = 3\sqrt{3} \text{ (cm)}$$

15. 다음 그림과 같은 사각형 ABCD의 넓이 를 구하면?



① $12\sqrt{3}$ ② $11\sqrt{3}$ ③ $10\sqrt{3}$ ④ $9\sqrt{3}$ ⑤ $8\sqrt{3}$

 $S = \frac{1}{2} \times 6 \times 8 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 6 \times 8 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$

16. 다음 중 옳지 <u>않은</u> 것은?

- ① 평균과 중앙값은 다를 수도 있다. ② 중앙값은 반드시 한 개만 존재한다.
- ③ 최빈값은 반드시 한 개만 존재한다.
- ④ 자료의 개수가 홀수이면 $\frac{n+1}{2}$ 째 번 자료값이 중앙값이 된다. ⑤ 자료의 개수가 짝수이면 $\frac{n}{2}$ 번째와 $\frac{n+1}{2}$ 번째 자료값의 평균이 중앙값이 된다.

③ 최빈값은 반드시 한 개만 존재한다. → 최빈값은 여러 개 존재

할 수 있다.

 17.
 다음 표는 동건이의 일주일동안 수학공부 시간을 조사하여 나타낸 것이다. 수학공부 시간의 평균은?

 요일
 일
 월
 화
 수
 목
 금
 토

시간	2	1	0	3	2	1	5

① 1시간 ② 2시간 ③ 3시간 ④ 4시간 ⑤ 5시간

(평균)= $\frac{\{(변량)의종합\}}{\{(변량)의갯수\}}$ 이므로 $\frac{2+1+0+3+2+1+5}{7} = \frac{14}{7} = 2(시간)$ 이다.

18. 정호, 제기, 범진, 성규 4 명의 사격선수가 10 발씩 사격한 후의 결과가 다음과 같다. 표준편차가 가장 적은 사람은 누구인지 구하여라.

1	2	3	. 1	2	3	1	2	3	l	1_{ullet}	2_{ullet}	•3
4^{\bullet}_{ullet}	5	•6•	4	5	6	4ullet	.5 •	6.		4^{ullet}	•5	•6
7	8	9	7	8	•9 _•	7	8.	9		7^{\bullet}	-8	•9
<	정호	->	_ <	제기	>	<	범진	.>	_	<	성규	->

▷ 정답: 정호

▶ 답:

평균 근처에 가장 많이 발사한 선수는 정호이다.

- **19.** 다음 네 개의 변수 a, b, c, d 에 대하여 다음 보기 중 옳지 <u>않은</u> 것을 모두 고르면?
 - ① a+1, b+1, c+1, d+1의 평균은 a, b, c, d의 평균보다 1만큼 크다.
 ② a+3, b+3, c+3, d+3의 평균은 a, b, c, d의 평균보다 3
 - 배만큼 크다.
 ③ 2a + 3, 2b + 3, 2c + 3, 2d + 3의 표준편차는 a, b, c, d의
 - 표준편차보다 2배만큼 크다. ④ 4a+7, 4b+7, 4c+7, 4d+7의 표준편차는 a, b, c, d의
 - 표준편차의 4배이다. ⑤ 3a, 3b, 3c, 3d의 표준편차는 a, b, c, d의 표준편차의 9
 - 배이다.

② a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다

해설

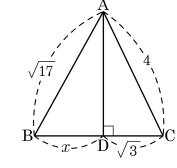
3 배만큼 크다. → a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다 3 만큼 크다.

⑤ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 9 배이다.

→ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 3

 \rightarrow $3a,\ 3b,\ 3c,\ 3d$ 의 표준편차는 $a,\ b,\ c,\ d$ 의 표준편차의 3 배이다.

20. 다음 그림의 삼각형 ABC 에서 x 의 값을 구하여라.



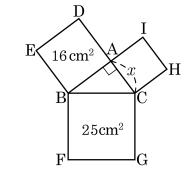
▷ 정답: 2

▶ 답:

$$\overline{AD} = \sqrt{4^2 - (\sqrt{3})^2} = \sqrt{16 - 3} = \sqrt{13}$$

$$\therefore x = \sqrt{(\sqrt{17})^2 - (\sqrt{13})^2} = \sqrt{17 - 13} = 2$$

21. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC에서 세변을 각각 한 변으로 하는 정사각형을 그린 것이다. x의 값을 구하여라.



 $\underline{\mathrm{cm}}$

정답: 3 <u>cm</u>

답:

□BFMP = □EBAD, □PMGC = □IACH이다.

D
I

 $\overline{\mathrm{BC}}$ 와 수직인 $\overline{\mathrm{AM}}$ 을 그을 때 $\overline{\mathrm{BC}}$ 와의 교점을 P라고 하면,

x = 3 cm 이다.

22. 다음 중 직각삼각형인 것을 모두 고르면?

① $4^2 > (\sqrt{10})^2 + 2^2$ ② $(\sqrt{23})^2 < 3^2 + (\sqrt{15})^2$

해설

23. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{AC}=12$, $\overline{BC}=5$, $\overline{DE}=\sqrt{6}$ 일 때, $\overline{AD}^2+\overline{BE}^2$ 의 값은?

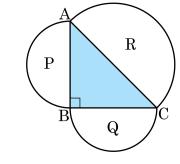
⑤ 177

 $\overline{AB}^2 + \overline{DE}^2 = \overline{BE}^2 + \overline{AD}^2$ $\overline{AB} = \sqrt{12^2 + 5^2} = 13 \text{ 이므로}$ $\overline{AD}^2 + \overline{BE}^2 = 13^2 + \sqrt{6^2} = 175$

해설

① 169 ② 171 ③ 173

24. 다음 그림과 같이 직각삼각형 ABC 의 각 변을 지름으로 하는 세 변의 넓이를 각각 P , Q , R 이라 하자. $\overline{BC}=8$, $R=16\pi$ 일 때, 색칠한 부분의 넓이를 구하여라.



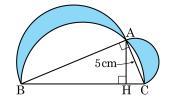
▷ 정답: 32

▶ 답:

 $\overline{\mathrm{BC}}=8$ 이므로 Q = 8π 이고 R = P + Q 이므로 P = 8π

따라서 $\overline{AB}=\overline{BC}=8$ 이 되어 색칠한 부분의 넓이는 $\frac{1}{2}\times8\times8=32$

25. 다음 도형에서 색칠한 부분의 넓이는 $30\mathrm{cm}^2$ 이라고 할 때, $\overline{\mathrm{AH}}$ 의 길이를 구 하여라.



▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $rac{60}{13} ext{cm}$

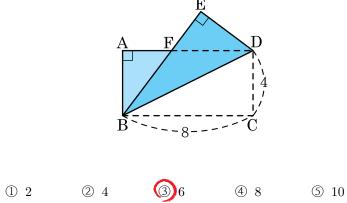
색칠한 부분의 넓이와 △ABC의 넓이가 같으므로

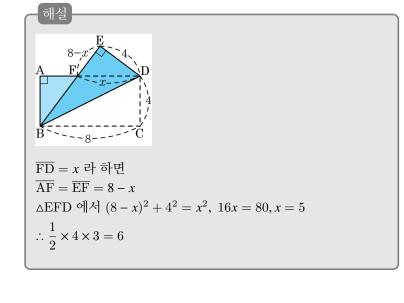
 $\frac{1}{2} \times \overline{AB} \times 5 = 30, \ \overline{AB} = 12cm$

BC = 13cm 넓이가 30cm² 이므로

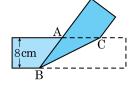
 $\frac{1}{2}\times 13\times \overline{\mathrm{AH}}=30,\,\overline{\mathrm{AH}}=\frac{60}{13}\mathrm{cm}$

 ${f 26}$. 다음 그림과 같은 직사각형 ${f ABCD}$ 에서 대각선 ${f BD}$ 를 접는 선으로 하여 접어서 점 C 가 옮겨진 점을 E , \overline{BE} 와 \overline{AD} 의 교점을 F 라 할 때, △DEF 의 넓이를 구하면?





27. 다음 그림과 같이 폭 8cm 인 종이테이프를 접었더니 AB 의 길이가 10cm 였다. 접은 선 BC 의 길이를 구하여라.



정답: 8√5 cm

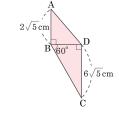
▶ 답:

해설

∠CBD 와 ∠BCA 은 엇각이므로 삼각형 ABC 는 이등변삼각형이다. 따라서 변 AC 는 $10 \mathrm{cm}$ 이다. 점 B에서 직선 AC에 수선의 발 H를 내리면 삼각형 ABH 에서 $\overline{\mathrm{AH}} = \sqrt{10^2 - 8^2} = 6$ 이 되어 $\overline{\mathrm{CH}} = 16$ 따라서 $\Delta \mathrm{CHB}$ 에서 $\overline{\mathrm{BC}} = \sqrt{\overline{\mathrm{CH}}^2 + \overline{\mathrm{BH}}^2}$ $= \sqrt{16^2 + 8^2} = \sqrt{320}$ $= 8\sqrt{5}(\mathrm{cm})$ 이다.

 $\underline{\mathrm{cm}}$

28. 다음 그림의 $\square ABCD$ 에서 $\angle ABD = \angle BDC = 90^\circ$, $\angle DBC = 60^\circ$ 일 때, 두 대각선 \overline{BD} , \overline{AC} 의 길이를 각각 구하여라.



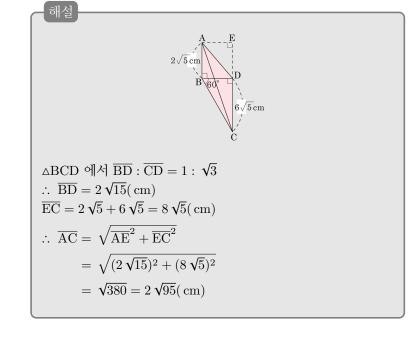
 $\underline{\mathrm{cm}}$

 □
 □

 □
 □

답: $\underline{\text{cm}}$ \triangleright 정답: $\overline{\text{BD}} = 2\sqrt{15}\underline{\text{cm}}$

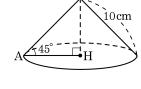
ightharpoonup 정답: $\overline{AC} = 2\sqrt{95}\underline{cm}$



29. 다음 그림의 원뿔에서 부피를 구하면?

- ① $\frac{160\sqrt{3}}{3}\pi \,\mathrm{cm}^3$ ② $70\sqrt{2}\pi \,\mathrm{cm}^3$ ③ $\frac{250\sqrt{2}}{3}\pi \,\mathrm{cm}^3$ ④ $\frac{280\sqrt{2}}{3}\pi \,\mathrm{cm}^3$
- ⑤ $100 \sqrt{3}\pi \, \text{cm}^3$





해설

 $\overline{\mathrm{AH}}:\overline{\mathrm{AO}}=1:\sqrt{2}$ 에서 $\overline{\mathrm{AH}}:10=1:\sqrt{2}$ $\therefore \overline{AH} = 5\sqrt{2} \text{ (cm)}$

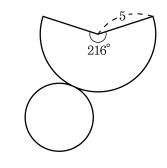
 $\triangle OAH$ 에서 $\overline{AH}:\overline{OH}:\overline{OA}=1:1:\sqrt{2}$

 $\overline{\mathrm{AH}}:\overline{\mathrm{OH}}=1:1$ 에서 $5\sqrt{2}:\overline{\mathrm{OH}}=1:1$

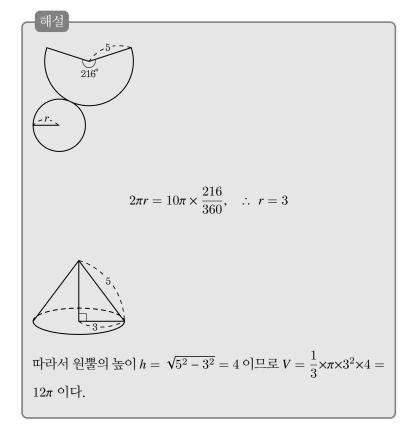
 \therefore $\overline{\mathrm{OH}} = 5\,\sqrt{2}\;(\mathrm{cm})$ 따라서 원뿔의 부피는

 $\frac{1}{3} \times \pi \times (5\sqrt{2})^2 \times 5\sqrt{2} = \frac{250\sqrt{2}}{3}\pi \; (\,\mathrm{cm}^3) \; \mathrm{이다}.$

30. 다음 그림과 같은 전개도로 만들어지는 원뿔의 부피를 구하여라.



- ① 3π ② 6π ③ $\frac{15}{2}\pi$ ④ 12π ⑤ $\frac{27}{2}\pi$



31. 다음 그림과 같은 직각삼각형 ABC에서 $\cos A + \sin A$ 의 값을 구하여라.

13

A C

ightharpoonup 정답: $rac{17}{13}$

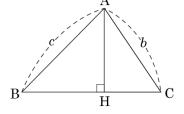
▶ 답:

-

해설

 $\overline{AC} = \sqrt{13^2 - 5^2} = \sqrt{144} = 12$ $\cos A + \sin A = \frac{12}{13} + \frac{5}{13} = \frac{17}{13}$

$oldsymbol{32}$. 다음 중 그림의 ΔABC 에서 \overline{BC} 의 길이를 나타내는 것은?



① $c \sin B + b \sin C$

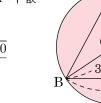
- ② $c \sin B + b \cos C$
- $\Im c \tan B + b \tan C$

 $\triangle ABH$ 에서 $\cos B = \frac{\overline{BH}}{c}, \overline{BH} = c \cos B$

 \triangle AHC 에서 $\cos \mathbf{C} = \frac{\overline{\mathbf{CH}}}{b}, \overline{\mathbf{CH}} = b \cos \mathbf{C}$

따라서 $\overline{\mathrm{BC}} = \overline{\mathrm{BH}} + \overline{\mathrm{CH}} = c \cos \mathrm{B} + b \cos \mathrm{C}$ 이다.

- 33. 반지름의 길이가 $3 \, \mathrm{cm}$ 인 원에 내접하는 $\triangle ABC$ 에서 $\overline{BC}=5\,\mathrm{cm}$ 일 때, $\cos A$ 의 값 을 구하면?

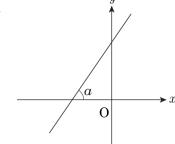


 \mathbf{D}

해설

꼭짓점 A 를 $\overline{\rm BD}$ 가 지름이 되도록 이동시키면, $\angle {\rm C}=90^\circ$ $\angle {\rm A}$ 는 $5.0 {\rm ptBC}$ 에 대한 원주각이므로 변하지 않는다. $\overline{\rm BD}=6, \ \overline{\rm BC}=5$ 이므로 $\overline{\rm DC}=\sqrt{11}$ $\therefore \cos A = \frac{\sqrt{11}}{6}$

34. 다음 그림과 같이 y = 2x + 4의 그 래프가 x축과 양의 방향으로 이루는 각의 크기를 a°라고 할 때, $\tan a$ 의 값은?



- ① $\frac{2\sqrt{5}}{5}$ ② 2 ③ $\frac{3}{2}$ ④ $\frac{4\sqrt{5}}{5}$ ⑤ $\frac{3\sqrt{5}}{5}$

해설 x축의 양의 방향과 이루는 각의 크기를 a라 할 때,

(직선의 기울기) = $\frac{y$ 의 증가량 $= \tan a$ 이다.

따라서 $\tan a = 2$ 이다.

35. 삼각비의 표를 보고 다음을 만족하는 $x \div y + z$ 의 값은?

 $\sin x = 0.9397$

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
35°	0.5736	0.8192	0.7002
$45\degree$	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

 $\tan y = 0.7002$ $\cos z = 0.9848$ ① 3 ② 5 ③ 6 ④ 10 ⑤ 12

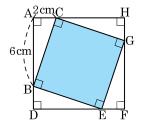
 $x = 70^{\circ}, y = 35^{\circ}, z = 10^{\circ}$ $x \div y + z = 70 \div 35 + 10 = 2 + 10 = 12$ **36.** 세 수 a,b,c의 평균이 8이고 분산이 3일 때, 세 수 a^2,b^2,c^2 의 평균을 구하여라.

▶ 답:

▷ 정답: 67

세 수 a,b,c 의 평균이 8이므로 $\frac{a+b+c}{3}=8$ ∴ $a+b+c=24\cdots$ 또, a,b,c 의 분산이 3이므로 $\frac{(a-8)^2+(b-8)^2+(c-8)^2}{3}=3$ $(a-8)^2+(b-8)^2+(c-8)^2=9$ ∴ $a^2+b^2+c^2-16(a+b+c)+192=9$ 위의 식에 ①을 대입하면 $a^2+b^2+c^2=201$ 따라서 a^2,b^2,c^2 의 평균은 $\frac{a^2+b^2+c^2}{3}=\frac{201}{3}=67$ 이다.

37. 다음 그림과 같이 $\triangle ABC$ 의 합동인 직각 삼각형으로 둘러싸인 □BEGC 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$ ▶ 답: ▷ 정답: 40<u>cm²</u>

 \triangle ABC 에서 $\overline{\rm BC}=\sqrt{2^2+6^2}=2\,\sqrt{10}\,\,({\rm\,cm})$ 따라서, \Box BEGC 는 한 변의 길이가 $2\,\sqrt{10}\,{\rm\,cm}$ 인 정사각형이므로 $\Box BEGC = (2\sqrt{10})^2 = 40 \text{ (cm}^2)$

38. 어떤 전자제품 회사에서 기존에 가로가 16 인치이고 가로와 세로의 비율이 4:3 인 모니터만을 생산하다가, 디자인적인 측면을 강화하기 위해 대각선의 길이는 유지하면서 가로와 세로의 비율이 $6:\sqrt{14}$ 인 모니터를 생산하였다. 새로운 모니터의 가로와 세로의 길이를 각각 $a\sqrt{b}$, $c\sqrt{d}$ 라고 할 때, a+b+c+d 의 값을 구하시오. (단, b,d는 최소의 자연수)

➢ 정답 : 25

해설

▶ 답:

가로가 16 인치이고 가로와 세로의 비율이 4:3 인 모니터의 대각선의 길이는 20 인치이다.

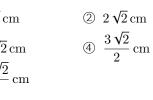
새로운 모니터의 가로의 길이를 6x, 세로의 길이를 $\sqrt{14}$ x 라고 하면 피타고라스 정리에 따라 $(6x)^2 + (\sqrt{14}x)^2 = 20^2$ $50x^2 = 400$

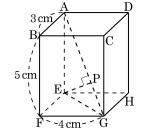
x > 0 이므로 $x = 2\sqrt{2}$

따라서 가로의 길이는 $6 \times 2\sqrt{2} = 12\sqrt{2}$ (인치) 세로의 길이는 $\sqrt{14} \times 2\sqrt{2} = 4\sqrt{7}$ (인치) 이므로 a+b+c+d=25 이다.

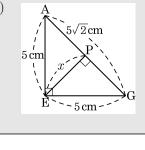
- ${\bf 39}.$ 다음 그림과 같은 직육면체에서 꼭짓점 ${\bf E}$ 에서 대각선 AG 에 내린 수선의 발을 P 라 할 때, EP 의 길이는?
 - ① $\sqrt{2}$ cm
- $3\sqrt{2}$ cm

해설

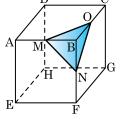




 $\overline{AG} = \sqrt{3^2 + 4^2 + 5^2} = 5\sqrt{2}$ (cm) $\overline{AE} \times \overline{EG} = \overline{AG} \times \overline{EP}$ 이므로 $5 \times 5 = 5\sqrt{2} \times x$ $x = \frac{25}{5\sqrt{2}} = \frac{5\sqrt{2}}{2} \text{ (cm) 이다.}$



40. 다음 그림과 같이 한 모서리의 길이가 16 인정육면체에서 점 M, N, O는 각각 AB, BF, BC 의 중점이다. ΔMNO 의 넓이가 a√b 일때 a×b의 값을 구하여라.(단, b는 최소의자연수)



답:▷ 정답: a×b = 96

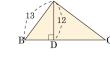
점 M, N,O는 각각 \overline{AB} , \overline{BF} , \overline{BC} 의 중점이므로

 $\overline{\text{MB}} = \overline{\text{BN}} = \overline{\text{BO}} = 8$ 따라서 $\overline{\text{MN}} = \overline{\text{MO}} = \overline{\text{NO}} = 8\sqrt{2}$

 \triangle MNO 의 넓이는 $\frac{\sqrt{3}}{4} \times (8\sqrt{2})^2 = 32\sqrt{3}$ 이다.

 $\therefore a \times b = 96$ 이다.

41. 다음 그림과 같이 $\overline{AD}\bot\overline{BC}$ 인 삼각형 ABC 에서 $\sin B = \cos C$ 이고, $\overline{AB}=13\mathrm{cm}, \overline{AD}=12\mathrm{cm}$ 일 때, \overline{AC} 의 길이를 구하여라.

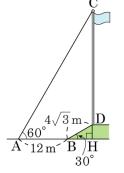


답:

ightharpoonup 정답: $rac{156}{5}$

 $\sin B = \frac{\overline{AD}}{\overline{AB}} = \cos \angle BAD$ 이므로 $\angle BAD = \angle C$ 이다. $\angle BAC = \angle BAD + \angle DAC = \angle C + (90^\circ - \angle C) = 90^\circ \cap \Gamma.$ $\triangle ABD \hookrightarrow \triangle CAD \cap \Box, \overline{BD} = \sqrt{13^2 - 12^2} = 5 \cap \Box \Box$ 따라서 $\overline{BA} : \overline{BD} = \overline{AC} : \overline{AD} \cap \Box$ $\overline{CA} = \frac{\overline{BA} \times \overline{AD}}{\overline{BD}} = \frac{13 \times 12}{5} = \frac{156}{5} \cap \Gamma.$

42. 다음 그림과 같이 언덕 위에 국기 게양대가 서 있다. A 지점에서 국기 게양대의 꼭대기 C 를 올려다 본 각이 60°이고, A 지점에서 국기 게 양대 방향으로 $12\,\mathrm{m}$ 걸어간 B 지점에서부터 오 르막이 시작된다. 오르막 $\overline{\mathrm{BD}}$ 의 길이가 $4\sqrt{3}\,\mathrm{m}$ 이고 오르막의 경사가 30°일 때, 국기 게양대의 높이 $\overline{\mathrm{CD}}$ 는? \bigcirc 16 $\sqrt{3}$ (m) ① $6\sqrt{3}$ (m)



③ $20\sqrt{3}$ (m)

 $468\sqrt{3}$ (m)

⑤ $70\sqrt{3}$ (m)

해설

 $\overline{AH} = 12 + 4\sqrt{3}\cos 30^{\circ}$

= $12 + 4\sqrt{3} \times \frac{\sqrt{3}}{2}$ = 18 (m) $\overline{\rm DH} = 4\sqrt{3}\sin 30\,^\circ = 4\sqrt{3}\times\frac{1}{2} = 2\sqrt{3}\ (\rm m)$

 $\therefore \ \overline{\rm CD} = \overline{\rm CH} - \overline{\rm DH} = 18\,\sqrt{3} - 2\,\sqrt{3} = 16\,\sqrt{3}$ (m)

 $\overline{\rm CH} = \overline{\rm AH} \cdot \tan 60 \ = 18 \, \sqrt{3} \, \, (\, m)$

- 43. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=24$, $\angle B=60^\circ$ 이고 점D 가 \overline{BC} 의 중점일 때, $\overline{\mathrm{AD}}$ 의 길이를 구하면?

 - ① $6\sqrt{13}$ ② 6 ③ 12 ④ $12\sqrt{3}$ ⑤ $4\sqrt{13}$
 - $\overline{BC} = 24\cos 60^{\circ} = 12$

 $1) \ \overline{AC} = 24 \sin 60^{\circ} = 12 \sqrt{3}$

 $\overline{\mathrm{DC}} = 6$

2) $\overline{AD} = \sqrt{6^2 + (12\sqrt{3})^2} = 6\sqrt{13}$

해설

44. 다음 그림에서 $\triangle ABC$ 의 넓이를 구하여라.(단, 단위는 생략한다.)

Ε	22	58° C			
	x	sin	\cos	tan	
	22°	0.37	0.93	0.40	

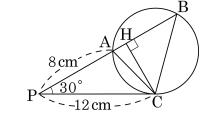
	\boldsymbol{x}	sın	cos	tan		
,	22°	0.37	0.93	0.40		
	58°	0.85	0.53	1.60		

▷ 정답: 100

답:

 $\triangle ABD$ 에서 $\overline{AD} = \overline{BD} \tan B = 20 \tan 22^\circ = 20 \times 0.40 = 8 \text{ (cm)}$ $\triangle ACD$ 에서 $\overline{CD} = \frac{\overline{AD}}{\tan 58^\circ} = \frac{8}{1.6} = 5 \text{ (cm)}$ 이다. 따라서 $\triangle ABC = \frac{1}{2} \times (20+5) \times 8 = 100 \text{ (cm}^2)$ 이다.

45. 다음 그림에서 \overline{PC} 는 원의 접선이고 \overline{PB} 는 할선이다. $\angle P=30^\circ$, $\overline{PA}=8$ cm, $\overline{PC}=12$ cm 일 때, $\triangle ABC$ 의 넓이를 구하여라.



① 28 ② 29

330

④ 31

⑤ 32

