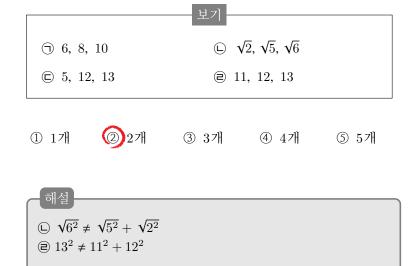

1. 다음 그림은 두 직각삼각형을 붙여 놓은 것이다. x, y의 값을 각각 구하여라.

답:답:

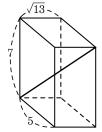

▷ 정답: x = 13

ightharpoonup 정답: $y=\sqrt{205}$

 $x = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$ $y = \sqrt{x^2 + 6^2} = \sqrt{169 + 36} = \sqrt{205}$

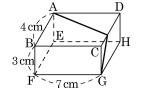
해설

2. 다음 중 삼각형의 세 변의 길이가 보기와 같을 때 직각삼각형이 될 수 없는 것은 몇 개인가?

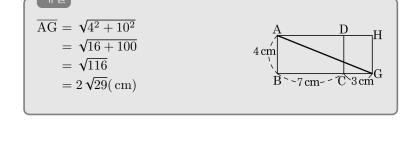


3. 좌표평면 위에 두 점 A(1, 2), B(6, -4) 가 있다. 두 점 사이의 거리는?

① $2\sqrt{15}$ ② $\sqrt{61}$ ③ $\sqrt{62}$ ④ $3\sqrt{7}$ ⑤ 8


제설 $\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(6 - 1)^2 + (2 + 4)^2}$ $= \sqrt{25 + 36} = \sqrt{61}$

- 4. 다음 그림에서 대각선의 길이를 구하면?
 - ① $\sqrt{83}$ ② $\sqrt{84}$
- ③ $\sqrt{85}$
- $4 \sqrt{86}$ $\sqrt{87}$



$$\sqrt{7^2 + 5^2 + (\sqrt{13})^2} = \sqrt{49 + 25 + 13} = \sqrt{87}$$

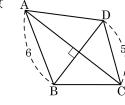
5. 다음 그림과 같은 직육면체에서 점 A 를 출발하여 모서리 CD 를 지나 점 G 에 이르는 최단 거리를 구하여라.

답:
 > 정답: 2√29

- **6.** cos 60° × tan 60° + sin 60° 을 계산하면?
 - ① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $2\sqrt{2}$ ⑤ $2\sqrt{3}$

(준식) = $\frac{1}{2} \times \sqrt{3} + \frac{\sqrt{3}}{2} = \sqrt{3}$

7. 다음 중 옳은 것을 고르시오.

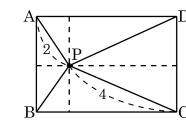

 $\sin 0^{\circ} = \cos 0^{\circ} = \tan 0^{\circ}$ $\sin 45^{\circ} = \cos 45^{\circ} = \tan 45^{\circ}$ $\sin 90^{\circ} = \cos 90^{\circ} = \tan 90^{\circ}$ $\sin 90^{\circ} = \cos 0^{\circ} = \tan 45^{\circ}$ $\sin 0^{\circ} = \cos 90^{\circ} = \tan 90^{\circ}$

▷ 정답: ②

답:

 $\sin 0^\circ = \tan 0^\circ = 0$, $\cos 0^\circ = 1$ $\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$, $\tan 45^\circ = 1$ $\sin 90^\circ = 1$, $\cos 90^\circ = 0$ $\tan 90^\circ$ 의 값은 정할 수 없다.

- 8. 다음 그림의 □ABCD에서 $\overline{AD}^2 + \overline{BC}^2$ 의 값은?
 - ① 11
- ② 30 ⑤61
- ③ 41



해설

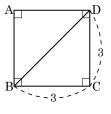
4 56

대각선이 직교하는 사각형에서 두 쌍의 대변의 제곱의 합이 서로 같다. $... \ \overline{AD}^2 + \overline{BC}^2 = 5^2 + 6^2 = 61$

정사각형 ABCD 의 내부의 한 점 P 를 잡아 A, B, C, D 와 연결할 때, $\overline{AP}=2, \ \overline{CP}=4$ 이면, $\overline{BP}^2+\overline{DP}^2$ 의 값은? 9.

① 15

220

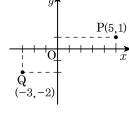

③ 25

④ 30

⑤ 35

 $\overline{BP^2} + \overline{DP^2} = 2^2 + 4^2 = 20$

10. 다음 정사각형의 대각선의 길이를 구하여라.


□ 답: **□** 정답: 3√2

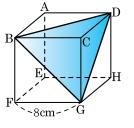
,

피타고라스 정리를 적용하여

 $x^2 = 3^2 + 3^2$ x > 0 이므로 $x = 3\sqrt{2}$ 이다. 사이의 거리는?

11. 다음 그림에서 두 점 P(5, 1), Q(-3, -2)

① $\sqrt{5}$ ② 5


 $\sqrt{73}$

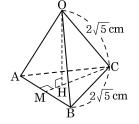
④ $\sqrt{65}$

⑤ 11

 $\overline{PQ} = \sqrt{\{5 - (-3)\}^2 + \{1 - (-2)\}^2}$ $= \sqrt{8^2 + 3^2} = \sqrt{73}$

12. 다음 그림과 같은 정육면체를 세 꼭짓점 B, G, D를 지나는 평면으로 자를 때, △BGD 의 넓이를 구하여라.

ightharpoonup 정답: $32\sqrt{3}$ cm^2


 $\underline{\mathrm{cm}^2}$

 $\Delta \mathrm{BGD}$ 는 한 변이 $8\sqrt{2}$ 인 정삼각형이므로

▶ 답:

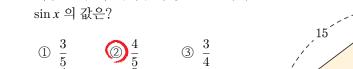
(넓이) = $\frac{\sqrt{3}}{4} \times (8\sqrt{2})^2 = 32\sqrt{3} \text{(cm}^2)$

- **13.** 다음 그림과 같이 한 모서리의 길이가 2 √5cm 인 정사면체의 부피는?

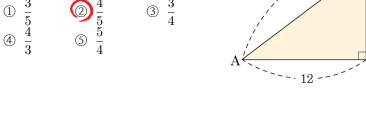
① 10cm^3 ② $\frac{5\sqrt{5}}{2} \text{cm}^3$ ③ $\frac{10\sqrt{5}}{3} \text{cm}^3$ ③ $\frac{5\sqrt{10}}{3} \text{cm}^3$

해설 $\frac{\sqrt{2}}{12} \times (2\sqrt{5})^3 = \frac{10\sqrt{10}}{3} (\text{cm}^3)$

14. 다음 그림과 같은 정사각뿔에서 $\overline{\rm OH}=3\sqrt{7}$, $\overline{\rm OA}=12$ 일 때, 밑넓이를 구하여라.

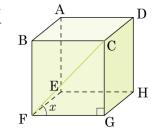

▶ 답: ▷ 정답: 162

△OAH 에서


해설

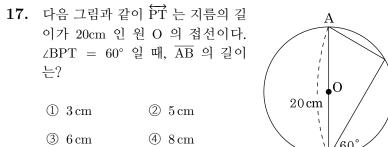
 $\overline{AH} = \sqrt{12^2 - (3\sqrt{7})^2} = \sqrt{144 - 63} = \sqrt{81} = 9$

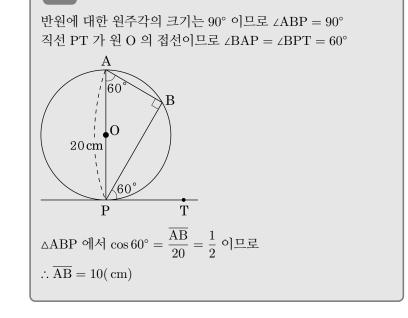
 $\overline{AC} = \overline{BD} = 18$ \therefore (밑넓이)= $18 \times 18 \times \frac{1}{2} = 162$



15. 다음 그림의 직각삼각형 ABC 에서

해설
$$\sin x = \frac{\overline{AC}}{\overline{AB}} = \frac{4}{5} \text{ 이다.}$$


16. 다음 그림은 한 변의 길이가 1 인 정육면 체이다. $\angle CFG = x$ 일 때, $\sin x$ 의 값을 구하면?


- ① $\frac{\sqrt{2}}{2}$ ② $\frac{2\sqrt{2}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{6}}{2}$
- ⑤ 2

$$\overline{\text{CF}} = \sqrt{2}, \overline{\text{CG}} = 1$$
 이므로
$$\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ 이다.}$$

$$\sqrt{2}$$
 2

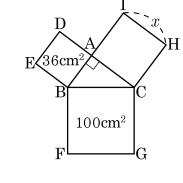
- $36 \, \mathrm{cm}$
 - ⟨60°
- ⑤ 10 cm

18. 다음 그래프를 보고 직선의 기울기의 값을 x, a 의 크기를 y° 라 할 때, x+y 의 값을 구하면?

① 16 ② 31 ③ 46 ④ 61 ⑤ 91

(직선의 기울기) $=\frac{2}{2}=1$ $\tan a = 1$

 $\therefore a = 45^{\circ}$

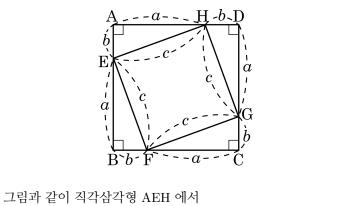

따라서 x + y = 1 + 45 = 46 이다.

- **19.** $\sin 90^{\circ} + \cos 0^{\circ} \tan 0^{\circ} = A$, $\sin 0^{\circ} + \tan 0^{\circ} + \cos 90^{\circ} = B$ 라 할 때, AB 의 값은?
- ① -2 ② -1 ③0
 - ④ 1 ⑤ 2

A = 1 + 1 - 0 = 2 , B = 0 + 0 + 0 = 0 이므로

 $\therefore AB = 2 \times 0 = 0$

20. 다음 그림은 $\angle A = 90$ ° 인 직각삼각형 ABC에서 세변을 각각 한 변으로 하는 정사각형을 그린 것이다. x의 값은?



① 5 cm ② 6 cm ③ 7 cm ④ 8 cm ⑤ 9 cm

 \Box IACH = 100 cm² - 36 cm² = 64 cm², $x^2 = 64 \text{ cm}^2, x = 8 \text{ cm}.$

 $\square \mathrm{BFGC} = \square \mathrm{EBAD} + \square \mathrm{IACH},$

21. 다음은 피타고라스 정리를 설명하는 과정을 섞어 놓은 것이다. 순서 대로 나열하여라.

 \bigcirc \triangle AEH = \triangle BFE = \triangle CGF = \triangle DHG 이므로

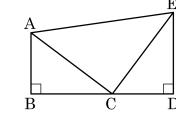
- © $\Box ABCD = \Box EFGH + 4\triangle AEH$ 이므로 © $(a+b)^2 = c^2 + 4 \times \frac{1}{2}ab$ ② 한 변의 길이가 a+b 인 정사각형 ABCD 를 그리면
- ◎ □EFGH 는 정사각형이다. $\therefore c^2 = a^2 + b^2$
- ▶ 답:

▶ 답:

- ▶ 답: 답:
- ▶ 답:
- ▷ 정답: つ

▷ 정답: ②

- ▷ 정답: □ ▷ 정답: □
- ▷ 정답: □


해설

그림과 같이 직각삼각형 AEH 에서

 $\triangle AEH \equiv \triangle BFE \equiv \triangle CGF \equiv \triangle DHG$ 이므로 $\square EFGH$ 는 정사각형이다. $\square ABCD = \square EFGH + 4\triangle AEH$ 이므로 $(a+b)^2 = c^2 + 4 \times \frac{1}{2}ab$ $\therefore c^2 = a^2 + b^2$

한 변의 길이가 a+b 인 정사각형 ABCD 를 그리면

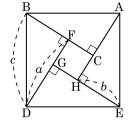
22. 다음 그림에서 두 직각삼각형 ABC 와 CDE 는 합동이고, 세 점 B, C, D 는 일직선 위에 있다. ∠CAE 의 크기는?

 360° 465° 535°

AC = CE 이다. 그리고 ∠BAC + ∠ACB = 90° 이므로

 $\triangle ABC \equiv \triangle CDE$ 이므로 $\angle BAC = \angle ECD$, $\angle ACB = \angle CED$,

∠ECD + ∠ACB = 90° 이다.


②45°

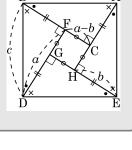
① 30°

따라서 ∠ECD + ∠ACE + ∠ACB = 180° 이므로 ∠ACE = 90°

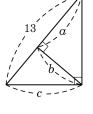
이다. 또, $\overline{AC}=\overline{CE}$ 이므로 $\triangle ACE$ 는 직각이등변삼각형이다. 따라서 $\angle CAE=\frac{1}{2}\times 90^\circ=45^\circ$ 이다.

 ${f 23}$. 다음 그림은 ${f \overline{AB}}$ 를 한 변으로 하는 정사각 형 ABDE 를 만들어 각 꼭짓점에서 수선 AH, BC, DF, EG 를 그어 직각삼각형을 만든 것이다. 다음 중 옳지 <u>않은</u> 것은?

- ① $c^2 = a^2 + b^2$ ③ □CFGH 는 정사각형


② $\triangle ABC = \triangle EAH$

- $\bigcirc \Box \text{CFGH} = 2 \triangle \text{ABC}$


네 개의 직각삼각형은 합동이다. (RHA

해설

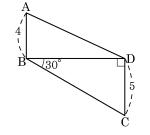
합동) 따라서 ①, ②, ③, ④가 성립한다.

24. 다음은 직각삼각형의 한 꼭짓점에서 수선의 발을 내린 것이다. $a^2 + b^2 + c^2$ 의 값을 구하여라.

 답:

 ▷ 정답:
 169

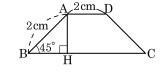
 b^2 과 c^2 을 a 로 나타내어 보자.


해설

닮은 삼각형의 성질을 이용하면 $b^2 = a\left(13-a\right), \, c^2 = 13\left(13-a\right) \, \text{이다.}$ 따라서 $a^2 + b^2 + c^2 = a^2 + a\left(13-a\right) + 13\left(13-a\right) = 169$

25. 다음 그림과 같이 $\overline{AB}=4$, $\overline{CD}=5$, $\angle {\rm CBD} = 30\,^{\circ}, \ \overline{\rm AB} \bot \overline{\rm BD}$ 일 때, $\overline{\rm AC}$ 의 길 이를 구하면? $3 2\sqrt{41}$

④ $5\sqrt{3}$ ⑤ $\sqrt{91}$



$$\overline{\mathrm{BD}} = 5\sqrt{3}$$

$$\frac{DD = 3 \sqrt{}}{\sqrt{}}$$

$$\overline{AC} = \sqrt{(4+5)^2 + (5\sqrt{3})^2} = 2\sqrt{39}$$

26. 다음 그림의 사각형 ABCD는 등변사다리 꼴이다. $\overline{AB}=2\,\mathrm{cm},\ \overline{AD}=2\,\mathrm{cm},\ \angle B=$ 45 ° 일 때, BC 의 길이는?

① $\sqrt{2}$ cm

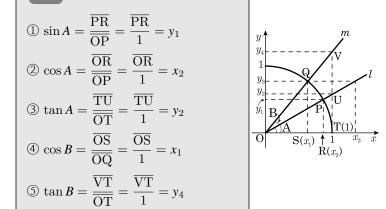
 $2\sqrt{2}$ cm

 $(1+2\sqrt{2})$ cm

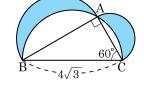
 $(4)(2+2\sqrt{2})$ cm $(4+4\sqrt{2})$ cm

해설

$\triangle ABH$ 는 한 내각의 크기가 $45\,^{\circ}$ 인 직각삼각형이므로 \overline{BH} :


 $\overline{AH} : \overline{AB} = 1 : 1 : \sqrt{2}$ $\overline{BH}:\overline{AH}:2=1:1:\sqrt{2}$ 에서 $\overline{AH}=\overline{BH}=\frac{2}{\sqrt{2}}=\sqrt{2}(\,\mathrm{cm})$

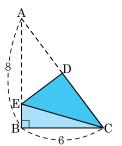
 $\therefore \overline{BC} = \sqrt{2} + 2 + \sqrt{2} = 2\sqrt{2} + 2(cm)$


27. 다음 그림은 좌표평면 위에 반지름의 길이 가 1 인 사분원과 원점을 지나는 직선 *l*, *m* 을 그린 것이다. 직선 *l*, *m* 이 *x* 축과 이루는

을 그린 것이다. 직선 *l*, *m* 이 *x* 축과 이루는 예각의 크기를 각각 A, B 라 할 때, 다음 중 옳지 <u>않은</u> 것은?

- ① $\sin A = y_1$ ② $\cos A = x_2$ ③ $\tan A = y_3$ ④ $\cos B = x_1$

28. 다음 그림은 ∠A = 90° 인 직각삼각형 ABC 의 세 변을 지름으로 하는 반원을 각각 그린 것이다. 색칠한 부분의 넓이를 구하여라.


답:

▷ 정답: 6√3

색칠된 부분의 넓이는 ΔABC 의 넓이와 같다.

 $\overline{AC} = \frac{\overline{BC}}{2} = 2\sqrt{3}, \ \overline{AB} = \overline{BC} \times \frac{\sqrt{3}}{2} = 6$

29. 다음 그림과 같이 $\angle B$ 가 직각인 직각삼각형이 고 \overline{DE} 를 접선으로 점 A 가 점 C 와 겹쳐지 도록 접었을 때, $\triangle CDE$ 의 넓이와 $\triangle ECB$ 의 넓이의 합을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{117}{8}$

$\overline{\mathrm{EB}} = x$ 라 두면 $\overline{\mathrm{AE}} = \overline{\mathrm{EC}} = 8 - x$ 이고

ΔEBC 가 직각삼각형이므로

 $(8-x)^2 = x^2 + 6^2, x = \frac{7}{4}$ 이고,

 $\triangle ABC$ 가 직각삼각형이므로 $\overline{AC}^2=8^2+6^2,\ \overline{AC}=10$ 이다. $\triangle ADE$ 가 직각삼각형이므로

 $\overline{\rm DE}^2 = \left(\frac{25}{4}\right)^2 - 5^2, \ \overline{\rm DE} = \frac{15}{4}$ 이다.

 Δ EDC 의 넓이는 $\frac{1}{2} \times 5 \times \frac{15}{4} = \frac{75}{8}$ 이고, \triangle EBC 의 넓이는 $\frac{1}{2} \times \frac{7}{4} \times 6 = \frac{21}{4}$ 이다.

따라서 합은 $\frac{75}{8} + \frac{21}{4} = \frac{117}{8}$ 이다.

30. 다음 그림과 같이 정삼각형 ABC 의 높이 AD 를 한 변으로 하는 정삼각형 ADE 의 넓이가 12 √3 cm² 일 때, △ABC 의 넓이를 구하면?

E C

 $3 16 \sqrt{2} \,\mathrm{cm}^2$

① $12\sqrt{3}\,\mathrm{cm}^2$

- ② $16\sqrt{3} \text{ cm}^2$ ④ $12\sqrt{6} \text{ cm}^2$
- $3 12 \sqrt{2} \text{ cm}^2$

 $\sqrt{\mathrm{AD}} = h\,\mathrm{cm}$ 라 하면,

 $\triangle ADE$ 의 넓이= $\frac{\sqrt{3}}{4} \times h^2 = 12\sqrt{3}$

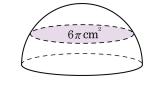
따라서, $h=4\sqrt{3}$ $\triangle ABC$ 의 한 변을 x (cm) 로 두면,

$$\frac{\sqrt{3}}{2}x = 4\sqrt{3}$$
 이므로 $x = 8$
 : $\triangle ABC = \frac{\sqrt{3}}{4} \times 8^2 = 16\sqrt{3} \text{ (cm}^2)$ 이다.

31. 다음 그림과 같은 $\square ABCD$ 에서 $\overline{AB} = \overline{AD} = 6 \mathrm{cm}$, $\overline{BC} = 10 \mathrm{cm}$, $\angle C = \angle D = 90^\circ$ 이고, 점 A 에서 \overline{BD} 에 내린 수선의 발을 H 라 할 때, \overline{AH} 의 길이를 구하여라.

6cm H

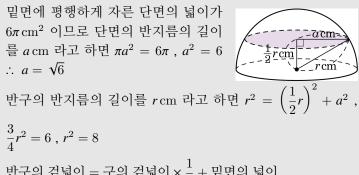
 $\underline{\mathrm{cm}}$


정답: √6 cm

답:

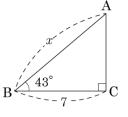
해설

점 A 에서 \overline{BC} 에 내린 수선의 발을 I 라 하면 $\begin{array}{c}
A \xrightarrow{6 \text{ cm}} & D \\
B \xrightarrow{I} & 10 \text{ cm}
\end{array}$ $\overline{BI} = 4 \text{ cm}, \overline{AI} = \sqrt{36 - 16} = 2\sqrt{5} \text{ (cm)}$ $\therefore \overline{DC} = 2\sqrt{5} \text{ (cm)}$ $\overline{BD} = \sqrt{10^2 + (2\sqrt{5})^2} = \sqrt{120} = 2\sqrt{30} \text{ (cm)}$ $\overline{AB} = \overline{AD} \circ | \Box \overline{BH} = \overline{HD} = \sqrt{30} \text{ cm}$ $\therefore \overline{AH} = \sqrt{6^2 - (\sqrt{30})^2} = \sqrt{6} \text{ (cm)}$


32. 다음 반구에서 반지름의 $\frac{1}{2}$ 지점을 지나고 밑면에 평행하게 자른 단면의 넓이가 $6\pi \text{cm}^2$ 일 때, 반구의 겉넓이를 구하면?

 $424\pi\,\mathrm{cm}^2$

① $6\pi \,\mathrm{cm}^2$


- $2 12\pi \,\mathrm{cm}^2$ $\Im 30\pi\,\mathrm{cm}^2$
- $3 18\pi \,\mathrm{cm}^2$

한구의 겉넓이 = 구의 겉넓이
$$\times \frac{1}{2}$$
 + 밑면의 넓이 구의 겉넓이 $\times \frac{1}{2}$ = $4\pi r^2 \times \frac{1}{2}$ = $4\pi \times 8 \times \frac{1}{2}$ = $16\pi (\text{cm}^2)$

밑면의 넓이 =
$$\pi r^2 = \pi \times 8 = 8\pi (\text{cm}^2)$$

따라서 반구의 겉넓이는 $16\pi + 8\pi = 24\pi (\text{cm}^2)$ 이다.

 ${f 33}$. 다음 그림과 같은 직각삼각형 ABC 에서 ${f AB}$ 를 x 라 할 때, x 값으로 옳은 것을 모두 고르 면?(정답 2개)

 $\cos B = \cos 43^{\circ} = \frac{7}{x}$ 따라서 $x = \frac{7}{\cos 43^{\circ}}$ 이다. $\angle A = 90^{\circ} - 43^{\circ} = 47^{\circ}$ 이므로 $\sin A = \sin 47^{\circ} = \frac{7}{x}$ 따라서 $x = \frac{7}{\sin 47^{\circ}}$ 이다.