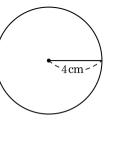

1. 다음 그림에서 점 O는 삼각형 $\triangle ABC$ 의 외심일 때, x의 값을 구하여라.

▶ 답:

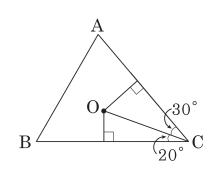

▷ 정답: 8 cm

해설

△ADO ≡ △CDO(RHS 합동)

 $\therefore x = \overline{AD} = 8 \text{ cm}$

2. 지원이는 그림과 같은 원에 원의 둘레 위에 꼭짓점을 두는 직각삼각형을 그리려고 한다. 직각삼각형의 빗변의 길이를 구하여라.


 ► 답:

 ▷ 정답:
 8 cm

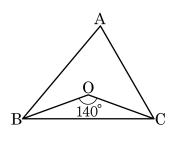
해설 삼각형의 외심에서 꼭짓점까지의 거리는 외접원의 반지름과 같고, 직각삼각형의 외심은 빗변의 중심에 있으므로 빗변의 길이는 외접원의 반지름의 두 배이다. 따라서 $2 \times 4 = 8(cm)$ 이다.

cm

3. 다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, ∠B 의 크기를 구하여라.

답:

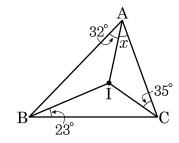
정답: 60 °


해설

 $\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이므로 $\angle\mathrm{OBC} = 20\,^\circ$ $\angle\mathrm{OAB} + \angle\mathrm{OBC} + \angle\mathrm{OCA} = 90\,^\circ$ 에서 $\angle\mathrm{OAB} = 90\,^\circ - (20\,^\circ + 30\,^\circ) = 40\,^\circ$

 $\therefore \angle B = 40^{\circ} + 20^{\circ} = 60^{\circ}$

 $\overline{OA} = \overline{OB}$ 이므로 $\angle OBA = 40^{\circ}$

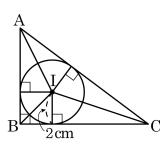

4. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. \angle BOC = 140° 일 때, \angle BAC를 구하여라.

해설

$$\angle BAC = \angle BOC \times \frac{1}{2} = 140 \times \frac{1}{2} = 70^{\circ}$$

다음 그림에서 점 I가 △ABC의 내심일 때 ∠x = ()°이다.
 () 안에 들어갈 알맞은 수를 구하여라.

▶ 답:


➢ 정답: 32

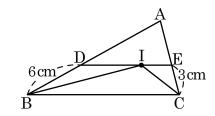
해설

삼각형의 세 내각의 이등분선의 교점이 삼각형의 내심이다. 따라서 $\angle {
m BAI} = \angle {
m CAI} = 32\,^{\circ}$ 이다.

6.	민수는 삼각형 모양의 색종이를 잘라 최대한 큰 원을 만들려고 한다 순서대로 기호를 써라.
	① 세 내각의 이등분선의 교점을 I 라고 한다.
	© 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다.
	© 그린 원을 오린다.
	② 세 내각의 이등분선을 긋는다.
	■ 답:
	▶ 답:
	답:
	▶ 답:
	▷ 정답: ②
	▷ 정답: ⑤
	▷ 정답: ⑥
	➢ 정답: □
	해설
	1. 세 내각의 이등분선을 긋는다. 2. 세 내각의 이등분선의 교점을 I 라고 한다. 3. 점 I 에서 한 변까지의 거리를 반지름으로 하는 원을 그린다. 4. 그린 원을 오린다.

7. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고, 내접원의 반지름의 길이는 2cm 이다. \triangle ABC 의 넓이가 24cm² 일 때, \triangle ABC 의 세변의 길이의 합을 구하여라.

cm

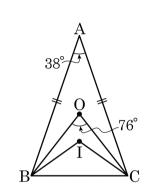

▷ 정답: 24 cm

답:

 \triangle ABI, \triangle BCI, \triangle ICA 의 높이는 같으므로, 삼각형의 넓이는 $\frac{1}{2} \times (\overline{AB} + \overline{BC} + \overline{CA}) \times 2 = 24$

$$\therefore \overline{AB} + \overline{BC} + \overline{CA} = 24cm$$

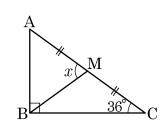
8. 다음 그림과 같이 $\triangle ABC$ 의 내심 I 를 지나고 \overline{BC} 에 평행한 직선과 \overline{AB} , \overline{AC} 와의 교점을 각각 D,E 라고 한다. $\overline{BD}=6~\mathrm{cm}$, $\overline{CE}=3~\mathrm{cm}$ 일 때, \overline{DE} 의 길이를 구하여라.



해설

$$\overline{\mathrm{BD}} = \overline{\mathrm{DI}}, \ \overline{\mathrm{CE}} = \overline{\mathrm{IE}}$$

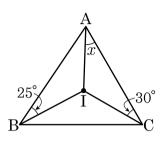
$$\therefore \overline{DE} = \overline{DI} + \overline{IE} = 6 + 3 = 9(\text{ cm})$$


9. 다음 그림은 이등변삼각형 ABC 이다. 점 O 는 외심, 점 I 는 내심이고, $\angle A = 38^{\circ}, \angle O = 76^{\circ}$ 일 때, $\angle IBO$ 의 크기는?

①
$$14^{\circ}$$
 ② 15.2° ③ 16.5° ④ 17° ⑤ 17.5°

$$\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 109^{\circ}$$

 $\angle OBC = 52^{\circ}$, $\angle IBC = 35.5^{\circ}$ $\angle OBI = \angle OBC - \angle IBC = 52^{\circ} - 35.5^{\circ} = 16.5^{\circ}$ **10.** 다음 그림과 같은 직각삼각형 ABC 에서 빗변 AC 의 중점은 M 이고 \angle ACB = 36 $^{\circ}$ 일 때 \angle AMB 의 크기는?



① 62° ② 64° ③ 68° ④ 70° ⑤72°

직각삼각형의 외심은 빗변의 중점이므로
$$\overline{AM} = \overline{CM} = \overline{BM} \cdots$$
 이 따라서 ΔBMC 는 이등변삼각형이다. $\Delta BMC = 36^\circ$

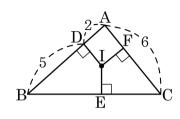
 $\angle AMB = \angle MCB + \angle MBC = 36^{\circ} + 36^{\circ} = 72^{\circ}$

11. 다음 그림에서 점 I는 \triangle ABC의 내심일 때, $\angle x$ 값은 얼마인가?

- ① 30° ② 31° ③ 32° ④ 33°

해설

점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다.


점 I가 세 내각의 이등분선의 교점이므로 $\angle IBC = \angle ABI = 25$ ° 이다.

삼각형의 내각의 합은 180°이므로 ∠BIC = 180°-30°-25°= 125°이다.

$$\angle BIC = 90^{\circ} + \frac{1}{2} \angle A, 125^{\circ} = 90^{\circ} + \frac{1}{2} \angle A, \angle A = 70^{\circ}$$

$$\therefore \ \angle x = \angle \text{CAI} = \frac{1}{2} \angle \text{A} = 35^{\circ}$$

12. 다음 그림에서 점 $I 는 \triangle ABC$ 의 내심이다. \overline{BC} 의 길이는?

① 6

2) 7

(3)

4)9

⑤ 10

해설

$$\overline{AD} = \overline{AF} = 2$$
이고, $\overline{BD} = \overline{BE} = 5$ 이다. $\overline{CE} = \overline{AC} - \overline{AF} = 6 - 2 = 4$ 이므로

 $\overline{BC} = \overline{BE} + \overline{EC} = 9$