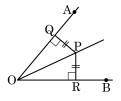

1. 다음 그림과 같은 직각삼각형에 대하여 물음에 답하여라.


- (1) 합동인 두 삼각형을 기호로 나타내어라.
- (2) 합동조건을 써라.
- (3) $\overline{\rm DE}$ 의 길이를 구하여라.
- ▶ 답:
- ▶ 답:
- 답:
- \triangleright 정답: (1) $\triangle ABC \equiv \triangle DEF$
- ▷ 정답: (2) RHA
- ➢ 정답: (3) 9 cm

$$\angle B = \angle E = 90^{\circ}, \overline{AC} = \overline{DF}, \angle ACB = \angle DFE \circ]$$
므로 $\triangle ABC \equiv$

△DEF (RHA 합동)

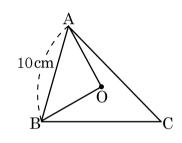
$$\therefore \overline{\mathrm{DE}} = \overline{\mathrm{AB}} = 9\,\mathrm{cm}$$

다음 그림의 $\angle AOB$ 의 내부의 한 점 P 에서 두 변 \overline{OA} , \overline{OB} 에 내린 수선의 발을 각각 Q, R 이라고 하였을 때, $\overline{QP}=\overline{RP}$ 이다. 다음 중 옳지 <u>않은</u> 것은?

①
$$\triangle QPO = \triangle RPO$$

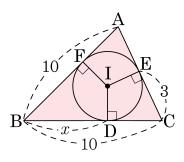
$$\overline{\text{QO}} = \overline{\text{PO}}$$

$$\textcircled{4} \angle OPQ = \angle OPR$$


$$\bigcirc$$
 $\angle QOP = \angle ROP$

- (해설)

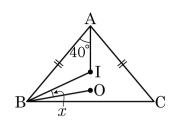
각을 이루는 두 변에서 같은 거리에 있는 점은 그 각의 이등분선


위에 있다. $\overline{QP} = \overline{RP}$ 이므로 \overline{OP} 는 $\angle QOR$ 의 이등분선이다. 그러므로 $\overline{QO} \neq \overline{PO}$ 이다.

3. 다음 그림에서 점 O는 $\triangle ABC$ 의 외심이다. $\overline{AB}=10~\mathrm{cm}$ 이고, $\triangle AOB$ 의 둘레의 길이가 $24~\mathrm{cm}$ 일 때, $\triangle ABC$ 의 외접원의 반지름의 길이는?

점 O가
$$\triangle ABC$$
의 외심이므로 $\overline{OA} = \overline{OB}$
따라서 $\triangle AOB$ 의 둘레의 길이는
 $\overline{OA} + \overline{OB} + \overline{AB} = 2\overline{OA} + 10 = 24$
 $\therefore OA = 7 \text{ (cm)}$

4. 다음 그림에서 점 I 는 ΔABC 의 내심이다. x 의 값을 구하여라.



▷ 정답: 7

점 I가 $\triangle ABC$ 의 내심이므로 $\overline{CE} = \overline{CD} = 3$ 이다. $\overline{BC} = \overline{BD} + \overline{CD} = x + 3 = 10$

$$\therefore x = \overline{BD} = 7$$

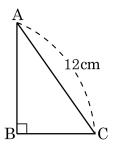
5. 다음 그림에서 I, O 는 $\overline{AB} = \overline{AC}$ 인 이등변삼각형의 내심, 외심일 때 $\angle x$ 의 크기를 구하여라.

▶ 답:

정답: 15 °

$$\frac{1}{2}$$
 $\angle BOC = \angle A$ 이므로
 $\angle A = 80^{\circ}, \angle BOC = 160^{\circ}$ 이다.

$$\triangle ABC$$
의 내심이 점 I일 때,


$$\frac{1}{2}$$
 $\angle A + 90$ ° = $\angle BIC$ 이므로

$$\angle BIC = \frac{1}{2} \times 80^{\circ} + 90^{\circ} = 130^{\circ}$$
이다.

$$\triangle$$
OBC 도 이등변삼각형이므로 \angle OBC = $10\,^{\circ}$ 이다.
또, \angle IBC = $\frac{1}{2}$ \angle ABC = $\frac{1}{2}$ \times 50 $^{\circ}$ = $25\,^{\circ}$ 이다.

따라서 ∠OBI = ∠IBC - ∠OBC =
$$25$$
° - 10 ° = 15 °이다.

6. 다음 직각삼각형 ABC에서 다음을 구하여라.

- (1) 외접원의 반지름의 길이
- (2) 외접원의 넓이
- 답:
- ▶ 답:
- ▶ 정답:
 (1) 6 cm
- ightharpoonup 정답: (2) $36\pi\,{
 m cm}^2$

해설

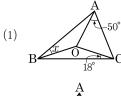
- (1) 직각삼각형에서 외심의 위치는 빗변의 중점이므로
 - (외접원의 반지름의 길이)= $\frac{1}{2}\overline{AC} = \frac{1}{2} \times 12 = 6$ (cm)
- (2) 외접원의 넓이는 $\pi \times 6^2 = 36\pi (\text{cm}^2)$

7. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $96cm^2$ 일 때, 내접원의 반지름의 길이를 구하여라.

cm

답:

➢ 정답: 4 cm


해설

내접원의 중심을 I라고 하면, \triangle ABI, \triangle IBC, \triangle ICA 의 높이는 내접원의 반지름과 같다. 내접원의 반지름을 x 라 하면 $\frac{1}{2}(12+$

16 + 20)x = 96cm²

 $\therefore x = 4 \text{cm}$

8. 다음 그림에서 점 O가 \triangle ABC의 외심일 때, $\angle x$ 의 크기를 구하여라.

- ▶ 답:
- ▶ 답:

해설

- ▷ 정답: (1) 22°
- ▷ 정답: (2) 35°

(1)
$$\angle x + 50^{\circ} + 18^{\circ} = 90^{\circ}$$

$$\therefore \angle x = 22^{\circ}$$
(2) $\angle x + 30^{\circ} + 25^{\circ} = 90^{\circ}$

$$\therefore \angle x = 35^{\circ}$$