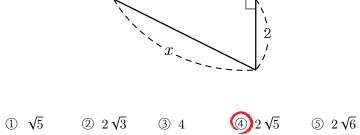
1. 다음 그림에서 x 의 값은?

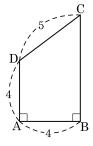


피타고라스 정리에 따라 $4^2 + 2^2 = x^2$ $x^2 = 20$

해설

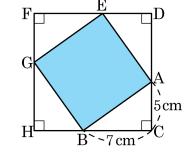
x > 0 이므로 $x = 2\sqrt{5}$ 이다.

2. 다음 그림에서 \overline{BC} 의 길이는?



① 7 ② 8 ③ 9 ④ 10 ⑤ 11

점 D를 지나면서 \overline{AB} 에 평행한 보조선을 긋고 \overline{BC} 와의 교점을 E라고 하자. ΔDEC 에 피타고라스 정리를 적용하면 $\overline{EC}=3$ 따라서 $\overline{BC}=4+3=7$ 이다. 3. 다음 그림의 □FHCD 는 △ABC 와 합동인 직각삼각형을 이용하여 만든 사각형이다. □BAEG 의 넓이를 구하여라.



 $474 \, \mathrm{cm}^2$

① $71 \, \mathrm{cm}^2$

- ② $72 \,\mathrm{cm}^2$ ③ $75 \,\mathrm{cm}^2$

 $373 \,\mathrm{cm}^2$

해설

 $\overline{AB} = \sqrt{7^2 + 5^2} = \sqrt{49 + 25} = \sqrt{74}$ $\Box BAEG = (\sqrt{74})^2 = 74 \text{ (cm}^2)$

- 4. 두 변의 길이가 $6 \, \mathrm{cm}$, $7 \, \mathrm{cm}$ 인 직각삼각형에서 남은 한 변의 길이를 모두 고르면? (정답 $2 \, \mathrm{TM}$)
 - ① 8 cm ④ 5 √3 cm
- $\sqrt{13}$ cm $\sqrt{85}$ cm
 - ③ 13 cm
- O 0 10 0.
- VOJ CII.

-- 직각삼각형에서 세변의 길이를 6,7,x 라고 두자.

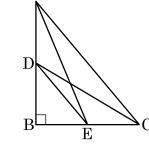
7을 가장 긴 변으로 하면

 $7^2 = 6^2 + x^2$ 에서

 $x^2 = 7^2 - 6^2 = 13$ $\therefore x = \sqrt{13}$ x 를 가장 긴 변으로 하면

 $x = \sqrt{7^2 + 6^2} = \sqrt{85}$ ∴ $x = \sqrt{13} \, \text{\mathbb{E}} \dots \sqrt{85} \text{ (cm)}$

5. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{DE}^2+\overline{AC}^2=3\sqrt{3}$ 일 때, $\overline{AE}^2+\overline{DC}^2$ 의 값은?



- ① $\sqrt{21}$ ② $\sqrt{23}$ ③ 5

 $4 3\sqrt{3}$

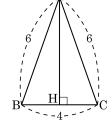
⑤ $\sqrt{29}$

 $\overline{AE}^2 + \overline{DC}^2 = \overline{DE}^2 + \overline{AC}^2$ 이므로 $\overline{DE}^2 + \overline{AC}^2 = 3\sqrt{3}$

 ${f 6}$. 다음 그림의 이등변삼각형 ABC 에서 높이 $\overline{
m AH}$

해설

① $\sqrt{2}$ ② $2\sqrt{2}$ ③ $3\sqrt{3}$



 $\overline{AH} = \sqrt{6^2 - 2^2} = 4\sqrt{2}$

- 7. 다음 그림과 같이 $\overline{AB} = 4\sqrt{3}$ 이고 $\angle ACB = 45$ °, $\angle DBC = 60$ ° 일 때, \overline{BD} 의 길이를 구하여라.

▶ 답: ightharpoons 정답 : $\overline{\mathrm{BD}}=8\,\sqrt{3}$

 $\overline{BC} = \overline{AB} = 4\sqrt{3}$ $\overline{BD} = 2\overline{BC} = 8\sqrt{3}$

좌표평면 위의 두 점 A(-1, 1), B(x, 5) 사이의 거리가 4 $\sqrt{2}$ 일 때, x 8. 의 값을 구하여라.

▶ 답: ▶ 답:

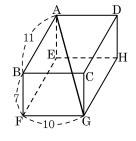
➢ 정답: x = 3 ➢ 정답: x = −5

해설

 $\overline{AB} = \sqrt{(x+1)^2 + (5-1)^2} = 4\sqrt{2}$ $(x+1)^2 + 16 = 32$ $(x+1)^2 = 16$

 $x + 1 = \pm 4$ $\therefore x = -1 \pm 4$ 따라서 x = 3 또는 x = -5 이다.

 $oldsymbol{9}$. 다음 그림과 같은 직육면체에서 대각선 $oldsymbol{AG}$ 의 길이를 구하여라.



① $3\sqrt{3}$ ② $6\sqrt{15}$ ③ $3\sqrt{30}$ ④ $15\sqrt{2}$ ⑤ $6\sqrt{5}$

 $\overline{AG} = \sqrt{7^2 + 10^2 + 11^2}$ $= \sqrt{49 + 100 + 121} = 3\sqrt{30}$

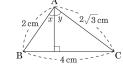
해설

10. 어떤 정육면체의 대각선의 길이가 9 일 때, 이 정육면체의 한 모서리의 길이는?

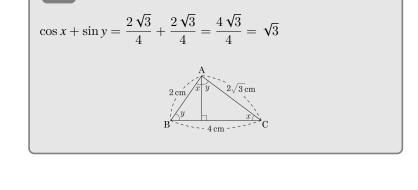
① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $6\sqrt{3}$ ④ 6 ⑤ $2\sqrt{6}$

한 모서리의 길이가 a인 정육면체의 대각선의 길이는 $\sqrt{a^2+a^2+a^2}=\sqrt{3}a$ 이므로 $\sqrt{3}a=9$ 에서 $a=3\sqrt{3}$ 이다.

11. 다음 그림에서 $\cos x + \sin y$ 의 값을 구하여라.



① $\sqrt{2}$ ② $2\sqrt{2}$ ③ $\sqrt{3}$ ④ $2\sqrt{3}$ ⑤ $3\sqrt{3}$



12. $\sin A = \frac{\sqrt{2}}{2} \mbox{ 인 직각삼각형 ABC 에서 } \cos A$, $\tan A$ 의 값을 각각 구하면? (단, $0^{\circ} < A < 90^{\circ}$)

① $\cos A = \frac{\sqrt{3}}{2}$, $\tan A = 1$ ② $\cos A = \frac{\sqrt{2}}{2}$, $\tan A = 2$ ③ $\cos A = 2\sqrt{3}$, $\tan A = 1$ ④ $\cos A = 3\sqrt{3}$, $\tan A = \frac{1}{2}$ ⑤ $\cos A = \frac{\sqrt{2}}{2}$, $\tan A = 1$

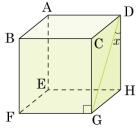
③
$$\cos A = 2\sqrt{3}$$
, $\tan A = 1$ ④ $\cos A = 3\sqrt{3}$, $\tan A = \sqrt{2}$

$$(5)\cos A = \frac{\mathbf{v}^2}{2}, \ \tan A = 1$$

$$\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{\sqrt{2}}{2}$$
 이므로 $\overline{BC} = \overline{AB} \times \sin A = 6 \times \frac{\sqrt{2}}{2} = 3\sqrt{2}$ 이다.
피타고라스 정리에 의해 $\overline{AC} = \sqrt{6^2 - (3\sqrt{2})^2} = 3\sqrt{2}$ 이다.

따라서
$$\cos A = \frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2}, \tan A = \frac{\sin A}{\cos A} = \frac{3\sqrt{2}}{3\sqrt{2}} = 1$$
 이다.

13. 다음 그림과 같은 한 변의 길이가 2 인 정육면체에서 $\angle GDH$ 가 x 일 때, $\cos x$ 의 값이 $\frac{\sqrt{a}}{b}$ 이다. 이때, a+b의 값을 구하시 B오.(단, a, b는 유리수)



 답:

 ▷ 정답:
 4

 $\overline{\mathrm{DG}} = 2\sqrt{2}$

DH = 2 이므로 2

따라서 a+b=4 이다.

14. 다음 삼각비의 값을 크기가 작은 것부터 차례로 나열한 것은?

□ sin 90°	\bigcirc $\cos 60^{\circ}$	\bigcirc $\cos 90^{\circ}$
	(a) sin 60°	
	2 LB785	3 CLOGE
4 27000	5 07LC2	
해설		
$\Im \sin 90^\circ = 1$		
$\bigcirc \cos 60^{\circ} = \frac{1}{2}$		
$\equiv \tan 60^\circ = \sqrt{3}$		

 $\boxdot \cos 90^\circ < \boxdot \cos 60^\circ < \boxdot \sin 60^\circ < \boxdot \sin 90^\circ < \boxdot \tan 60^\circ$

15. 다음 삼각비의 값 중 가장 작은 값은?

① sin 25° 와 ③ cos 10°

 $0^{\circ} \le x < 45^{\circ}$ 일 때, $\sin x < \cos x$ 따라서 $\sin 25^{\circ} < \cos 10^{\circ} < 1$

 $2 \cos 0^{\circ} = 1$ $4 \tan 45^{\circ} = 1$

 $\begin{array}{c|c}
4 & \tan 45 ° = 1 \\
\hline
5 & \tan 60 ° = \sqrt{3}
\end{array}$

따라서 가장 작은 값은 ① sin 25°

| 백년시 기경 취근 없는 |

16. 다음은 어느 빵집에서 월요일부터 일요일까지 매일 판매된 크림빵의 개수를 나타낸 것이다. 하루 동안 판매된 크림빵의 개수의 중앙값이 20, 최빈값이 28일 때, 화요일과 금요일에 판매된 개수의 합을 구하 여라.

요일	월	화	수	목	금	토	일
크림빵의 개수	14	у	4	18	х	28	21

답: ➢ 정답: 48

최빈값이 28이므로 x = 28 또는 y = 28 이다.

해설

x = 28 이라고 하면 4, 14, 18, 21, 28, 28, y에서 중앙값이 20 이므로 y = 20이다.

따라서 화요일과 금요일에 판매된 개수의 합은

20 + 28 = 48 이다.

17. 영희가 4회에 걸쳐 치른 음악 실기시험 성적은 15점, 18점, 17점, x 점이고, 최빈값은 18점이다. 5회의 음악 실기 시험 성적이 높아서 5회까지의 평균이 4회 까지의 평균보다 1점 올랐다면 5회의 성적은 몇점인지 구하여라.

점

정답: 22 점

▶ 답:

최빈값이 18점이므로 x = 18(점)이다. 4회까지의 평균은 $\frac{15+18+17+18}{4} = \frac{68}{4} = 17(점)$ 이다. 5회까지의 평균은 17+1=18(A)이고

5 회까지의 평균은 17 + 1 = 18(점)이고 5회 성적을 y점이라 하면 $\frac{15+18+17+18+y}{5}=18(점)이다.$ 68+y=90

∴ y = 22(점)

18. 다음은 올림픽 국가대표 선발전에서 준결승을 치른 양궁 선수 4명의 점수를 나타낸 것이다. 네 선수 중 표준 편차가 가장 큰 선수를 구하여라.

기영	10, 9, 8, 8, 8, 8, 9, 10, 10
준수	10, 10, 10, 9, 9, 9, 8, 8, 8
민혁	10, 9, 9, 9,8, 8, 9, 9, 10
동현	8, 10, 7, 8, 10, 7, 9, 10, 7

답:▷ 정답: 동현

해설

표준편차는 자료가 흩어진 정도를 나타내므로 주어진 자료들

중에서 표준편차가 가장 큰 선수는 동현이다.

19. 다음은 수희의 5 회에 걸친 $100 \mathrm{m}$ 달리기 기록이다. 달리기 기록의 평균이 16 초, 분산이 1.2초일 때, x,y의 값을 각각 구하여라.(단 4 회 보다 2 회의 기록이 더 좋았다.)

회차	1	2	3	4	5
기록(초)	17	х	16	у	14

답:

▶ 답:

➢ 정답: x = 16 ➢ 정답: y = 17

 $\frac{17 + x + 16 + y + 14}{5} = 16, x + y = 33 \text{ or}.$ $\frac{1 + (x - 16)^2 + 0 + (y - 16)^2 + 4}{5} = 1.2, (x - 16)^2 + (y - 16)^2 = 3.2$

1 이다. 두 식을 연립해서 풀면, x = 16, y = 17 이다.

 ${f 20.}$ 다음 중 [보기] A, B, C 의 표준편차의 대소 관계를 바르게 나타낸 것은?

- A. 1 부터 50 까지의 자연수 B. 51 부터 100 까지의 자연수
- C. 1 부터 100 까지의 홀수

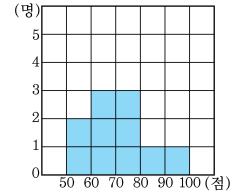
④ B>C>A ⑤ A=B=C

① C>A=B ② A>B=C ③ C>A>B

해설

A 와 B 의 표준편차는 같고, C 의 표준편차는 이들보다 크다.

21. 다음 히스토그램은 학생 10명의 과학 성적을 나타낸 것이다. 이 자료 의 분산은?



- ① 12 ② 72 ③ 80 ④ 120

- **⑤**144

해설

평균: $\frac{55 \times 2 + 65 \times 3 + 75 \times 3 + 85 \times 1}{10} + \frac{95 \times 1}{10} = 71$

$$\frac{35 \times 1}{10} = 71$$

편차: -16, -6, 4, 14, 24

분산: $\frac{(-16)^2 \times 2 + (-6)^2 \times 3 + 4^2 \times 3}{14^2 \times 1 + 24^2 \times 1} + \frac{1440}{10} = 144$

$$\frac{1440}{10} = 144$$

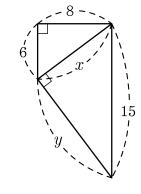
22. 다음은 학생 8 명의 국어 시험의 성적을 조사하여 만든 것이다. 이 분포의 분산은?

계급	도수
55 ^{이상} ∼ 65 ^{미만}	3
65 ^{이상} ~ 75 ^{미만}	a
75 ^{이상} ~ 85 ^{미만}	1
85 ^{이상} ~ 95 ^{미만}	1
합계	8

① 60 ② 70 ③ 80 ④ 90 ⑤ 100

계급값이 60 일 때의 도수는 a=8-(3+1+1)=3 이므로 이 분포의 평균은 (평균) $=\frac{\left\{(계급값)\times(\Sigma +)\right\} 의 총합}{(\Sigma +) 의 총합}$ $=\frac{60\times3+70\times3+80\times1+90\times1}{8}$ $=\frac{560}{8}=70(점)$ 따라서 구하는 분산은 $\frac{1}{8}\left\{(60-70)^2\times3+(70-70)^2\times3+(80-70)^2\times1+(90-70)^2\times1\right\}$ $=\frac{1}{8}(300+0+100+400)=100$ 이다.

23. 다음 그림에서 x, y의 값을 각각 구하면?



- 3 x = 10, y = 8
- ① x = 10, $y = 5\sqrt{5}$ ② $x = 5\sqrt{5}$, y = 10① $x = 5\sqrt{2}$, $y = 5\sqrt{5}$
- ⑤ x = 10, y = 10

위 삼각형에서 피타고라스 정리에 따라

 $x^2 = 6^2 + 8^2$ x > 0 이므로 x = 10 이고,

아래 삼각형에서 피타고라스 정리에 따라 $y^2 + x^2 = y^2 + 10^2 = 15^2$ $y^2 = 15^2 - 10^2 = 125$

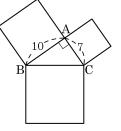
y > 0 이므로 $y = 5\sqrt{5}$ 이다.

- 24. 다음 그림과 같이 \Box OABC 는 정사각형이고 두 점 D , F 는 각각 점 O 를 중심으로 하고, $\overline{\mathrm{OB}}$, $\overline{\mathrm{OE}}$ 를 반지름으로 하는 원을 그릴 때 x 축과 만나는 교점이다. \triangle ODE 의 넓이가 $\sqrt{2}$ 일 때, 점 D 의 x 좌표는?
- ① 2 $\sqrt{2}$ 3 $\sqrt{3}$ 4 $\sqrt{5}$
- ⑤ 4

 $\overline{\mathrm{OA}} = x$ 라고 두면 $\Delta\mathrm{ODE}$ 의 넓이는 $\frac{1}{2} \times x \sqrt{2} \times x = \sqrt{2}, x^2 =$

 $2, x = \sqrt{2}$ 이다. 따라서 점 D의 x좌표는 $x\sqrt{2} = \sqrt{2} \times \sqrt{2} = 2$ 이다.

25. 다음 그림은 직각삼각형 ABC 의 각 변을 한 변으로 하여 정사각형을 그린 것이다. \overline{AB} = 10, \overline{AC} = 7 일 때, \overline{BC} 를 포함하는 정사각형 의 넓이를 구하여라.



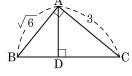
답:▷ 정답: 149

해설

$\overline{\mathrm{AB}}=10$ 을 한 변으로 하는 정사각형의 넓이는 100

 $\overline{AC} = 7$ 을 한 변으로 하는 정사각형의 넓이는 49 이므로 \overline{BC} 를 한 변으로 하는 정사각형의 넓이는 100 + 49 = 149 이다.

26. 직각삼각형 ABC 의 점 A 에서 \overline{BC} 에 내린 수선의 발을 D 라 하자. $\frac{\overline{BD}}{\overline{DC}} = \frac{2}{3}$ 일 때, $10\overline{BD}^2$ 의 값을 구하여라.



▶ 답:

▷ 정답: 24

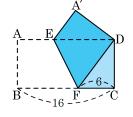
 $\dfrac{\overline{\mathrm{BD}}}{\overline{\mathrm{DC}}} = \dfrac{2}{3}$ 이므로 $\overline{\mathrm{BD}} = 2k, \overline{\mathrm{DC}} = 3k$ 라 하자. $\triangle ABD$ 와 $\triangle ABC$ 는 $\angle B$ 를 공통각으로 가지고 있으며 한 개씩의 직각을 가지고 있으므로 닮은 꼴이다.

닮은 삼각형의 성질을 이용하면

 $\overline{AB} : \overline{BD} = \overline{BC} : \overline{AB}$ $\overline{AB}^2 = \overline{BD} \times \overline{BC}$

 $2k \times 5k = 6$ 이므로 $10\overline{\mathrm{BD}}^2 = 40\mathrm{k}^2 = 24$

27. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접은 것이다. 이 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.



▶ 답:

▷ 정답: 8

해설

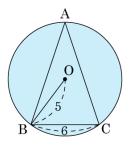
△DFC 에서

 $6^2 + x^2 = (16 - 6)^2$ $x^2 = 64$ x는 변의 길이이므로 x > 0

 $\therefore x = 8$

- 28. 다음 그림과 같이 반지름의 길이가 5 인 원 O 에 내접하는 삼각형 ABC 에서 $\overline{\mathrm{BC}}=6$ 일 때, sin A + cos A 의 값은?

 - ① $\frac{5}{6}$ ④ $\frac{12}{25}$



$\overline{\mathrm{BO}}$ 의 연장선과 원이 만나는 점을 A' 이라고 하면, $\overline{\mathrm{BA'}}$ 은 이

원의 지름이므로 $\overline{\mathrm{BA'}}=10$, $\angle\mathrm{A'CB}=90^\circ$, $\overline{\mathrm{A'C}}=8$ 이다.

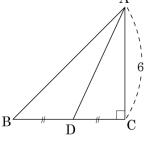
같은 호에 대한 원주각의 크기는 같으므로 $\angle A = \angle A'$

따라서 $\sin A = \sin A' = \frac{6}{10} = \frac{3}{5}$

 $\cos A = \cos A' = \frac{8}{10} = \frac{4}{5}$

따라서 $\sin A + \cos A = \frac{7}{5}$ 이다.

29. 다음 그림과 같이 $\angle C = 90^\circ$ 인 직각삼각 형 ABC 에서 $\overline{AC} = 6$, $\tan B = \frac{3}{4}$ 이고, \overline{BC} 의 중점이 D 일 때, \overline{AD} 의 길이를 구하여라.



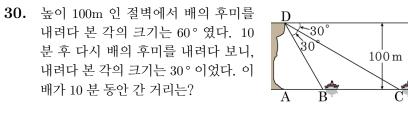
▶ 답:

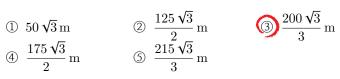
▷ 정답: 2√13

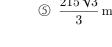
해설

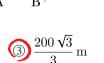
△ABC औऔ $\tan B = \frac{6}{\overline{BC}} = \frac{3}{4} \qquad \therefore \overline{BC} = 8$ $\therefore \overline{CD} = \frac{1}{2}\overline{BC} = 4$

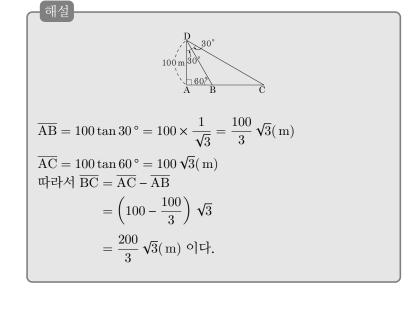
파라서 $\triangle ADC$ 에서 $\overline{AD} = \sqrt{4^2 + 6^2} = \sqrt{52} = 2\sqrt{13}$ 이다.



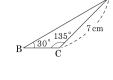








31. 다음 그림의 $\triangle ABC$ 에서 $\angle ACB=135^\circ, \ \overline{AC}=7cm$ 이다. \overline{AB} 의 길이를 구하여라.



 $\underline{\mathrm{cm}}$

답:

정답: 7√2 cm

 $\angle ACH = 180^{\circ} - 135^{\circ} = 45^{\circ}$ $\cos 45^{\circ} = \frac{\overline{CH}}{7}$ $\overline{CH} = 7\cos 45^{\circ} = 7 \times \frac{\sqrt{2}}{2} = \frac{7\sqrt{2}}{2} \text{ (cm)}$ $\overline{AH} = \overline{CH} = \frac{7\sqrt{2}}{2} \text{ (cm)}$ $\sin 30^{\circ} = \frac{\overline{AH}}{\overline{AB}}$ $\therefore \overline{AB} = \frac{7\sqrt{2}}{2} \div \frac{1}{2} = 7\sqrt{2} \text{ (cm)}$

 ${f 32}$. 다음 그림의 삼각형 ABC 에서 ${f \overline{AB}}=$ $10 \mathrm{cm}$, $\angle \mathrm{A} = 30^{\circ}$, $\angle \mathrm{CBH} = 60^{\circ}$ 이다. ○ CH 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

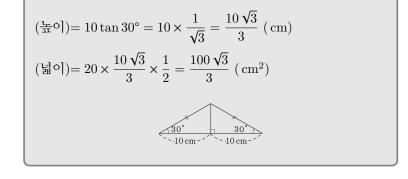
ightharpoonup 정답: $5\sqrt{3}$ $\underline{\mathrm{cm}}$

▶ 답:

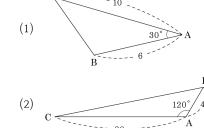
 $\overline{AB} = \overline{BC} = 10(cm)$ $\overline{\mathrm{CH}} = 10\sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}(\mathrm{cm})$

33. 다음 그림과 같이 합동인 두 직각삼각형의 빗변을 겹쳐 놓았을 때, 겹쳐진 부분의 넓이를 구하면?

- ① $\frac{100}{3} \text{ cm}^2$ ② $\frac{100\sqrt{2}}{3} \text{ cm}^2$ ③ $\frac{100\sqrt{3}}{3} \text{ cm}^2$ ④ $\frac{100\sqrt{5}}{3} \text{ cm}^2$ ⑤ $\frac{100\sqrt{6}}{3} \text{ cm}^2$



34. 다음 그림을 보고 두 삼각형 ABC의 넓이는?



- ① $(1)12(2)18\sqrt{3}$ ② $(1)12(2)20\sqrt{3}$ ③ $(1)14(2)18\sqrt{3}$
- $\textcircled{4} (1)14(2)20\sqrt{3} \tag{5} (1)15(2)20\sqrt{3}$

$$\begin{vmatrix} 1 & \frac{1}{2} \times 10 \times 6 \times \sin 30 \\ & \frac{1}{2} \times 10 \times 6 \times \frac{1}{2} = \end{vmatrix}$$

$$= \frac{1}{2} \times 10 \times 6 \times \frac{1}{2} = 1$$
(2) $\frac{1}{2} \times 20 \times 4 \times \sin(180^\circ)$

$$= \frac{1}{2} \times 20 \times 4 \times \sin 60$$

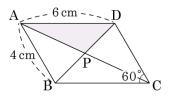
$$1 \qquad \sqrt{3}$$

(1)
$$\frac{1}{2} \times 10 \times 6 \times \sin 30^{\circ}$$

 $= \frac{1}{2} \times 10 \times 6 \times \frac{1}{2} = 15$
(2) $\frac{1}{2} \times 20 \times 4 \times \sin(180^{\circ} - 120^{\circ})$
 $= \frac{1}{2} \times 20 \times 4 \times \sin 60^{\circ}$
 $= \frac{1}{2} \times 20 \times 4 \times \frac{\sqrt{3}}{2} = 20 \sqrt{3}$

$$= \frac{1}{2} \times 20 \times 4 \times \frac{\sqrt{2}}{2}$$

35. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 와 AC 의 교점을 P라 한다. ∠BCD = 60°, ĀD = 6cm, ĀB = 4cm 일 때, △APD 의 넓이를 구하여라.



ightharpoonup 정답: $3\sqrt{3}$ $ext{cm}^2$

▶ 답:

해설

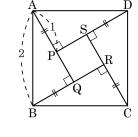
 $\triangle APD = \frac{1}{2} \triangle ABD$ $= \frac{1}{2} \times \frac{1}{2} \times 4 \times 6 \times \sin 60^{\circ}$ $= \frac{1}{2} \times \frac{1}{2} \times 4 \times 6 \times \frac{\sqrt{3}}{2}$ $= 3\sqrt{3} (cm^{2})$

 $\underline{\mathrm{cm}^2}$

- 36. 다음 그림과 같은 정사각형 ABCD 에서 $\overline{AP}=\overline{BQ}=\overline{CR}=\overline{DS}$ 일 때, 다음 설명 중에서 옳지 <u>않은</u> 것은?

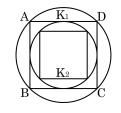
 - $\bigcirc \overline{AQ} = \sqrt{3}$

 - ⑤ \Box PQRS 는 한 변의 길이가 $\sqrt{3}$ – 1 인
 - 정사각형이다.



① $\square PQRS = (\sqrt{3} - 1)^2 = 4 - 2\sqrt{3}$ $\square ABCD = 4$ $\therefore \square PQRS \neq \frac{1}{4} \square ABCD$

37. 그림과 같이 지름의 길이가 $20 \, \mathrm{cm}$ 인 원에 내접 하는 정사각형을 K_1 이라 할 때, K_1 에 내접하는 원에 또 다시 내접하는 정사각형 K_2 의 한 변의 길이는 얼마인가?



▷ 정답: 10cm

_

▶ 답:

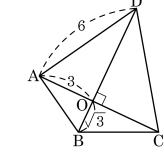
해설 지름의 길이가 20 cm 이므로 사각형 ABCD 의 대각선의 길이

는 $20\,\mathrm{cm}$ 이므로 정사각형 ABCD 의 한 변의 길이는 $10\,\sqrt{2}\,\mathrm{cm}$ 이다. 정사각형 ABCD 의 한 변의 길이는 안에 내접하는 작은 원의

 $\underline{\mathrm{cm}}$

지름이므로 작은 원의 지름은 $10\sqrt{2}$ cm 이고, 작은 원의 지름은 K_2 의 대각선의 길이와 같다. 따라서 K_2 는 대각선의 길이가 $10\sqrt{2}$ cm 인 정사각형이므로 K_2 의 한 변의 길이는 10 cm 이다.

 ${f 38}$. 다음 그림과 같이 □ ${f ABCD}$ 에서 두 대각선이 서로 직교하고, ${f AD}=$ $6,\overline{AO}=3,\overline{BO}=\sqrt{3}$ 일 때, $\overline{CD}^2-\overline{BC}^2$ 의 값을 구하여라.



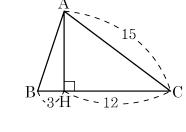
▷ 정답: 24

해설

▶ 답:

 ΔABO 에서 $\overline{AB}^2 = 3^2 + (\sqrt{3})^2 = 12$ 이므로 $\frac{12 + \overline{CD}^2}{\overline{CD}^2 - \overline{BC}^2} = \frac{\overline{BC}^2 + 6^2}{\overline{CD}^2 - \overline{BC}^2} = 36 - 12 = 24$

39. 다음 그림과 같은 삼각형 ABC 에 대하여 \overline{AB} 의 길이는?



 $4 3\sqrt{10}$

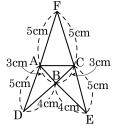
⑤ 5

 $\triangle AHC$ 에서 $\overline{AH}=\sqrt{15^2-12^2}=\sqrt{81}=9$ $\triangle ABH$ 에서 $\overline{AB}=\sqrt{9^2+3^2}=\sqrt{90}=3\sqrt{10}$

① $7\sqrt{2}$ ② 13 ③ $6\sqrt{2}$

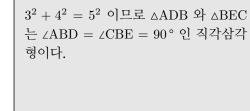
해설

40. 다음 그림과 같은 전개도를 가지는 삼각뿔의 부피를 구하여라.



▷ 정답: 6

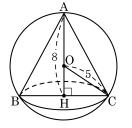
▶ 답:



(삼각뿔의 부피) =
$$\frac{1}{3} \times \triangle ABC \times \overline{DB}$$

= $\frac{1}{3} \times \frac{1}{2} \times 3^2 \times 4 = 6$

- 41. 다음 그림과 같이 반지름의 길이가 5 인 구에 내접해 있는 원뿔의 부피를 구하면?

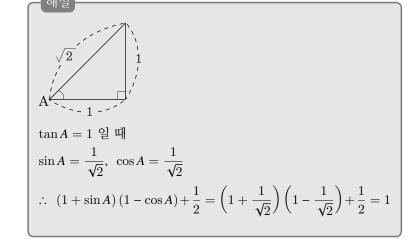


구의 반지름이 5 이므로 $\overline{\mathrm{OH}}=3$ 이고 $\overline{\mathrm{CH}}=4$ 이다.

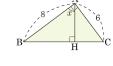
해설

따라서 원뿔의 부피는 $\pi \times 4^2 \times 8 \times \frac{1}{3} = \frac{128}{3}\pi$ 이다.

- **42.** $\tan A = 1$ 일 때, $(1 + \sin A)(1 \cos A) + \frac{1}{2}$ 의 값은?(단, $0^\circ < A < 90^\circ)$
 - ① $\frac{1}{2}$ ② 1 ③ $\sqrt{2}$ ④ $\sqrt{3}$ ⑤ $\frac{3\sqrt{3}}{2}$



43. 다음 그림에 대하여 $\sin x + \cos x$ 의 값을 구하여라.



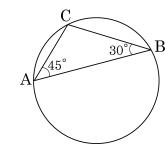
ightharpoonup 정답: $rac{7}{5}$

 $\overline{BC} = \sqrt{6^2 + 8^2} = 10$ 이다.

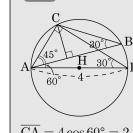
직각삼각형 ABC 와 직각삼각형 HBA 는 서로 AA 닮음이므로 ∠BAH = ∠ACH 이다. 따라서 $\sin x = \frac{4}{5}$, $\cos x = \frac{3}{5}$ 이고, $\sin x + \cos x = \frac{3}{5} + \frac{4}{5} = \frac{7}{5}$

이다.

44. 다음 그림과 같이 반지름의 길이가 2 인 원에 $\triangle ABC$ 가 내접하고 있다. $\angle A=45^\circ$, $\angle B=30^\circ$ 일 때, \overline{AB} 의 길이는?



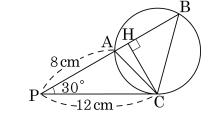
- $\sqrt{3}$ $\sqrt{2} + \sqrt{6}$
- ① $\sqrt{2}$ ② $\sqrt{6}$ ② $\sqrt{2} + \sqrt{6}$ ③ $2(\sqrt{2} + \sqrt{6})$



 $\overline{CA} = 4\cos 60^\circ = 2$

점 C 에서 \overline{AB} 에 내린 수선의 발을 H 라 하면 \overline{AH} = $\frac{\overline{CA}\cos 45^{\circ} = \sqrt{2} \circ | \overrightarrow{\Gamma}|.}{\overline{CH} = \overline{AH} = \sqrt{2}}$ $\frac{\overline{BH}}{\overline{BH}} = \frac{\overline{CH}}{\tan 30^{\circ}} = \sqrt{2} \times \sqrt{3} = \sqrt{6}$ $\therefore \overline{AB} = \sqrt{2} + \sqrt{6}$

45. 다음 그림에서 \overline{PC} 는 원의 접선이고 \overline{PB} 는 할선이다. $\angle P=30^\circ$, $\overline{PA}=8$ cm, $\overline{PC}=12$ cm 일 때, $\triangle ABC$ 의 넓이를 구하여라.



① 28 ② 29

330

④ 31

⑤ 32

 $\overline{PC^2} = \overline{PA} \times \overline{PB}, \quad 144 = 8 \times \overline{PB}$ $\overline{CH} = 12 \sin 30^\circ = 12 \times \frac{1}{2} = 6 \text{ (cm)}$ $\overline{PB} = 18 \text{ (cm)} \quad \overline{AB} = 18 - 8 = 10 \text{ (cm)}$ $(\triangle ABC \ \Box \ \Box \ \Box) = 10 \times 6 \times \frac{1}{2} = 30 \text{ (cm}^2)$