- **1.** 주머니 속에 10 원짜리, 50 원짜리, 100 원짜리, 500 원짜리 동전이 각각 한 개씩 들어 있다. 이 주머니에서 꺼낼 수 있는 금액의 경우의 수는?
  - ④15가지 ⑤ 16가지
- - ① 12가지 ② 13가지 ③ 14가지

해설

각 동전마다 나올 수 있는 경우의 수는 2가지씩이므로  $2 \times$ 

 $2 \times 2 \times 2 = 16$ , 그런데 하나도 안 뽑히는 경우는 빼야하므로 16 – 1 = 15(가지)이다.

**2.** 주사위 1개를 던질 때, 2의 배수 또는 5의 약수의 눈이 나올 경우의 수는?

① 2 ② 3 ③ 4 ④ 5 ⑤ 6

해설

2의 배수 : 2, 4, 6 5의 약수 : 1, 5  $\therefore \ 3+2=5\ (가지)$  3. 다음 그림에서 교무실을 나와 화장실로 가는 방법의 수를 구하여라.



정답: 9

▶ 답:

교무실에서 복도로 나오는 방법의 수는 3가지이고 복도에서

화장실로 들어가는 방법은 3 가지이다. 따라서 교무실을 나와 화장실로 가는 방법의 수는  $3 \times 3 = 9$ (가지)이다.

<u>가지</u>

- ${f 4.}~~1$  에서  ${f 20}$  까지의 숫자가 각각 적힌  ${f 20}$  장의 카드에서 한 장의 카드를 뽑을 때, 소수의 눈이 나올 확률은?
  - ①  $\frac{2}{3}$  ②  $\frac{2}{5}$  ③  $\frac{3}{5}$  ④  $\frac{7}{10}$  ⑤  $\frac{4}{15}$

 $1\sim 20$  사이의 숫자 중 소수는  $2,\ 3,\ 5,\ 7,\ 11,\ 13,\ 17,\ 19$  의 모두 8 가지이므로 구하는 확률은  $\frac{8}{20}=\frac{2}{5}$  이다.

- 5. 한 개의 주사위를 두 번 던져서 처음에 나온 눈의 수를 x, 나중에 나온 눈의 수를 y 라 할 때, 3x + y = 12 가 될 확률은?

3x + y = 12 를 만족하는 (x, y) 는 (2, 6), (3, 3)이다.

 $\therefore \ (확률) = \frac{2}{36} = \frac{1}{18}$ 

6. 두 개의 주사위를 동시에 던질 때, 나온 눈의 합이 6의 배수일 확률

①  $\frac{1}{2}$  ②  $\frac{1}{3}$  ③  $\frac{2}{3}$  ④  $\frac{1}{6}$  ⑤  $\frac{5}{36}$ 

모든 경우의 수는  $6 \times 6 = 36$  (가지)

합이 6인 경우는 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) 의 5가지 합이 12인 경우는 (6, 6) 의 1가지

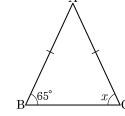
따라서 구하는 확률은  $\frac{5}{36} + \frac{1}{36} = \frac{6}{36} = \frac{1}{6}$ 이다.

- 7. 동전 1개와 주사위 1개를 동시에 던질 때, 동전은 앞면이고 주사위는 2의 배수가 나오거나 동전은 뒷면이고 주사위는 3의 배수가 나올 확률은?
  - ①  $\frac{1}{2}$  ②  $\frac{1}{6}$  ③  $\frac{5}{12}$  ④  $\frac{3}{8}$  ⑤  $\frac{5}{6}$

해설  $\frac{1}{2} \times \frac{3}{6} + \frac{1}{2} \times \frac{2}{6} = \frac{3}{12} + \frac{2}{12} = \frac{5}{12}$ 이다.

- **8.** 주머니 속에 모양과 크기가 같은 검은 공 4개와 흰 공 3개가 들어 있다. 한 개의 공을 꺼낸 다음 다시 넣어 또 하나의 공을 꺼낼 때, 두 번 모두 흰 공이 나올 확률은?
  - ①  $\frac{12}{49}$  ②  $\frac{6}{49}$  ③  $\frac{9}{49}$  ④  $\frac{8}{49}$  ⑤  $\frac{16}{49}$

- 9. 다음 그림과 같은  $\triangle ABC$  에서  $\overline{AB} = \overline{AC}$  일 때, ∠x 의 크기는?



① 45° ② 55°

③65° ④ 75° ⑤ 85°

 $\triangle ABC$  가  $\overline{AB} = \overline{AC}$  인 이등변삼각형이므로

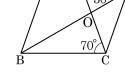
 $\angle x = \angle {\rm ABC} = 65^{\circ}$ 

10. 평행사변형 ABCD 에서  $\angle$ BCO =  $70^{\circ}$ ,  $\angle EDO = 30^{\circ}$  일 때,  $\angle DOC$  의 크기는?

① 80° ② 85°  $3 90^{\circ}$ 

4 95°

⑤100°



해설  $\angle BCO = \angle DEO$  (엇각)

 $\Delta {
m DEO}$  에서  $\angle {
m DOC}$  는 한 외각이므로  $\angle DOC = \angle DEO + \angle EDO = 70^{\circ} + 30^{\circ} = 100^{\circ}$  11. 정사면체, 정육면체, 정이십면체 주사위 3 개를 동시에 던질 때, 나올 수 있는 모든 경우의 수를 구하여라.

<u>가지</u>

 ▶ 정답: 480 <u>가지</u>

100 ///

▶ 답:

해설

 $4 \times 6 \times 20 = 480 \ (\text{PPA})$ 

- 12. 국어사전 2종류, 영어사전 1종류, 백과사전 1종류 일 때, 종류가 같은 것끼리 이웃하도록 세우는 방법의 수는?
  - ① 8가지 ② 12가지 ③ 16가지 ④ 24가지 ⑤ 32가지

해설

 $\therefore (3 \times 2 \times 1) \times 2 = 12(7 |\mathcal{F}|)$ 

종류가 같은 것끼리 이웃하도록 세울 때의 방법의 수를 구한다.

13. 0, 2, 3, 4, 7, 8의 숫자 세 개로 세 자리 정수를 만들 때, 홀수인 정수는 모두 몇 개인가?답: <u>개</u>

 ► 답:
 개

 ▷ 정답:
 32 개

02: 02 \_

일의 자리가 3인 경우 : 백의 자리에는 0이 올 수 없으므로 4

해설

가지, 십의 자리에는 3과 백의 자리 숫자를 제외하고 4가지가 있으므로  $4 \times 4 = 16$ (가지), 일의 자리가 7인 경우도 마찬가지 이므로 구하고자 하는 개수는 16 + 16 = 32(개)이다.

- 14. 축구 국가 대표팀에는 공격수 8명, 수비수 6명이 있다. 감독이 선발로 나갈 공격수와 수비수를 한 명씩 선발하는 경우의 수를 구하여라.
  - ► 답:
     가지

     ► 정답:
     48가지

공격수를 선발하는 경우의 수 : 8가지

해설

수비수를 선발하는 경우의 수:6가지 ∴8×6 = 48(가지)

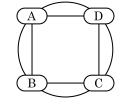
- **15.** A, B, C, D, E, F 의 후보 중에서 대표 5명을 선출하는 방법의 수는?
  - ① 6가지 ② 9가지 ③ 12가지 ④ 24가지 ⑤ 30가지

해설

 $\frac{6 \times 5 \times 4 \times 3 \times 2}{5 \times 4 \times 3 \times 2 \times 1} = 6 ( \operatorname{7} \stackrel{?}{\nearrow}) \circ | \text{다}.$ 

5명의 대표는 구분이 없으므로 구하는 경우의 수는

16. 다음 그림은 네 개의 도시를 원 모양으로 위치한 것이다. 각 도시를 직선으로 모두 잇는 길을 만들려고 할 때, 몇 개의 길을 만들어야 하는지 구하여라.



답:

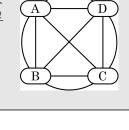
<u>개</u>

➢ 정답: 6<u>개</u>

이웃하는 도시끼리 잇는 길이 4개, 이웃

해설

하지 않는 도시끼리 잇는 길이 2개이므로 모두 6개이다.



- **17.** A,B 두 개의 주사위를 동시에 던져서 나온 눈의 수를 각각 a, b 라 할 때, 방정식 ax b = 0 의 해가 1이 되는 경우의 수는?
  - ④ 4 가지

① 1 가지

- ② 2 가지
- ③ 3 가지
- .

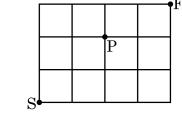
해설

③6 가지

x = 1을 방정식에 대입하면 a - b = 0, a = b이므로 두 주사위의

눈이 같게 나올 경우의 수와 같다. 따라서 (1,1), (2,2), (3,3), (4,4), (5,5), (6,6)의 6가지

18. 점 S에서 점 F까지 최단 거리로 이동할 때, 점 P를 거쳐 갈 경우의 수는?



④ 15가지

① 6가지

② 9가지 ⑤ 18가지

③ 12가지

S → P : 6 가지 P → F : 3 가지

따라서 구하는 경우의 수는  $6 \times 3 = 18($ 가지)이다.

- 19. 서점에 4종류의 수학 문제집과 5종류의 과학 문제집이 있다. 이 중 에서 수학 문제집과 과학 문제집을 각각 두 권씩 사는 방법은 모두 몇 가지인가?
  - ④60가지⑤ 120가지
- - ① 12가지 ② 20가지 ③ 32가지

각 과목별로 2과목씩 고르면  $\frac{4\times3}{2\times1} imes \frac{5\times4}{2\times1} = 60$ (가지)이다.

- **20.** A, B 두 개의 주사위를 던져서 A 주사위의 눈의 수를 x, B 주사위의 눈의 수를 y 라고 할 때, 2x + y = 5 이 될 확률은?
  - ①  $\frac{1}{6}$  ②  $\frac{1}{12}$  ③  $\frac{1}{18}$  ④  $\frac{5}{18}$  ⑤  $\frac{1}{36}$

주사위 2개를 던질 경우의 수는 36 가지, 2x + y = 5를 만족하는 경우는 (1, 3), (2,

2x + y = 5를 만족하는 경우는 (1, 3), (2, 1) 의 2가지

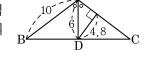
 $\therefore \ \frac{2}{36} = \frac{1}{18}$ 

- **21.** 주머니 속에 흰 공이 4 개, 검은 공이 6 개 들어 있다. 공을 한 개씩 연속해서 두 번 꺼낼 때, 처음은 흰 공, 두 번째는 검은 공일 확률을 구하면? (단, 꺼낸 공은 다시 넣지 않는다.)
  - ①  $\frac{2}{3}$  ②  $\frac{1}{2}$  ③  $\frac{5}{21}$  ④  $\frac{5}{12}$  ⑤  $\frac{4}{15}$

처음에 흰 공을 꺼낼 확률은  $\frac{4}{10}$ 

남은 공 9 개 중에서 검은 공을 꺼낼 확률은  $\frac{6}{9}$  따라서 구하는 확률은  $\frac{4}{10} \times \frac{6}{9} = \frac{4}{15}$ 

 ${f 22}$ . 다음 그림에서  $\triangle ABC$ 는  $\overline{AB}=\overline{AC}$ 인 이등 변삼각형이다.  $\angle A$ 의 이등분선과  $\overline{BC}$ 의 교점 을 D라 할때, 점 D에서  $\overline{AC}$ 에 내린 수선의 발을  $\mathrm{E}$ 라 할 때,  $\overline{\mathrm{BC}}$  의 길이는?

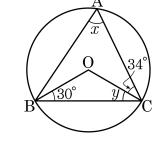


- ① 10
- ② 12 ③ 14
- **4**)16
- ⑤ 18

 $\triangle {
m ADC}$ 에서  $\frac{1}{2} imes 10 imes 4.8 = \frac{1}{2} imes \overline{
m DC} imes 6, \ \overline{
m DC} = 8$ 이므로

 $\overline{\mathrm{BC}} = 2 \times \overline{\mathrm{DC}} = 16$ 이다.

 ${f 23}$ . 다음 그림과 같이  $\Delta ABC$ 의 외접원의 중심이 점 O라고 할 때,  $\angle OBC =$ 30°,  $\angle$ OCA = 34°이다.  $\angle x + \angle y$ 의 크기를 구하여라.



▶ 답: ➢ 정답: 90º

점 O가 외심이므로  $\overline{OA} = \overline{OB} = \overline{OC}$ 

 $\triangle OAC$ 에서  $\angle OAC = \angle OCA = 34$ °  $\triangle OBC$ 에서  $\angle OCB = \angle OBC = 30$ °

 $\triangle$ OAB에서  $\angle$ OAB =  $\angle a$ 라 하면  $\angle$ OBA =  $\angle a$ 삼각형의 내각의 합은 180°이므로

 $\angle A + \angle B + \angle C = 180^{\circ}$ ,  $30^{\circ} + \angle a + 30^{\circ} + 34^{\circ} + 34^{\circ} + \angle a = 180^{\circ}$ ,

 $128^{\circ} + 2\angle a = 180^{\circ}$ ,

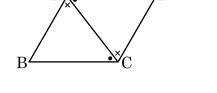
 $2\angle a = 52^{\circ}$ 

∴ ∠a = 26 °  $\therefore \angle x = 26^{\circ} + 34^{\circ} = 60^{\circ}$ 

 $\triangle {\rm OBC}$ 가 이등변삼각형이므로  $\angle {\rm OBC} = \angle y = 30\,^{\circ}$ 

 $\therefore \angle x + \angle y = 90^{\circ}$ 

**24.** 다음은 평행사변형의 성질을 증명하는 과정이다. 어떤 성질을 증명한 것인가?



- ① 평행사변형에서 두 쌍의 엇각의 크기가 각각 같다.
- ③ 평행사변형에서 두 쌍의 대각의 크기가 각각 같다.

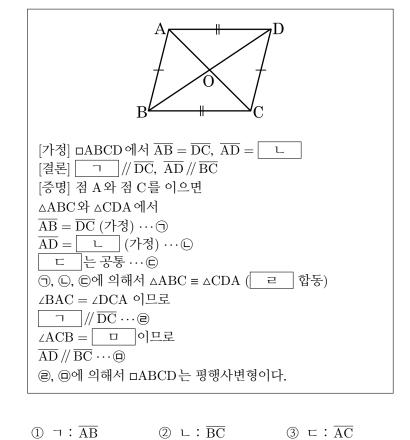
② 평행사변형에서 두 쌍의 대변의 길이는 각각 같다.

- ④ 평행사변형에서 두 쌍의 대변이 각각 평행하다.
- ⑤ 평행사변형에서 두 대각선은 서로 다른 것을 이등분한다.

평행사변형에서 두 쌍의 대각의 크기가 각각 같음을 증명하는 과정이다.

해설

25. 다음은 '두 쌍의 대변의 길이가 각각 같은 사각형은 평행사변형이다.' 를 증명하는 과정이다. ㄱ ~ ㅁ에 들어갈 것으로 옳지 <u>않은</u> 것은?

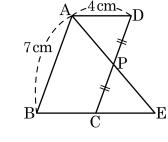


④ = : SAS
⑤ □ : ∠CAD

해설

△ABC ≡ △CDA (SSS 합동)

**26.** 다음 그림의 평행사변형 ABCD 에서 점  $P \leftarrow \overline{CD}$  의 중점이다.  $\overline{AP}$  의 연장선과  $\overline{BC}$  의 연장선의 교점을 E 라고 할 때,  $\overline{BE}$  의 길이는?



4 8.5 cm

 $\bigcirc$  7 cm

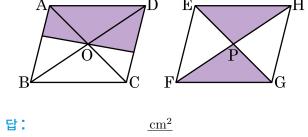
- ② 7.5 cm ③ 9 cm
- 38 cm

△ADP ≡ △ECP (ASA 합동)

해설

 $\overline{AD} = \overline{CE} = \overline{BC} = 4(\text{ cm})$  $\therefore \overline{BE} = \overline{BC} + \overline{CE} = 8(\text{ cm})$ 

27. 다음 평행사변형 ABCD 와 EFGH 는 합동이다. 평행사변형 ABCD 의 색칠한 부분의 넓이가  $34\,\mathrm{cm}^2$  일 때, 평행사변형 EFGH 의 색칠한 부분의 넓이를 구하여라.



▷ 정답: 34cm²

답:

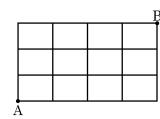
## 평행사변형 m ABCD 의 색칠한 부분의 넓이가 $m 34\,cm^2$ 이므로 전

체의 넓이는 68 cm<sup>2</sup> 이다. 평행사변형 EFGH 는 평행사변형 ABCD 와 합동이므로 넓이가 68 cm² 이다.

 $\Delta PEH + \Delta PFG = \frac{1}{2} \square EFGH$  이므로 색칠한 부분의 넓이는

34 cm² 이다.

**28.** 다음 그림과 같은 길이 있다. A에서 B까지 가는 최단 거리의 수는?



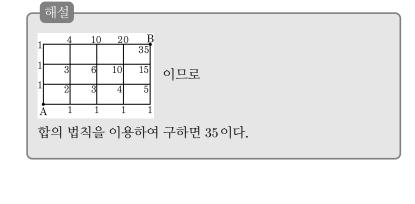
① 15가지

② 20가지⑤ 45가지

③35가지

④ 40가지

⊕ 407 | 7¶



29. 세 곳의 음식점을 네 명의 학생이 선택하는 경우의 수를 구하여라.

 답:
 <u>가지</u>

 ▷ 정답:
 81 <u>가지</u>

\_\_\_\_

해설 한 명이 선

한 명이 선택할 수 있는 음식점이 세 곳이므로  $3 \times 3 \times 3 \times 3 = 81$ 이다.

 ${f 30.}$  현희, 지선, 봉은, 윤혜  ${f 4}$  명 중에서 대표  ${f 2}$  명을 뽑을 때, 현희가 대표로 뽑힐 확률을  $\frac{x}{y}$  라 하자. 이 때, xy의 값을 구하여라.

▶ 답: ▷ 정답: 2

4 명 중 대표 2 명을 뽑는 경우의 수 :  $\frac{4 \times 3}{2 \times 1} = 6$  (가지)

현희가 대표가 되는 경우는 (현희, 지선), (현희, 봉은), (현희, 윤혜)로 3 가지이다. 따라서 현희가 대표로 뽑힐 확률은  $\frac{3}{6}=\frac{1}{2}$  이다.  $\therefore \ x=1, \ y=2 \ \therefore \ xy=2$ 

**31.** A, B, C 세 사람이 가위바위보를 할 때, 다음 중 옳은 것을 <u>모두</u> 고른

- $\bigcirc$  세 사람 중 A 한 사람만 이길 확률은  $\frac{1}{9}$ 이다.
- © 비기는 경우는 한 가지만 있다.
- © 비길 확률은  $\frac{1}{9}$ 이다.

  ② 승부가 날 확률은  $\frac{8}{9}$ 이다.
- $\bigcirc$  세 사람이 모두 다른 것을 낼 확률은  $\frac{2}{9}$ 이다.

② ①, ©

④ ¬, □, □
⑤ ¬, □, □

③¬, □

해설

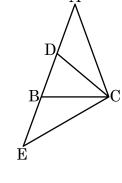
① ①, ①

- ⑤ 세 사람 중 A 한 사람만 이길 확률은  $\frac{3}{27} = \frac{1}{9}$ ① 비기는 경우는 두 가지가 있다. (서로 같은 것을 내는 경우, 서로 다른 것을 내는 경우)
- 내는 경우  $\frac{2}{9}$  ) (② 승부가 날 확률은 1-(비기는 경우 $)=1-\frac{1}{3}=\frac{2}{3}$

© 비길 확률은  $\frac{1}{3}$  (서로 같은 것을 내는 경우  $\frac{1}{9}$ , 서로 다른 것을

① 세 사람이 모두 다른 것을 낼 확률은  $\frac{3}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$ 

**32.** 다음 그림에서 삼각형 ABC, ECD, CBD 는 ∠ABC = ∠ACB, ∠ECD = ∠EDC, ∠CBD = ∠CDB 인 이등변삼각형이고, ∠ACE = 100°일 때, ∠BCD 의 크기를 구하여라.



➢ 정답: 40 º

해설

▶ 답:

 $\angle BCD = \angle x$ ,  $\angle ACD = \angle y$  라 하면  $\triangle ABC$  에서  $\angle ABC = \angle x + \angle y$   $\triangle CBD$  에서  $\angle CDB = \angle x + \angle y$ 

 $\triangle$ ECD 에서  $\angle$ ECD =  $\angle x + \angle y$  이므로

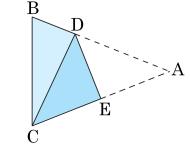
∠ECB = ∠y ∠ACE = 100° 이므로

△CBD 에서 세 내각의 크기의 합은 180° 이므로

3∠x + 2∠y = 180°···ⓒ ⑤, ⓒ를 연립하면 ∠x = 40°, ∠y = 30°

 $\therefore \ \angle x = \angle BCD = 40^{\circ}$ 

33. 다음 그림은  $\angle B = \angle C$  인 삼각형 ABC 를 점 A 가 점 C 에 오도록 접은 것이다.  $\angle DCB = 25^\circ$  일 때,  $\angle A$  의 크기를 구하여라.



ightharpoonup 정답:  $\frac{130}{3}$   $\stackrel{\circ}{-}$ 

▶ 답:

 $\angle A = \angle x$  라 하면

해설

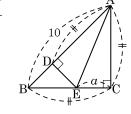
 $\angle \text{DCE} = \angle A = \angle x$ 

 $\angle B = \angle C = \angle x + 25^{\circ}$ ΔABC 에서 세 내각의 크기의 합은 180° 이므로

 $\angle x + 2(\angle x + 25^\circ) = 180^\circ$ 

 $3\angle x = 130^{\circ}, \ \angle x = \frac{130^{\circ}}{3}$  $\therefore \ \angle A = \frac{130^{\circ}}{3}$ 

- ${f 34}$ . 다음 직각이등변삼각형에서  $\overline{
  m AD}$  =  $\overline{\mathrm{AC}}$ ,  $\overline{\mathrm{ED}}$   $\bot \overline{\mathrm{AB}}$  일 때,  $\overline{\mathrm{AD}}$  의 길이를 a 로 나 타내면? ② a+2
  - ① 2a
  - $\textcircled{4} \ 10 2a \ \textcircled{5} \ 10 a$



 $\triangle ADE \equiv \triangle ACE(RHS 합동)$  이므로  $\overline{AC} = \overline{BC}$ 

해설

 $\therefore \angle BAC = \angle B = 45^{\circ}$  $\angle BDE = 90^{\circ}, \angle B = 45^{\circ}$ 이므로  $\angle BED = 180^{\circ} - (90^{\circ} + 45^{\circ}) = 45^{\circ}$ 

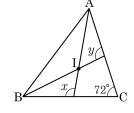
 $\angle \mathbf{B} = \angle \mathbf{BED}$ 이므로  $\overline{\mathbf{DB}} = \overline{\mathbf{DE}} = \overline{\mathbf{CE}} = a$  $\therefore \overline{\mathrm{AD}} = \overline{\mathrm{AB}} - \overline{\mathrm{DB}} = 10 - a$ 

**35.** 어떤 직각삼각형 ABC의 외접원의 원의 넓이가  $36\pi$  cm² 이라고 할때, 이 직각삼각형의 빗변의 길이는?

① 4cm ② 6 cm ③ 9cm ④ 12cm ⑤ 18cm

해설 직각삼각형의 외심은 빗변의 중심에 위치하므로

ΔABC의 외접원의 중심은 빗변의 중점이다. 외접원의 넓이가 36πcm² 이므로 반지름의 길이는 6cm이다. 따라서 이 삼각형의 빗변의 길이는 외접원의 지름의 길이와 같으므로 12cm이다. **36.** ΔABC 에서 점 I 는 내심일 때, ∠x + ∠y의 크 기는?



① 190° ② 191° ③ 192°

④ 194°

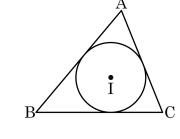
## $\triangle ABC$ 에서 $\angle IAB = \angle IAC = a$ ,

 $\angle ABI = \angle CBI = b$ 라 하자.  $2\angle a + 2\angle b + 72^{\circ} = 180^{\circ}$ 

 $\therefore \angle a + \angle b = 54^{\circ}$ 

 $\angle x + \angle y = (\angle a + 72^{\circ}) + (\angle b + 72^{\circ}) = \angle a + \angle b + 144^{\circ} = 198^{\circ}$ 

37. 다음 그림에서 점 I 는 삼각형 ABC 의 내심이다. 삼각형의 둘레의 길이가  $30\mathrm{cm}$  이고, 넓이가  $60\mathrm{cm}^2$  일 때, 내접원의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$ 

▷ 정답: 16π <u>cm²</u>

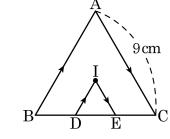
▶ 답:

삼각형의 둘레가  $30\mathrm{cm}$  이고, 넓이가  $60\mathrm{cm}^2$  이므로  $\frac{1}{2} \times 30 \times$ 

(반지름의 길이) = 60 반지름의 길이는 4cm 이다.

따라서 내접원의 넓이는  $\pi \times 4^2 = 16\pi (\mathrm{cm}^2)$ 

**38.** 다음 그림에서 ΔABC 는 정삼각형이고, 점 I 는 ΔABC 의 내심이다. 점 I 를 지나면서  $\overline{AB}$  ,  $\overline{AC}$  에 평행한 직선이  $\overline{BC}$  와 만나는 점을 각각 D , E 라 할 때,  $\overline{\rm DE}=($  )cm 이다. 빈 칸에 알맞은 수를 써 넣어라.



# ▷ 정답: 3

▶ 답:

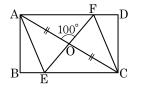
### $\angle ABI = \angle IBD$ 이코 $\angle ABI = \angle BID(\because \overline{AB}//\overline{ID})$ 이므로 $\angle IBD = \overline{ABI}$

∠BID 이다.  $\Rightarrow \overline{\mathrm{BD}} = \overline{\mathrm{ID}}$  이다. 같은 방법으로  $\angle ACI = \angle ICE$  이고  $\angle ACI = \angle CIE$   $(\because \overline{AC}//\overline{IE})$ 이므로  $\angle ICE = \angle CIE$  이다. $\Rightarrow \overline{IE} = \overline{EC}$ 

따라서 ( $\triangle IDE$  의 둘레의 길이)=  $\overline{ID}$  +  $\overline{DE}$  +  $\overline{IE}$  =  $\overline{BD}$  +  $\overline{DE}$  +  $\overline{\mathrm{EC}} = \overline{\mathrm{BC}} = 9(\mathrm{cm})$  이고,

 $\Delta \mathrm{IDE}$  는 정삼각형이므로  $\overline{\mathrm{DE}} = \frac{9}{3}\mathrm{cm} = 3\mathrm{cm}$  이다.

39. 다음 그림에서 직사각형 ABCD 의 대각선  $\overline{AC}$  의 이등분선이  $\overline{BC}$ ,  $\overline{AD}$  와 만나는 점을 각각 E, F 라고 할 때, 다음 보기에서 옳지 않은 것을 모두 골라라.



 $\bigcirc \angle FAO = \angle EAO$   $\bigcirc \overline{AF} = \overline{CF}$ 

 $\bigcirc$   $\overline{AF} = \overline{CE}$ 

 $\bigcirc$   $\triangle FAO \equiv \triangle ECO$ 

⊕ ∠FOC = ∠EOA

▶ 답:

▶ 답:

답:

▷ 정답: ⑤

▷ 정답: Э

▷ 정답: ②

는 평행사변형이다.

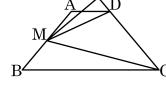
 $\triangle AFO$  와  $\triangle OEC$  에서,  $\overline{OA} = \overline{OC}$  ,  $\angle AOF = \angle EOC$  ,  $\angle OAF = \angle OC$ 

 $\angle$ OCE 이므로 ASA 합동이다. 그러므로  $\overline{\rm OE}=\overline{\rm OF}$  이다. 또,  $\Box$ AECF 의 두 대각선은 다른 대각선을 이등분하므로  $\Box$ AECF

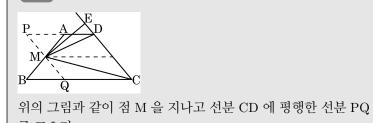
⑤. 평행사변형에서 항상  $\angle FAO = \angle EAO$  는 아니다. ⑥.  $\overline{AF} = \overline{EC}$  ,  $\overline{AE} = \overline{FC}$  이지만 항상  $\overline{AF} = \overline{CF}$  는 아니다.

(②). 평행사변형에서  $\overline{
m AE}=\overline{
m AO}$ 는 성립할 필요 없다.

40. 다음 그림과 같은 사다리꼴 ABCD 에서 변 AB 의 중점을 M 이라 하고, 점 M 에서 변 CD 의 연장선에 내린 수선의 발을 E 라 한다.  $\Delta \mathrm{CME} = 18,\; \Delta \mathrm{EMD} = 6$  일 때, 사다리꼴 ABCD 의 넓이를 구하 여라.



▶ 답: ▷ 정답: 24



를 그으면  $\triangle \mathrm{PMA} \equiv \triangle \mathrm{MBQ} \; (\mathrm{ASA} \; \, \text{합동})$ 따라서 □ABCD 의 넓이는 □PQCD 의 넓이와 같다.

 $\Box \mathrm{PQCD} = 2 \triangle \mathrm{DMC}$  $= 2(\triangle CME - \triangle EMD)$ 

= 24따라서 사다리꼴 ABCD 의 넓이는 24 이다.

41. 2, 3, 4, 5 의 숫자가 각각 적힌 네 장의 카드에서 2 장을 뽑아 만들 수 있는 두 자리의 정수 중 짝수의 가짓수는?

- ① 3 가지 ② 4 가지 ③ 5 가지

④6 가지⑤ 7 가지

해설 짝수는 일의 자리가 2 또는 4 인 경우이다. 일의 자리가 2 인

경우에 만들 수 있는 정수는 32, 42, 52 의 3 개이고, 일의 자리가 4 인 경우에 만들 수 있는 정수는  $24,\ 34,\ 54$  의 3 개다. 따라서 구하는 경우의 수는 3 + 3 = 6 (가지)이다.

42. 5 명씩 두 팀이 참가한 마라톤 경주가 있다. n 등에게 n 점을 주기로 하고 점수의 합이 낮은 팀이 이긴다고 한다. 같은 등수는 없다고 할 때, 경주에서 이길 수 있는 승점의 종류는 몇 가지인지 구하여라.
 답:

 ► 답:
 가지

 ► 정답:
 13 가지

1 부터 10 까지의 총합은 55 , 경주에서 이길 수 있는 승점은 15

해설

점부터 27 점까지이므로 13 가지 :. 13 가지

- 43. 예지, 진우, 찬영, 석규, 여준가 한 줄로 서려고 한다. 예지가 가운데 서게 될 확률은?
  - ①  $\frac{4}{5}$  ②  $\frac{1}{6}$  ③  $\frac{2}{3}$  ④  $\frac{1}{5}$  ⑤  $\frac{1}{3}$

(전체 경우의 수)= $5 \times 4 \times 3 \times 2 \times 1$ 이고, (예지가 가운데 서는

경우의 수)= $4 \times 3 \times 2 \times 1$ 이므로

구하는 확률은  $\frac{4\times3\times2\times1}{5\times4\times3\times2\times1} = \frac{1}{5}$ 이다.

**44.** 0 과 2 를 이용하여 8 자리 자연수를 만들 때, 숫자 2 가 적어도 3 개 포함되는 수가 될 확률을 구하여라.

▶ 답:

ightharpoonup 정답:  $rac{15}{16}$ 

8 자리 자연수는 2 로 시작되어야 하기 때문에 0 과 2 를 이용하여

만들 수 있는 자연수의 개수는  $2^7$  개 이고 (1) 숫자 2 를 한 개도 포함하지 않는 경우 : 0 가지

(2) 숫자 2 를 한 개 포함하는 경우 : 1 가지

(3) 숫자 2 를 두 개 포함하는 경우: 7 가지

숫자 2 를 적어도 세 개 포함하는 경우는 모든 경우의 수에서 (1), (2), (3)의 경우의 수를 뺀 것이므로 구하는 확률은  $1-\frac{8}{2^7}=\frac{15}{16}$ 

이다.

45. 수학 선수권 야구 대회에서 어떤 야구 선수가 60 타석 중 안타는 16 타를 쳤다. 수학 선수권 야구 대회에서는 보통 150 타석을 가질 때, 타율이 3 할 이상이려면 앞으로 안타를 몇 개 이상 쳐야 하겠는지 구하여라.

<u> 개이상</u>

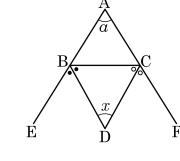
 ▶ 정답:
 29 개이상

▶ 답:

해설

 $\frac{16+x}{150} \ge \frac{3}{10}$   $\therefore x \ge 29 \text{ (7}\text{H)}$ 

46. 아래 그림의  $\triangle ABC$  에서  $\angle B$ ,  $\angle C$  의 외각의 이등분선의 교점을 D 라 하고,  $\angle BAC = a$  ° 일 때,  $\angle BDC$  의 크기를 a 의 식으로 바르게 나타낸 것은?



- ①  $\left(180 \frac{a}{2}\right)^{\circ}$  ②  $\left(90 \frac{a}{2}\right)^{\circ}$  ③  $\left(180 \frac{a}{4}\right)^{\circ}$  ④  $\left(90 \frac{a}{4}\right)^{\circ}$

### $\angle ABC + \angle ACB = 180^{\circ} - a$

$$\angle DBC + \angle DCB$$

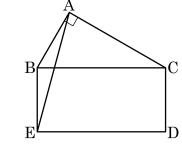
$$= \frac{1}{2}(180^{\circ} - \angle ABC) +$$

$$= \frac{1}{2}(180^{\circ} - \angle ABC) + \frac{1}{2}(180^{\circ} - \angle ACB)$$
$$= \frac{1}{2}(180^{\circ} + a)$$

$$\therefore \angle BDC = 180^{\circ} - (\angle DBC + \angle DCB)$$

$$= 180^{\circ} - \frac{1}{2}(180^{\circ} + a) = 90^{\circ} - \frac{a}{2}$$

47. 다음 그림에서 삼각형 ABC 는  $\angle A = 90^\circ$ ,  $\overline{BC} = 2\overline{AB}$  인 직각삼각형 이고, 사각형 BCDE 는 가로의 길이가 세로의 길이의 2 배인 직사각 형일 때,  $\angle AEB$  의 크기를 구하여라.



▷ 정답: 15 °

▶ 답:

## $\overline{BC}$ 의 중점을 M 이라 하면 점 M 은 $\Delta ABC$ 의 외심이므로

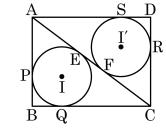
해설

 $\overline{\rm AM}=\overline{\rm BM}=\overline{\rm CM}$  이때,  $\overline{\rm BC}=2\overline{\rm AB}$  이므로  $\triangle {\rm ABM}$  은 정삼각형이고,  $\angle {\rm ABM}=60^\circ$  이다.

또, 사각형 BCDE 는 가로의 길이가 세로의 길이의 2 배인 직 사각형이므로 ΔABE 는 이등변삼각형이고 ∠ABE = ∠ABC +

∠CBE =  $150^{\circ}$ ∴ ∠AEB =  $(180^{\circ} - 150^{\circ}) \div 2 = 15^{\circ}$ 

48. 다음 그림과 같은 직사각형 ABCD 에서  $\triangle$ ABC 와  $\triangle$ ACD 의 내접원 I, I' 과 대각선 AC 와의 교점을 각각 E, F 라 하자.  $\overline{AB}=6\mathrm{cm}, \overline{BC}=8\mathrm{cm}, \overline{AC}=10\mathrm{cm}$  일 때,  $\overline{\mathrm{EF}}$  의 길이를 구하여라.



 $\underline{\mathrm{cm}}$ 

▷ 정답: 2<u>cm</u>

답:

 $\overline{AE}$  를 x 라 하면

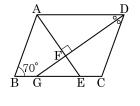
해설

(6-x) + (10-x) = 8 : x = 4(cm)

 $\overline{AE} = \overline{CF} = 4(cm)$  이므로

 $\therefore \overline{EF} = 10 - (4 + 4) = 2(cm)$ 

49. 다음 그림과 같이 평행사변형 ABCD 의 꼭 짓점 A 에서  $\angle D$  의 이등분선에 내린 수선이  $\overline{\mathrm{BC}}$  와 만나는 점을 E, 수선의 발을 F,  $\angle\mathrm{D}$  의 이등분선과  $\overline{\mathrm{BC}}$  와 만나는 점을  $\mathrm{G}$  라고 한다. ∠B = 70° 일 때, ∠AEB 의 크기는?



① 40° ② 45° ③ 50° ④ 55°

⑤ 60°

 $\angle B = \angle D = 70^{\circ}$ 이므로  $\angle ADG = \frac{1}{2}\angle D = 35^{\circ}$ ∠ADG = ∠DGE (엇각) △FGE 에서

 $\angle AEB = 180^{\circ} - (90^{\circ} + 35^{\circ}) = 55^{\circ}$ 

50. 다음 그림의 평행사변형 ABCD에서  $\overline{BE}$ ,  $\overline{DF}$ 는 각각  ${\it \angle B}$ ,  ${\it \angle D}$ 의 이등분선이 다. $\overline{AB} = 8 \, \mathrm{cm}$ ,  $\overline{BC} = 10 \, \mathrm{cm}$ 일 때,  $\Delta \mathrm{DFC}$ 의 넓이는 □EBFD의 넓이의 몇 배인지 구하여라.

배

답: ▷ 정답: 2 배

∠ABE = ∠AEB이므로

 $\overline{AB} = \overline{AE} = 8 \text{ cm}, \overline{ED} = 10 - 8 = 2 \text{ cm})$   $\triangle DFC = \frac{1}{2} \times (10 - 2) \times (\frac{\text{L}}{\text{L}} \text{이}) = 4 \times (\frac{\text{L}}{\text{L}} \text{이})$   $\square EBFD = 2 \times (\frac{\text{L}}{\text{L}} \text{이})$ 

 $\triangle DFC : \square EBFD$ 

 $=4 \times (높이): 2 \times (높이) = 2:1$ 

 $\therefore \triangle \mathrm{DFC} = 2 \square \mathrm{EBFD}$