
1. 다음 그림과 같은 직사각형 모양의 미니당구대에서 공을 너무 세게 치는 바람에 흰 공이 A 에서 출발하여 벽을 차례로 거쳐 점 B 에 도착하였다. 공이 지나갈 수 있는 최단 거리를 구하면?

① $\sqrt{4080}$ cm ② $\sqrt{4081}$ cm ③ $\sqrt{4082}$ cm

 $4 \sqrt{4083} \text{cm}$ $5 \sqrt{4084} \text{cm}$

다음 그림과 같이 밑변이 △BCD 이 고, 한 모서리의 길이가 1 인 정사면 체 A – BCD 가 있다. CD 의 중점을 E, $\angle ABE = x$ 라 할 때, $\cos x$ 의 값 을 구하면?

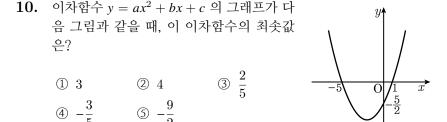
①
$$\frac{\sqrt{2}}{2}$$
 ② $\frac{\sqrt{3}}{3}$ ③ $\sqrt{2}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{6}}{3}$

- 이차함수 $y = x^2$ 과 $y = -x^2 + 2x + 3$ 의 그래프의 두 꼭짓점 사이의 거리를 구하여라.
- ▶ 답:

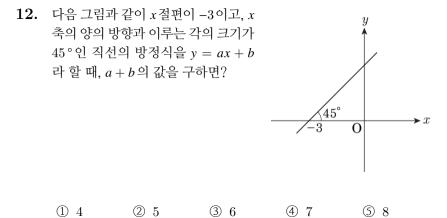
C 에서 옆면을 지나 \overline{AC} 에 이르는 최단거리를 구하여라.

다음 그림과 같이 $\overline{AB} = 6 \text{cm}$, $\angle BAC = 15^{\circ}$ 인 정사각뿔이 있다. 점

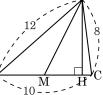
다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{DE}=3,\overline{BE}=4,\overline{CD}=6$ 일 때, \overline{BC} 의 길이를 구하여라.



한 변의 길이가 10 인 정삼각형의 높이를 한 변의 길이로 하여 정육면 체를 만들었다. 이 정육면체의 대각선의 길이를 구하여라. > 답:


다음 그림의 반지름의 길이가 2 인 원 O 에 내접하는 $\triangle ABC$ 에서 $\overline{BC} = 3$ 일 때, $\sin A$ 의 값은?

 $y = -2\cos^2 x + 4\cos x + 5$ 가 최댓값을 가질 때, x 의 값은?(단, $0^{\circ} \le x \le 90^{\circ}$


11. $0^{\circ} < x < 90^{\circ}$ 일 때, $2\sin^2 x - 3\sin x + 1 = 0$ 을 만족시키는 x 의 값은?

① 0° ② 15° ③ 30° ④ 45° ⑤ 60°

•

다음 그림의 삼각형 ABC 에서 점 A 에서 \overline{BC} 에 내린 수선의 발을 \overline{H} 라 하고, 점 \overline{M} 은 \overline{BC} 의 중점일 때, \overline{MH} + \overline{AH} 의 길이는?

②
$$2 + \sqrt{7}$$

$$3 + 2\sqrt{7}$$

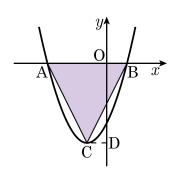
4. 이차함수
$$y = -x^2 + ax + b$$
 의 그래프가 x 축과 두 점 $(-1,0), (-4,0)$ 에서 만날 때, 꼭짓점의 좌표는?

 $(3) \left(-5, \frac{9}{4}\right)$ $\left(-\frac{5}{2}, \frac{9}{4}\right)$ (-2,3)

, 호의 길이가 l 인 부채꼴의 넓이는 $\frac{1}{2}lr$ 임을 이용하여라.)

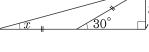
15. 둘레의 길이가 12 cm 인 부채꼴의 반지름의 길이가 r cm 일 때, 넓이를 $S \text{cm}^2$ 라고 한다. S 가 최대일 때, r 의 값은? (단, 반지름의 길이가 r

 $\bigcirc 1 \ 3 \qquad \bigcirc 2 \ 6 \qquad \bigcirc 3 \ 7 \qquad \bigcirc 4 \ 9 \qquad \bigcirc 5 \ 10$


16. $0^{\circ} \le x \le 90^{\circ}$ 일 때, 다음 중 옳은 것은?

 $4 -1 \le \tan x \le 0$ $5 -1 \le \sin x \le 1$

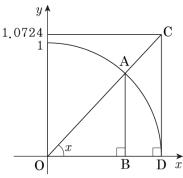
(1) $0 \le \cos x \le 1$


② $0 < \sin x < 1$ ③ $0 \le \tan x \le 1$

17. 다음 그림과 같이 $y = x^2 + 2x - 3$ 의 그래프가 x축과 만나는 점을 A ,꼭짓점을 C 라 할 때, \triangle ABC 의 넓이는?

1) 6 (2) 7 (3) 8 (4) 9 (5) 10

구하여라


①
$$\frac{2-\sqrt{3}}{2}$$

다음 그림을 이용하여 tan x 의 값을

(3) $2 - \sqrt{3}$

①
$$\frac{2-\sqrt{3}}{2}$$
 $2(1-2\sqrt{3})$

19. 다음 그림과 같이 반지름의 길이 가 1 인 사분원에서 다음 표를 이용하여 \overline{OB} 의 길이를 구하면?

x	sinx	cosx	tanx
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

① 0.6821

② 0.6947

③ 0.7193

④ 0.7314

⑤ 0.9325

20. 가로의 길이, 세로의 길이, 높이가 각각 다음과 같은 직육면체에서 대각선의 길이가 다른 것은?

① $5\sqrt{2}$, $5\sqrt{2}$, $2\sqrt{7}$ ② $2\sqrt{10}$, $2\sqrt{10}$, $4\sqrt{3}$ ③ 5, 7, $3\sqrt{6}$ ④ $2\sqrt{15}$, $5\sqrt{2}$, $3\sqrt{2}$

 $(3) 5, 7, 3 \sqrt{6}$ (4) $(5) 4, 4 \sqrt{2}, 8$

21. 두 점 P(2, 2), Q(a, -1) 사이의 거리가 $3\sqrt{5}$ 일 때, a 의 값은? (단, 점 Q 는 제3 사분면의 점이다.)

(3) -4

(2) -6

A M

① $6\sqrt{5} \text{ cm}$ ② $5\sqrt{6} \text{ cm}$ ③ 5 cm

다음 그림과 같이 모선의 길이가 12cm 이고, 밑면인 원의 반지름의 길이가 3cm 인 원뿔에서 모선 AB 의 중점을 M 이라 하자. 점 B 에서

원뿔의 옆면을 따라 점 M 에 이르는 최단 거리를 구하면?

4 $5\sqrt{3}$ cm 5 $6\sqrt{2}$ cm

23. 다음 그림을 이용하여 tan 15° 의 값을 구하면?

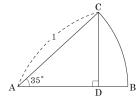
(1)
$$2 - \sqrt{2}$$

 $3) 2 + \sqrt{3}$

② $2 + \sqrt{2}$

 $4 \ 2 - \sqrt{3}$ $5 \ 2 + 2\sqrt{3}$

24. 다음 중 옳지 않은 것을 모두 고르면?


 $\sin 56$ $< \cos 56$

(1) $\sin 45^{\circ} = \cos 45^{\circ}$

② $\cos 48^{\circ} > \cos 38^{\circ}$ $4 \sin 37^{\circ} < \cos 37^{\circ}$

(3) $\tan 35^{\circ} < \tan 40^{\circ}$

5. 다음 그림과 같이 반지름의 길이가 1 이고, 중심각의 크기가 35° 인부채꼴 ABC 가 있다. 점 C 에서 \overline{AB} 에 내린 수선의 발을 D 라 할 때, 다음 중 \overline{BD} 의 길이는?

① $1 - \tan 35^{\circ}$ ② $1 + \sin 35^{\circ}$

 $4 1 - \sin 35^{\circ}$ $5 1 + \cos 35^{\circ}$

 $os 35^{\circ}$

(3) $1 - \cos 35^{\circ}$