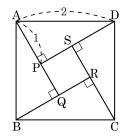
1. 다음 그림에서 □ABCD 는 한 변의 길이가 2 인 정사각형이고 $\overline{AP}=\overline{BQ}=\overline{CR}=\overline{DS}=1$ 이다. 사각형 PQRS 의 넓이는?



- $4 \ 5 \sqrt{3}$ $5 \ 2 \sqrt{3}$
- ① $5 3\sqrt{2}$ ② $4 \sqrt{3}$ ③ $4 2\sqrt{3}$

□PQRS 는 정사각형이므로

 $\overline{AQ} = \sqrt{2^2 - 1^2} = \sqrt{3}$ $\therefore \overline{PQ} = \sqrt{3} - 1$

 $\therefore \Box PQRS = (\sqrt{3} - 1)^2 = 4 - 2\sqrt{3}$

2. 세 변의 길이가 각각 n, n+1, n+2 인 삼각형이 직각삼각형일 때, n 의 값을 구하여라.

▶ 답:

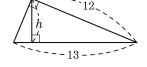
▷ 정답: 3

해설

n+2 가 가장 긴 변이므로 $n^2 + (n+1)^2 = (n+2)^2$

 $n^2 + n^2 + 2n + 1 = n^2 + 4n + 4$ $n^2 - 2n - 3 = 0, (n+1)(n-3) = 0$ n > 0 이므로 n = 3

- 3. 다음은 빗변을 밑변으로 하는 직각삼각형 이다. 높이 h를 구하여라.



답:

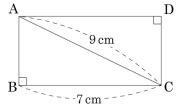
60 ▷ 정답: $\overline{13}$

직각삼각형이므로 피타고라스 정리에 의해 길이가 주어지지

해설

않은 변의 길이는 5 이다. 주어진 직각삼각형의 넓이는 두 가지 방법으로 구할 수 있고, 이는 서로 같다. 즉, $12 \times 5 = 13h$ 이므로 $h = \frac{60}{13}$

4. 가로의 길이가 7cm, 대각선의 길이 가 9cm 인 직사각형의 넓이를 구하여라.



 답:
 cm²

 > 정답:
 28 √2 cm²

01. 20 V2 <u>0111</u>

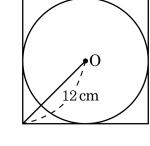
피타고라스 정리에 따라

해설

 $7^2 + x^2 = 9^2$ x 는 변의 길이이므로 양수이다. 따라서 $x = 4\sqrt{2}$ 이므로

직사각형의 넓이는 $4\sqrt{2} \times 7 = 28\sqrt{2} (\mathrm{cm}^2)$ 이다.

5. 다음 그림과 같이 반지름의 길이가 $12 \, \mathrm{cm}$ 인 원에 내접하는 정사각형의 한 변의 길이를 구하여라.



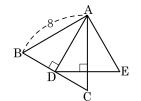
 $\underline{\mathrm{cm}}$

> 정답: 12 √2 <u>cm</u>

▶ 답:

한 변의 길이를 a 라고 하면 $\sqrt{2}a=24$ 이므로 $\therefore a = \frac{24}{\sqrt{2}} = \frac{24\sqrt{2}}{2} = 12\sqrt{2} \text{ (cm)}$

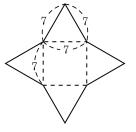
6. $\triangle ABC$ 는 한 변의 길이가 8인 정삼각형이다. 이 삼각형의 높이를 한 변으로 하는 정삼각 형의 넓이를 구하면?



① $9\sqrt{3}$ ② $11\sqrt{3}$ ③ $12\sqrt{3}$ ④ $13\sqrt{3}$ ⑤ $14\sqrt{3}$

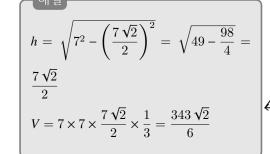
 $\overline{\rm AD}=rac{\sqrt{3}}{2} imes 8=4\sqrt{3}$ 한변의 길이가 $4\sqrt{3}$ 인 정삼각형 ADE의 넓이는 $\frac{\sqrt{3}}{4} \times (4\sqrt{3})^2 = 12\sqrt{3}$ 이다.

- 7. 다음 전개도로 사각뿔을 만들 때, 이 사각뿔 의 부피를 구하여라.

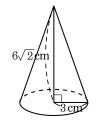


① 49 ② 49 $\sqrt{21}$ ④ $\frac{7\sqrt{42}}{3}$ ③ $\frac{343\sqrt{2}}{6}$ ② $49\sqrt{21}$

 $349\sqrt{42}$



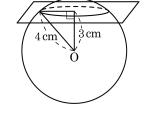
8. 다음 그림과 같이 원뿔의 밑면의 반지름의 길이가 3 cm , 높이가 $6\sqrt{2} \text{cm}$ 인 원뿔의 전개도에서 옆면인 부채꼴의 중심각의 크기를 구하여라.



 답:

 ▷ 정답:
 120°

(모선의 길이) = $\sqrt{72+9} = \sqrt{81} = 9$ 부채꼴의 중심각의 크기를 x라고 하면 $9 \times 2 \times \pi \times \frac{x}{360^{\circ}} = 6\pi$ $\therefore x = 120^{\circ}$ 9. 다음 그림은 반지름의 길이가 4cm 인 구이다. 구의 중심 O로부터 3cm 거리에 있는 평면에 의해서 잘린 단면의 넓이를 구하여라.

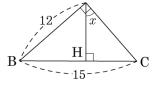


▷ 정답: 7π<u>cm²</u>

 $\underline{\mathrm{cm}^2}$

▶ 답:

(단면의 반지름) = √16 - 9 = √7(cm), (넓이) = (√7)²π = 7π(cm²) **10.** 다음 그림에서 ∠BAC = 90°이고, BC⊥AH이다. ∠CAH = x라 할 때, tan *x* 의 값은?



 $\overline{AC} = \sqrt{15^2 - 12^2} = 9$ $\triangle ABC \hookrightarrow \triangle HAC (:: AA 닮음)$

 $x = \angle ABC$ 이므로 $\tan x = \frac{9}{12} = \frac{3}{4}$

11. $-2\sin 60^{\circ} + \sqrt{3}\tan 45^{\circ} \times \tan 60^{\circ}$ 를 계산한 값은? ① $3 - \sqrt{3}$ ② $\frac{\sqrt{3}}{2} - 3$ ③ $3 - \frac{\sqrt{3}}{2}$ ④ 0 ⑤ 2

해설 $-2 \times \frac{\sqrt{3}}{2} + \sqrt{3} \times 1 \times \sqrt{3} = -\sqrt{3} + 3$ 이다.

- **12.** 다음 그림을 참고하여 2*x y*의 값을 구하면?

① 0 2 1 3 2 4 3 5 4

$$\sin 30^{\circ} = \frac{x}{7\sqrt{2}} = \frac{1}{2}, x = 1$$

$$\sin 30^{\circ} = \frac{x}{1} = \frac{7}{1} = \frac{1}{1}, y = 1$$

$$\sin 45^{\circ} = \frac{x}{7\sqrt{2}} = \frac{\sqrt{2}}{2}, \ x = 7$$

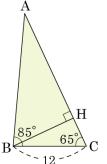
$$\sin 30^{\circ} = \frac{x}{y} = \frac{7}{y} = \frac{1}{2}, \ y = 14$$

$$\therefore 2x - y = 14 - 14 = 0$$

13. 다음 그림과 같은 $\triangle ABC$ 에서 $\angle B=85\,^{\circ}$, $\angle C=$ $65\,^\circ,\,\overline{\mathrm{BC}}=12$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 소수점 아래 셋째 자리까지 구하면? (단, $\sin 65\,^\circ=0.9063)$

221.751 ① 20.153 ③ 22.482 ⑤ 24.372

4 23.581

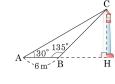


 $\angle A = 180^{\circ} - (85^{\circ} + 65^{\circ}) = 30^{\circ}$

 $\overline{BH} = 12\sin 65\,^\circ = 10.8756$

 $\therefore \overline{AB} = \frac{\overline{BH}}{\sin 30^{\circ}} = 10.8756 \times 2 = 21.7512$

14. 다음 그림은 등대의 높이를 알아보기 위해 측정한 결과이다. 등대의 높이는?



- ① $(3 \sqrt{3})$ m $(4\sqrt{3}+1)$ m
- ② $(3\sqrt{3}-3)$ m ③ $(4\sqrt{3}-1)$ m

해설

 $(3\sqrt{3}+3)$ m

등대의 높이를 *h* 라 하면

 $\angle \text{CBH} = 45^{\circ}$ 이므로 $\overline{\text{BH}} = h$ ∠CAH = 30° 이므로

 $6+h: h=\sqrt{3}:1, \sqrt{3}h=6+h$ $(\sqrt{3}-1)h=6$

 $\therefore h = \frac{6}{\sqrt{3} - 1} = 3(\sqrt{3} + 1) = 3\sqrt{3} + 3(m)$

15. 다음 그림과 같이 \overline{AB} 를 지름으로 하는 원 O 위의 한 점 C 를 지나는 접선과 지름 AB 의 연장선과의 교점을 D 라 <u>√30°</u>O 하고, $\overline{AB} = 8 \, \mathrm{cm}$, $\angle BAC = 30 \, ^{\circ}$ 일 때, ~8 cm-△CBD 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$ 답:

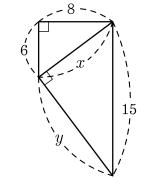
ightharpoonup 정답: $4\sqrt{3}$ $ext{cm}^2$

 $\angle BCD = \angle BAC = 30^{\circ}$ $\angle ACB = 90$ ° 이므로 $\angle ABC = 60$ °

△CBD 에서 $\angle BDC = \angle CBA - \angle BCD = 60^{\circ} - 30^{\circ} = 30^{\circ}$ $\therefore \ \overline{\mathrm{BD}} = \overline{\mathrm{BC}} = 8\sin 30 \ = 8 \times \frac{1}{2} = 4 \ (\mathrm{cm})$

 \therefore (\triangle CBD의 넓이) = $\frac{1}{2} \times 4 \times 4 \times \sin(180^{\circ} - 120^{\circ})$ = $4\sqrt{3}$ (cm²)

16. 다음 그림에서 x, y의 값을 각각 구하면?



- 3 x = 10, y = 8
- ① x = 10, $y = 5\sqrt{5}$ ② $x = 5\sqrt{5}$, y = 10① $x = 5\sqrt{2}$, $y = 5\sqrt{5}$
- ⑤ x = 10, y = 10

위 삼각형에서 피타고라스 정리에 따라

 $x^2 = 6^2 + 8^2$ x > 0 이므로 x = 10 이고,

아래 삼각형에서 피타고라스 정리에 따라

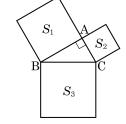
 $y^2 + x^2 = y^2 + 10^2 = 15^2$ $y^2 = 15^2 - 10^2 = 125$

y > 0 이므로 $y = 5\sqrt{5}$ 이다.

17. 다음 그림은 직각삼각형 ABC 에서 각 변을 한 변으로 하는 정사각형을 그린 것이다. $\overline{\mathrm{AB}}$: $\overline{BC} = 2:3$ 일 때, $S_2:S_3$ 는?

① $2:\sqrt{5}$ ② $\sqrt{5}:3$ ③ 2:3

4 5:9 **3** 4:5



 $\overline{AB} : \overline{BC} = 2 : 3$ 이므로

 $S_1: S_3 = 4:9$

 $S_1 = 4a$ 라 하면 $S_3 = 9a$

 $S_2 = S_3 - S_1 = 5a$ 따라서 $S_2 : S_3 = 5 : 9$ 이다.

18. 다음 그림을 보고 \overline{CD} 의 길이를 고르면?

 $\overline{AB}^{2} + \overline{CD}^{2} = \overline{AD}^{2} + \overline{BC}^{2}$ $100 + \overline{CD}^{2} = 81 + 25$ $\overline{CD}^{2} = 6 \quad \therefore \overline{CD} = \sqrt{6}(cm)$

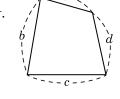
 $\sqrt{6}$ cm

① $\sqrt{2}$ cm

② $\sqrt{3}$ cm $\sqrt{7}$ cm

 $\sqrt{5}$ cm

19. 다음 사각형의 두 대각선은 직교하고, 각 변의 길 이를 a,b,c,d 라고 했을 때, 다음의 식이 성립한다. a (3a − 2) 의 값을 구하여라.



2a = b, d = a + 1, c = d + 1

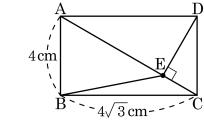
▷ 정답: 3

답:

 $a^2+c^2=b^2+d^2$ 가 성립하므로 위의 세 식을 대입하면 a^2+

 $(a+2)^2 = 4a^2 + (a+1)^2$ 이다. 이를 정리하면 $3a^2 - 2a - 3 = 0$, 즉 a(3a - 2) = 3

20. 아래 그림은 직사각형 ABCD 의 꼭짓점 D 에서 대각선 AC 에 수선 DE 를 긋고, 점 B 와 점 E 를 연결한 것이다. $\overline{AB}=4\mathrm{cm},\overline{BC}=4\sqrt{3}\mathrm{cm}$ 일 때, \overline{BE} 의 길이는 몇 cm 인가?



 $4 2\sqrt{5} \, \mathrm{cm}$

① $2\sqrt{2}$ cm

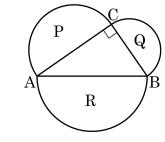
- $2\sqrt{3} \, \mathrm{cm}$ $32\sqrt{7} \, \mathrm{cm}$
- 3 4 cm

 $\triangle ABC$ 에서 $\overline{AC} = 8 \, \mathrm{cm}$

해설

 $\triangle ACD$ 의 넓이를 이용하면 $\overline{ED}=2\sqrt{3}\,\mathrm{cm}$ $\triangle DCE$ 에서 $\overline{EC}=2\,\mathrm{cm}, \overline{AE}=6\,\mathrm{cm}$ $\overline{AE^2}+\overline{EC^2}=\overline{BE^2}+\overline{ED^2}$, $6^2+2^2=x^2+(2\sqrt{3})^2$ $\therefore \ x=2\sqrt{7}\,\mathrm{cm}$

21. 다음 그림과 같이 직각삼각형 ABC 의 각 변을 지름으로 하는 반원의 넓이를 각각 P,Q,R 이라고 할 때, $R=40\pi,P=27\pi$ 이다. 이 때, Q의 반지름을 구하여라.



▷ 정답: √26

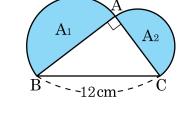
▶ 답:

P + Q = R 이므로 $Q = 13\pi$

해설

따라서 \mathbf{Q} 의 반지름을 r 이라고 하면 $\frac{1}{2}r^2\pi=13\pi$ 이므로 $r=\sqrt{26}$

22. 직각삼각형 ABC 에 대해 그림과 같이 반원을 그리고, 각각의 넓이를 A_1, A_2 라고 했을 때, A_1 – $A_2 = 2\pi\,\mathrm{cm}^2$ 이다. A_1, A_2 를 각각 구하



 $\underline{\mathrm{cm}^2}$

▶ 답: $\underline{\mathrm{cm}^2}$ ightharpoonup 정답: $A_1=10\pi\ \underline{\mathrm{cm}^2}$

ightharpoonup 정답: $A_2=8\pi\ \underline{\mathrm{cm}^2}$

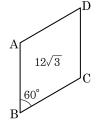
$\overline{\mathrm{BC}}$ 를 지름으로 하는 반원의 넓이는 $\frac{1}{2}\cdot 6^2\cdot \pi=18\pi\,\mathrm{cm}^2$ 이

해설

답:

고, 피타고라스 정리에 의해 $A_1+A_2=18\pi\,\mathrm{cm}^2$ 이 성립하고, $A_1-A_2=2\pi\,\mathrm{cm}^2$ 이므로 따라서 연립방정식을 풀면 $A_1=10\pi\,\mathrm{cm}^2$, $A_2=8\pi\,\mathrm{cm}^2$ 이다.

23. 다음은 마름모 ABCD 를 그린 것이다. 마름모의 넓이가 12√3 이고, ∠B = 60°일 때, 이 마름모의 한 변의 길이는?



① $2\sqrt{6}$ ② $3\sqrt{6}$ ③ $4\sqrt{6}$ ④ $5\sqrt{6}$ ⑤ $6\sqrt{6}$

점 A 와 점 C 를 이으면 \triangle ABC 의 넓이는 $6\sqrt{3}$ \triangle ABC 는 정상각형이므로 한 변의 길이를 a 라

 $\triangle ABC$ 는 정삼각형이므로 한 변의 길이를 a 라고 하면 넓이는 $\frac{\sqrt{3}}{4}a^2=6\sqrt{3}$, $a^2=24$

 $\therefore a = 2\sqrt{6}$

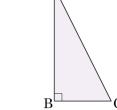
24. 이차함수 $y = x^2 + 4x - 8$ 의 꼭짓점으로부터 원점까지의 거리는?

① $\sqrt{37}$ ② $2\sqrt{37}$ ③ $3\sqrt{37}$ ④ $4\sqrt{37}$ ⑤ $5\sqrt{37}$

 $y = x^{2} + 4x - 8 = (x + 2)^{2} - 12$ 꼭짓점 P(-2, -12) 와 원점 사이의 거리 $\overline{OP} = \sqrt{(-2)^{2} + (-12)^{2}} = \sqrt{148} = 2\sqrt{37}$

해설

- ${f 25}$. 다음 그림과 같은 직각삼각형 ABC 에서 ${f AB}$: ${f BC}$ = 2 : 1 일 때, sin A × cos C 의 값은?
 - ① $\frac{1}{\sqrt{5}}$ ② $\frac{2}{\sqrt{5}}$ ③ $\frac{1}{5}$ ④ $\frac{2}{5}$ ⑤ 2



 $\overline{AB}=2, \ \overline{BC}=1$ 이라 하면 $\overline{AC}=\sqrt{5}$ 이다. 따라서 $\sin A \times \cos C=\frac{1}{\sqrt{5}} imes \frac{1}{\sqrt{5}}=\frac{1}{5}$ 이다.

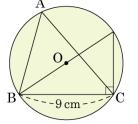
26. $\tan A = \frac{12}{5}$ 일 때, $\sin A + \cos A$ 의 값을 구하면?(단, 0 ° < A < 90 °)

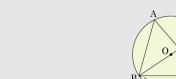
① $\frac{17}{13}$ ② $\frac{7}{13}$ ③ $\frac{5}{12}$ ④ $\frac{19}{12}$ ⑤ $\frac{8}{5}$

 $\tan A = \frac{12}{5}$ 이면 $\sin A = \frac{12}{13}, \cos A = \frac{5}{13}$ 이다. 따라서 $\sin A + \cos A = \frac{12}{13} + \frac{5}{13} = \frac{17}{13}$ 이다.

27. 다음 그림은 반지름이 $6 \, \mathrm{cm}$ 인 원 O 에 내접 하는 $\triangle ABC$ 에서 $\overline{BC}=9\,\mathrm{cm}$ 이다. 이 때,

sin A 의 값을 구하면?





그림과 같이 지름과 원주가 만나는 점을 A' 라 하면, $\overline{A'B}=12\,\mathrm{cm},\ \overline{BC}=9\,\mathrm{cm}$ 이므로,

$$\sin A' = \frac{\overline{BC}}{\overline{A'B}} = \frac{9}{12} = \frac{3}{4}$$
$$\therefore \sin A = \frac{3}{4}$$

$$\therefore \sin A =$$

28. 직선 2x - y + 3 = 0 의 그래프와 x 축이 이루는 예각의 크기를 a 라할 때, $\tan a$ 의 값은?

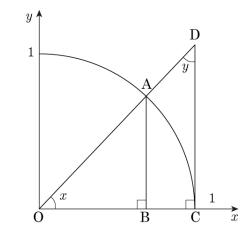
A 0

① $\sqrt{3}$ ② 3 ③ $\sqrt{2}$ ④ 2 ⑤ 1

 $\therefore \tan a = 2$

 $2x - y + 3 = 0, \ y = 2x + 3$

29. 다음 그림에서 반지름의 길이가 1 인 사분원을 이용하여 삼각비의 값을 선분의 길이로 나타낸 것 중 옳지 <u>않은</u> 것은?



- ① $\sin x = \overline{AB}$ ④ $\sin y = \overline{OB}$
- \Im $\tan x = \overline{\text{CD}}$

 $\Im \tan y = \frac{1}{\overline{\text{CD}}}$

30. 다음 보기 중 삼각비의 값의 대소 관계로 옳은 것을 모두 고른 것은?

 \bigcirc 0° $\leq x \leq 90$ ° 인 범위에서 x 의 값이 증가하면 $\sin x, \tan x$ 의

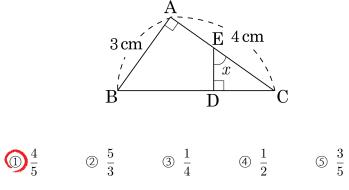
값은 각각 증가한다. ૽ tan 46° > tan 45°

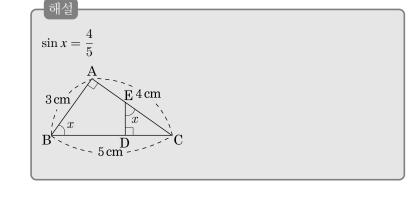
 $\bigcirc \cos 0^{\circ} = 1, \tan 50^{\circ} > 1$ $\therefore \cos 0^{\circ} < \tan 50^{\circ}$

 $\cos 0^{\circ} < \tan 50^{\circ}$ $\bigcirc 0^{\circ} \le x \le 90^{\circ}$ 인 범위에서 x 의 값이 증가하면 $\cos x$ 의 값은

감소한다. ∴ cos 47° > cos 77°

31. 다음 그림에서 $\sin x$ 의 값은?



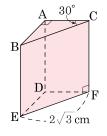


32. 다음 표는 삼각비의 값을 소수 넷째 자리까지 나타낸 것이다. 삼각비의 값을 바르게 나타낸 것을 보기에서 모두 고르면?

각도	sin	cos	tan
10°	0.1736	0.9848	0.1763
20°	0.3420	0.9397	0.3640
$35\degree$	0.5736	0.8192	0.7002
$45\degree$	0.7071	0.7071	1.0000
50°	0.7660	0.6428	1.1918
70°	0.9397	0.3420	2.7475
89°	0.9998	0.0175	57.2900

해설}____

 33. 정육면체을 밑면의 대각선 방향으로 잘랐더니 그 림과 같이 □BEFC 가 정사각형인 삼각기둥이 되 었다. 이 삼각기둥의 부피를 구하여라.



 > 정답:
 9 cm³

▶ 답:

 $\angle ACB = 30$ ° 이므로 $\overline{DE} = \overline{EF} \times \sin 30$ ° = $\sqrt{3}$, $\overline{DF} = \overline{EF} \times$

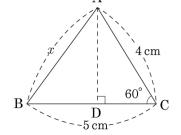
 $\cos 30$ ° = 3 □BEFC 가 정사각형이므로 $\overline{\text{CF}} = 2\sqrt{3}$

 $\underline{\mathrm{cm}^3}$

따라서 구하고자 하는 삼각기둥의 부피는

 $V = \frac{1}{2} \times \sqrt{3} \times 3 \times 2 \sqrt{3} = 9 \text{(cm}^3)$ 이다.

- **34.** 다음 $\triangle ABC$ 에서 $\angle C=60^\circ$, $\overline{AC}=4cm$, $\overline{BC}=5cm$ 일 때, \overline{AB} 의 길이를 구하면?
 - ① $2\sqrt{3}$ ② $\sqrt{21}$ ③ $6\sqrt{3}$ ④ $3\sqrt{7}$ ⑤ $4\sqrt{3}$
 - •

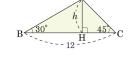


 $\angle C = 60^{\circ}$ 이므로 $\overline{AD} = 4 \times \sin 60^{\circ} = 2\sqrt{3}$

 $\overline{\text{CD}} = 4 \times \cos 60^\circ = 2$ 이므로 $\overline{\text{BD}} = 3$ 따라서 $\triangle \text{ABD}$ 에 피타고라스 정리를 적용하면 x=

따라서 $\triangle ABD$ 에 피타고라스 정 $\sqrt{3^2 + (2\sqrt{3})^2} = \sqrt{21}$ 이다.

35. 다음 \triangle ABC 에서 높이 h 를 구하여라.

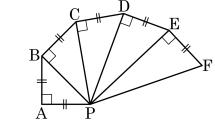


답:

> 정답: 6√3-6

 $h = \frac{12}{\tan 60^{\circ} + \tan 45^{\circ}}$ $= \frac{12}{\sqrt{3} + 1}$ $= 6(\sqrt{3} - 1)$

36. $\overline{AP} = \overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = \overline{EF} = 2$ 일 때, 다음 그림에서 길이가 4 가 되는 선분은?



③ PD

 $\overline{\text{PE}}$

 $\odot \overline{PF}$

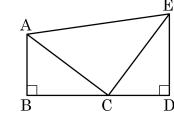
 $\overline{PB} = \sqrt{8} = 2\sqrt{2}, \ \overline{PC} = \sqrt{12} = 2\sqrt{3}$ $\overline{PD} = \sqrt{16} = 4, \ \overline{PE} = \sqrt{20} = 2\sqrt{5}$ 이므로 길이가 4 인 선분은 \overline{PD} 이다.

 \bigcirc \overline{PC}

 \bigcirc \overline{PB}

해설

37. 다음 그림에서 $\triangle ABC \equiv \triangle CDE$ 이고 세 점 B, C, D 는 일직선 위에 있다. $\overline{\mathrm{AB}}=6\mathrm{cm}$ 이고, $\Delta\mathrm{CDE}$ 의 넓이가 24 일 때, 사다리꼴 ABDE 의 둘레의 길이는?



- ① $28 + 10\sqrt{2}$ $348 + 10\sqrt{2}$
- ② $12 + 8\sqrt{3} + 10\sqrt{2}$ $4) 12 + 8\sqrt{2} + 2\sqrt{21}$
- $\bigcirc 10 + 8\sqrt{2} + \sqrt{21}$

$\triangle ABC \equiv \triangle CDE$ 이므로 $\overline{AB} = \overline{CD}, \ \overline{BC} = \overline{DE}$ 이다.

△CDE 의 넓이가 24 이므로 $\Delta CDE = \frac{1}{2} \cdot \overline{CD} \cdot \overline{DE} = \frac{1}{2} \cdot 6 \cdot \overline{DE} = 24$

 $\therefore \overline{\rm DE} = 8$ $\overline{AB} = \overline{CD} = 6, \ \overline{BC} = \overline{DE} = 8$

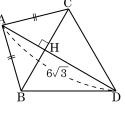
또, $\triangle ABC$ 와 $\triangle CDE$ 는 합동이므로 $\overline{\mathrm{AC}} = \overline{\mathrm{CE}}$ 이고 $\angle\mathrm{ACE} = 90^\circ$ 이므로 $\Delta\mathrm{ACE}$ 는 직각이등변삼각

 $\overline{AC} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10$ 이코, $\overline{AE} = 10\sqrt{2}$

이다. 따라서 사다리꼴 둘레의 길이는

 $6+6+8+8+10\sqrt{2}=28+10\sqrt{2}$

38. 다음 그림과 같이 AB = AC 이고 BC = 8 인 이등변삼각형 ABC 의 변 BC 를 한 변으로 하는 정삼각형 BDC 를 그렸는데 AD = 6√3 이었다. 이때, AB 의 길이를 구하여라.



답:

> **정답**: 2√7

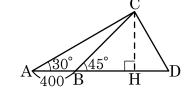
 $\overline{\mathrm{AD}}$ 는 $\Delta\mathrm{ABC}$ 의 수선이므로 $\overline{\mathrm{BC}}$ 를 이등분한다. 따라서 $\overline{\mathrm{BC}}$ 의

중점을 H 라 하면 $\overline{\rm BH}=\overline{\rm HC}=4$ 이다. $\Delta \rm BDC$ 는 정삼각형이므로 $\overline{\rm DH}=\frac{\sqrt{3}}{2}\times 8=4\sqrt{3}$ 이다. 따라서

 $\overline{AH} = 6\sqrt{3} - 4\sqrt{3} = 2\sqrt{3}$

 $\overline{AB} = \sqrt{(2\sqrt{3})^2 + 4^2} = 2\sqrt{7}$ 이다.

39. 다음 조건을 만족하는 $\overline{\mathrm{CH}}$ 의 길이를 구하면?



- $\ \, \ \, \overline{AB}=400,\, \angle A=30\,^{\circ},\, \angle CBH=45\,^{\circ}$ $\quad \ \, \subseteq \ \, \overline{\mathrm{CH}}\bot\overline{\mathrm{AH}}$

- 3 200($\sqrt{3} + 1$)

① $50(\sqrt{3}+1)$ ② $100(\sqrt{3}+1)$

④ $300(\sqrt{3}+1)$ ⑤ $350(\sqrt{3}+1)$

 $\overline{\mathrm{CH}} = x$ 라 하면 $\overline{\mathrm{BH}} = x$

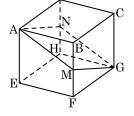
 $\triangle ACH$ 에서 $\overline{CH}: \overline{AH} = 1: \sqrt{3}$

 $x: (400+x) = 1: \sqrt{3}$

 $400 + x = \sqrt{3}x$ $(\sqrt{3} - 1)x = 400$

 $x = 200(\sqrt{3} + 1)$

40. 다음 그림과 같이 한 모서리의 길이가 10 cm 인 정육면체에서 점 M, N 은 각각 모서리 BF, DH 의 중점이다. 이 때, 네 점 A, M, G, N을 차례로 이어서 생기는 마름모의 넓이를 구하여라.
 ① 50√2 cm²
 ② 50√3 cm²



③ $100 \, \text{cm}^2$ ④ $50 \, \sqrt{5} \, \text{cm}^2$

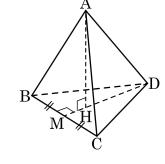
(3) $100 \,\mathrm{cm}^2$ (4) $50 \,\mathrm{V}5 \,\mathrm{cm}$

(마르¹

(마름모의 넓이) = (대각선) × (대각선) × $\frac{1}{2}$ $\overline{AG} = \sqrt{10^2 + 10^2 + 10^2} = 10\sqrt{3} \text{ (cm)}$ $\overline{MN} = \sqrt{10^2 + 10^2} = 10\sqrt{2} \text{ (cm)}$

따라서 $10\sqrt{3} \times 10\sqrt{2} \times \frac{1}{2} = 50\sqrt{6}$ (cm²) 이다.

41. 다음 그림은 한 모서리의 길이가 $12 {
m cm}$ 인 정사면체이다. 점 $M \in \overline{
m BC}$ 의 중점이고 $\overline{
m AH}$ 는 정사면체의 높이일 때, ΔAMH 의 넓이를 구하여라.



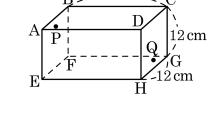
- $12\sqrt{2} \text{cm}^2$
- ② $13\sqrt{2}$ cm² (4) $15\sqrt{2}$ cm² (5) $16\sqrt{2}$ cm²
- $3 14 \sqrt{2} \text{cm}^2$

$$\overline{AH} = \frac{\sqrt{6}}{3} \times 12 = 4\sqrt{6} \text{ (cm)}$$

$$\overline{MH} = \frac{\sqrt{3}}{2} \times 12 \times \frac{1}{3} = 2\sqrt{3} \text{ (cm)}$$

$$2$$
 3 $2\sqrt{3}$ $(\therefore \triangle AMH의 넓이) = \frac{1}{2} \times 2\sqrt{3} \times 4\sqrt{6} = 12\sqrt{2}$

42. 다음 그림과 같이 가로, 세로, 높이가 각각 $30 \mathrm{cm}$, $12 \mathrm{cm}$, $12 \mathrm{cm}$ 인 직육면체가 있다. 점 $P \leftarrow \overline{AB}$ 의 중점에서 아래로 $1 \mathrm{cm}$ 인 지점이고, 점 $Q \leftarrow \overline{GH}$ 의 중점에서 위로 $1 \mathrm{cm}$ 인 지점에 있다. 이 직육면체의 면을 따라 P 에서 Q 로 가는 가장 짧은 길의 길이를 구하여라.

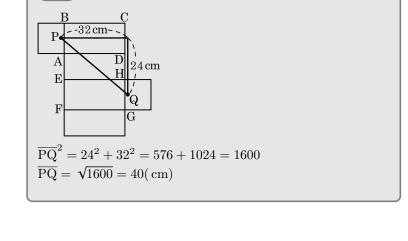


 $\underline{\mathrm{cm}}$

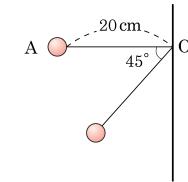
▷ 정답: 40 cm

· -- <u>-</u>

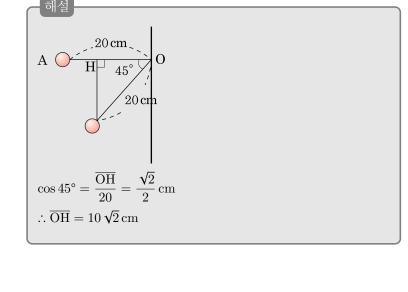
답:



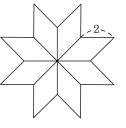
43. 실의 길이가 $20 \mathrm{cm}$ 인 구슬이 $\overline{\mathrm{OA}}$ 와 다음과 같은 각을 이룬다고 할때, 점 A 로 부터 몇 cm 아래에 있겠는가?



- ① $16\sqrt{2}$ cm
- $2 14 \sqrt{2} \,\mathrm{cm}$
- $312\sqrt{2}\,\mathrm{cm}$



44. 다음 그림은 여덟 개의 합동인 마름모로 이루 어진 별모양이다. 마름모의 한 변의 길이가 2 일 때, 별의 넓이의 제곱값은?



① $16\sqrt{2}$

② 128

③ $128\sqrt{2}$

4 512 5 512 $\sqrt{2}$

 $360\degree \div 8 = 45\degree$ 이므로 마름모 한 개의 넓이는 $2 \times \frac{1}{2} \times 2 \times$ $2\sin 45$ ° = $2\sqrt{2}$ 이다.

따라서, 별의 넓이는 $2\sqrt{2} \times 8 = 16\sqrt{2}$ $\therefore (16\sqrt{2})^2 = 512$ 이다.

45. 다음 그림과 같이 반지름의 길이가 12 인 원에 내접하는 정십이각형의 넓이 $S_2 + S_3 - S_1$ 은?

① 36 ② 48 ③ 60

⑤ 108

정십이각형은 그림처럼 두 변이 12 이고 그 끼인 각이 30° 인이등변삼각형 12 개로 이루어져 있다. $S = \frac{1}{2} \times 12 \times 12 \times \sin 30^{\circ} = 36$

 $S_1 = S \times 5 = 180$

 $S_2 = S \times 3 = 108$

 $S_3 = S \times 4 = 144$

따라서 $S_2 + S_3 - S_1 = 108 + 144 - 180 = 72$ 이다.