1. 다음은 다섯 명의 학생이 5 일 동안 받은 e – mail 의 개수를 나타낸 표이다. 이때, 표준편차가 가장 작은 사람은 누구인가?

월요일화요일수요일목요일금요일

성재	5	2	5	5	2
선영	6	4	6	6	4
민지	10	10	10	11	10
성수	5	8	5	8	9
경희	7	1	7	1	9

해설

① 성재 ② 선영 <mark>③</mark> 민지 ④ 성수 ⑤ 경희

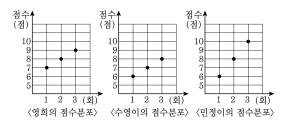
표준편차는 자료가 흩어진 정도를 나타내고, 표준편차가 작을 수록 변량이 평균에서 더 가까워지므로 표준편차가 가장 작은 학생은 민지이다. **2.** 다음은 A, B 두 명의 학생의 턱걸이 횟수의 기록을 나타낸 표이다. 이때, 표준편차가 큰 학생을 구하여라.

	1회	2회	3회	4회	5회
\boldsymbol{A}	8	9	8	7	9
В	7	9	8	10	6

해설

A, B 의 평균은 모두 8 이다. 표준편차는 자료가 흩어진 정도를 나타내고, 표준편차가 작을수록 변량이 평균 주위에 더 집중되므로 표준편차가 큰 학생은 B 이다.

3. 다음은 영희, 수영, 민정이 세 사람의 3 회에 걸친 수학 쪽지시험을 나타낸 그래프이다. 이때, 수영이랑 표준편차가 같은 사람은 누구인지 구하여라.



답:

➢ 정답: 영희

해설

표준편차는 자료가 흩어진 정도를 나타내므로 영희와 수영이의 표준편차는 같다. 5개의 변량 4,5,x,11,y의 평균이 6이고 분산이 8일 때, x² + y²의 값을 구하여라.

5개의 변량의 평균이
$$6$$
이므로 $x + y = 10$ 이다. $(4-6)^2 + (5-6)^2 + (x-6)^2$

$$\frac{5-6)^{2}+(x-6)^{2}}{5}$$

$$+\frac{(11-6)^2 + (y-6)^2}{5} = 8$$
$$4+1+(x-6)^2 + 25 + (y-6)^2 = 40$$
$$x^2+y^2-12(x+y)+72+30=40$$

$$x^{2} + y^{2} - 12(10) + 72 + 30 = 40$$

$$\therefore x^{2} + y^{2} = 58$$

5. 다섯 개의 변량 8, 7, *x*, *y*, 9의 평균이 8이고, 분산이 5일 때, 4*xy*의 값을 구하여라.

해설
다섯 개의 변량 8, 7, x, y, 9 의 평균이 8 이므로
$$\frac{8+7+x+y+9}{5}=8, x+y+24=40$$
∴ x+y=16···○

$$\frac{5}{5} + \frac{(y-8)^2 + (9-8)^2}{5} = 5$$

$$\frac{5}{600} = \frac{0 + 1 + x^2 - 16x + 64 + y^2 - 16y + 64 + 1}{5} = 5$$

$$\frac{x^2 + y^2 - 16(x+y) + 130}{5} = 5$$

$$x^2 + y^2 - 16(x+y) + 130 = 25$$

$$\therefore x^2 + y^2 - 16(x+y) = -105 \cdots \bigcirc$$

..
$$x + y - 10(x + y) = -103 \cdots$$

 으의 식에 ①을 대입하면
 $x^2 + y^2 = 16(x + y) - 105 = 16 \times 16 - 105 = 151$

 $\therefore x^2 + y^2 = 151 \cdots \bigcirc$

$$(x+y)^2 = x^2 + y^2 + 2xy,$$

$$16^2 = 151 + 2xy, 2xy = 105$$

$$4xy = 210$$

6. 다음 표는 미정이 친구 6 명의 학생들의 수학 성적의 편차를 나타낸 것이다. 분산이 8 일 때, 두 상수 a, b 에 대하여 $-\frac{ab}{3}$ 의 값을 구하여라.

이름	선영	수림	영진	희숙	경민	유림
편차(점)	-3	-4	3	а	b	2

▶ 답:

▷ 정답: 1

-3 - 4 + 3 + a + b + 2 = 0

 $\therefore a+b=2 \cdots \bigcirc$

또한, 분산은 8 이므로 (-3)² + (-4)² + 3² + a² + b² + 2² = 8

 $a^2 + b^2 + 38 = 48$

38 = 48

 $a^2 + b^2 = 10 \quad \cdots \quad \bigcirc$

 $(a+b)^2 = a^2 + b^2 + 2ab$ 에 ①, ①을 대입하면 $2^2 = 10 + 2ab$, 2ab = -6 $\therefore ab = -3$

따라서 $-\frac{ab}{3} = -\frac{-3}{3} = 1$ 이다.

. 변량 $x_1, x_2, x_3, \cdots, x_n$ 의 평균이 10, 분산이 5일 때, 변량 $4x_1 + 1, 4x_2 + 1, 4x_3 + 1, \cdots 4x_n + 1$ 의 평균, 분산을 각각 구하여라.

답:

(평균)=
$$4 \cdot 10 + 1 = 41$$

(분산)= $4^2 \cdot 5 = 80$

3. 변량 x_1, x_2, \dots, x_n 의 평균이 4, 분산이 5일 때, 변량 $3x_1 - 5, 3x_2 - 5, \dots 3x_n - 5$ 의 평균을 m, 분산을 n이라 한다. 이 때, m + n의 값은?

 \bigcirc 50

② 51

⑤ 54

(평균)=
$$3 \cdot 4 - 5 = 7 = m$$

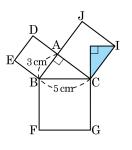
(분산)= $3^2 \cdot 5 = 45 = n$
∴ $m + n = 7 + 45 = 52$

- **9.** 다음 네 개의 변수 *a*, *b*, *c*, *d* 에 대하여 다음 보기 중 옳지 <u>않은</u> 것을 모두 고르면?
 - ① a+1, b+1, c+1, d+1의 평균은 a, b, c, d의 평균보다 1만큼 크다.
 - ② a+3, b+3, c+3, d+3의 평균은 a, b, c, d의 평균보다 3 배만큼 크다.
 - ③ 2a+3, 2b+3, 2c+3, 2d+3의 표준편차는 a, b, c, d의 표준편차보다 2배만큼 크다.
 - ④ 4a+7, 4b+7, 4c+7, 4d+7의 표준편차는 a, b, c, d의 표준편차의 4배이다.
 - ⑤ 3a, 3b, 3c, 3d의 표준편차는 a, b, c, d의 표준편차의 9 배이다.

해설

- ② a + 3, b + 3, c + 3, d + 3 의 평균은 a, b, c, d 의 평균보다
- 3 배만큼 크다.
- → *a* + 3, *b* + 3, *c* + 3, *d* + 3 의 평균은 *a*, *b*, *c*, *d* 의 평균보다 3 만큼 크다.
- ⑤ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 9 배이다.
- → 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 3 배이다.

10. 다음 그림과 같이 ∠A = 90° 인 직각삼각형 ABC의 세 변을 각각 한 변으로 하는 정사각 형을 만들었다. AB = 3 cm, BC = 5 cm 일 때, 색칠되어 있는 부분의 넓이를 구하여라.



▶ 답:

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $\frac{96}{25}$ $\underline{\text{cm}^2}$

해설

점 I 에서 \overline{CG} 의 연장선에 내린 수선의 발을 H라 하면 $\triangle ABC$ 와 $\triangle CIH$ 는 각의 크기가 모두 같 으므로 닮음이다.

따라서 $\overline{\text{HI}} = 3 \times \frac{4}{5}$, $\overline{\text{HC}} = 4 \times \frac{4}{5}$ $\triangle \text{CIH}$ 의 넓이는 $\frac{1}{2} \times \frac{16}{5} \times \frac{12}{5} = \frac{96}{25} \text{(cm}^2\text{)}$ D H

B 3 cm C

G

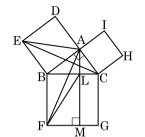
11. 다음 그림은 직각삼각형 ABC 에서 각 변을 한 변으로 하는 정사각형을 그린 것이다. \overline{AB} : $\overline{BC} = 2:3$ 일 때, $S_2:S_3$ 는?

4 5:9 **5** 4:5

AB: BC = 2:3 이므로
$$S_1: S_3 = 4:9$$

$$S_1 = 4a$$
라 하면 $S_3 = 9a$

 $S_1 = 1a + 7 + 2 + 3 = 5a$ $S_2 = S_3 - S_1 = 5a$ 따라서 $S_2 : S_3 = 5 : 9$ 이다. **12.** 다음 그림은 ∠A 가 직각인 △ABC 의 각 변을 한 변으로 하는 정사각형을 나타낸 것이다. 다음 중 DABED와 넓이가 같은 것을 고르 며?



- \bigcirc $\triangle ABC$
- ③ ⊓LMGC
- (5) AAEC

해설

 $\triangle CBE = \triangle ABE$ (평행선을 이용한 삼각형의 넓이) $\triangle CBE = \triangle ABF (SAS 합동)$

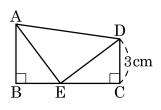
② □ACHI

□BFML

 $\triangle ABF = \triangle BFL$ (평행선을 이용한 삼각형의 넓이) 에 의해서, $\triangle ABE = \triangle BFL$ 이다.

∴ □ABED = □BFML

13. 다음 그림에서 $\triangle ABE \equiv \triangle ECD$, $\triangle AED = \frac{25}{2} cm^2$ 이고, $\overline{CD} = 3cm$ 일 때 $\Box ABCD$ 의 넓이를 구하여라.



 $\underline{\mathrm{cm}}^2$

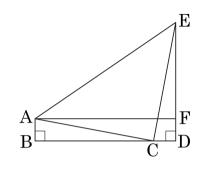
ightharpoonup 정답: $\frac{49}{2}$ $\underline{\text{cm}}^2$

$$\overline{AE} = \overline{ED}$$
이므로
$$\Delta AED = \frac{1}{2} \times \overline{AE} \times \overline{ED} = \frac{1}{2} \overline{AE}^2 = \frac{25}{2}$$

 $AE = \overline{ED} = 5 \text{ cm}$ $\triangle ECD$ 에서 $\overline{EC} = \sqrt{5^2 - 3^2} = 4 \text{cm}$

사다리꼴 ABCD 에서 $\frac{1}{2}(3+4)(3+4) = \frac{49}{2}$ cm²

14. 다음 그림에서 두 직각삼각형 ABC 와 CDE 는 합동이고, 세 점 B, C, D 는 일직선 위에 있다. \triangle ABC 의 넓이는 24 이고, $\overline{BC}=16$ 이라고 할 때, \overline{EF} 의 길이를 구하여라.



답:

➢ 정답: 13

해설

 $\triangle ABC$ 의 넓이가 24 이고 $\overline{BC}=16$ 이므로 $\overline{AB}=2\times24 imesrac{1}{16}=3$

이다.

ㅁ루

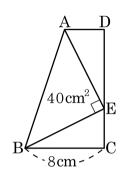
 $\overline{AB} = \overline{DF}$ 이므로 $\overline{DF} = 3$

AB = DF 이므로 DF = 3또, 두 직각삼각형 ABC 와 CDE 는 합동이므로 $\overline{BC} = \overline{DE}$ 이

 $\overline{DE} = 16$

따라서 $\overline{\mathrm{EF}} = \overline{\mathrm{DE}} - \overline{\mathrm{DF}} = 16 - 3 = 13$ 이다.

15. 다음 그림에서 $\triangle AED \equiv \triangle BCE$, $\triangle ABE = 40 cm^2$ 이고, $\overline{BC} = 8 cm$ 일 때 $\Box ABCD$ 의 넓이를 구하여라.



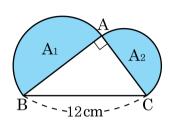
 ${\rm cm}^2$

답:

해설

 $\overline{\mathrm{BE}} = \overline{\mathrm{AE}} = 4\sqrt{5}$, $\overline{\mathrm{CE}}$ 를 x 라고 하면 $(4\sqrt{5})^2 = 8^2 + x^2$, x = 4 $\Delta \mathrm{BCE} = 16$, $\Box \mathrm{ABCD} = 40 + 16 + 16 = 72 (\,\mathrm{cm}^2)$

16. 직각삼각형 ABC 에 대해 그림과 같이 반원을 그리고, 각각의 넓이를 A_1, A_2 라고 했을 때, A_1 – $A_2=2\pi\,\mathrm{cm}^2$ 이다. A_1, A_2 를 각각 구하 여라.



답: <u>cm²</u>

<u>cm²</u>

ightharpoonup 정답: $A_1 = 10\pi \ \underline{\text{cm}^2}$

ightharpoonup 정답: $A_2=8\pi \ \mathrm{cm}^2$

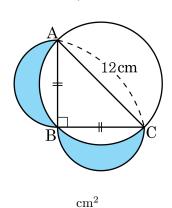
해설

 $\overline{\rm BC}$ 를 지름으로 하는 반원의 넓이는 $\frac{1}{2}\cdot 6^2\cdot \pi = 18\pi\,{\rm cm}^2$ 이고, 피타고라스 정리에 의해 $A_1+A_2=18\pi\,{\rm cm}^2$ 이 성립하고,

 $A_1 - A_2 = 2\pi \text{ cm}^2$ 이므로 따라서 여러바저시은 푸며 $A_2 = 10\pi \text{ cm}^2$ $A_3 = 8\pi \text{ cm}^2$ 이다

따라서 연립방정식을 풀면 $A_1=10\pi\,\mathrm{cm}^2$, $A_2=8\pi\,\mathrm{cm}^2$ 이다.

17. 다음 그림과 같이 $\angle B = 90^\circ$ 인 직각이등변 삼각형 ABC 의 각 변을 지름으로 하는 반원을 그렸을 때, 색칠한 부분의 넓이를 구하여라.



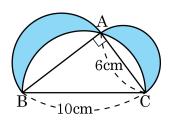
답:
 > 정답: 36 cm²

해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{BC}} = 6\,\sqrt{2}\,\mathrm{cm}$ 어두운 부분의 넓이는 큰 반원 안 직각삼각형의 넓이와 같으므로 $\Delta\mathrm{ABC}$ 의 넓이를 구하면 $6\,\sqrt{2}\times6\,\sqrt{2}\times\frac{1}{2} = 72\times\frac{1}{2} = 36(\,\mathrm{cm}^2)$

이다.

18. 다음 그림에서 각 반원은 직각삼각형의 각 변을 지름으로 한다. $\overline{AC} = 6 \text{ cm}$, $\overline{BC} = 10 \text{ cm}$ 일 때, 색칠한 부분의 넓이는?



① $15 \, \text{cm}^2$

 $2 18 \,\mathrm{cm}^2$

 $3 20 \,\mathrm{cm}^2$

 $424\,\mathrm{cm}^2$

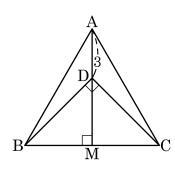
 \odot 32 cm²

$$\triangle ABC$$
 에서 $\overline{AB}^2 = \overline{BC}^2 - \overline{AC}^2 = 10^2 - 6^2 = 64$
 $\therefore \overline{AB} = \sqrt{64} = 8 \text{ (cm)} \ (\because \overline{AB} > 0 \)$

색칠한 부분의 넓이를 *S* 라고 하면

$$S = \frac{\pi \times 4^2}{2} + \frac{\pi \times 3^2}{2} + \frac{6 \times 8}{2} - \frac{\pi \times 5^2}{2} = 24 (\,\mathrm{cm}^2)$$

19. 다음 그림의 $\triangle ABC$ 는 정삼각형이다. 점 D 는 점 A 에서 그은 수선 AM 위의 점이고 $\angle BDC = 90^\circ$, $\overline{AD} = 3$ 일 때, 정삼각형 ABC 의 한 변의 길이를 구하여라.



답

ightharpoonup 정답: $3\sqrt{3} + 3$

전 M 은 직각삼각형 BDC 의 외심이므로

 $\overline{\mathrm{DM}} = \overline{\mathrm{BM}} = \overline{\mathrm{CM}} = x$ 라 하면,

 $\overline{AM} = 3 + x$, $\overline{BC} = 2x$

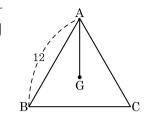
 $\overline{AM} = \frac{\sqrt{3}}{2} \times \overline{BC}$

 $3 + x = \sqrt{3}x$ $(\sqrt{3} - 1)x = 3$

 $(\sqrt{3} - 1)x = 3$ $\therefore x = \frac{3(\sqrt{3} + 1)}{2}$

따라서 한 변의 길이는 $2x = 3(\sqrt{3} + 1)$ 이다.

20. 다음 그림과 같이 한 변의 길이가 12인 정삼 각형 ABC의 무게중심을 G라 할 때. \overline{AG} 의 길이는?



(5) $8\sqrt{3}$

① $\sqrt{3}$

② $2\sqrt{3}$

 $4 6\sqrt{3}$

$$\overline{\mathrm{AG}}$$
의 길이는 정삼각형 높이의 $\frac{2}{3}$ 가 된다.

$$\overline{AG} = \frac{\sqrt{3}}{2} \times 12 \times \frac{2}{3} = \frac{12\sqrt{3}}{3} = 4\sqrt{3}$$

21. 그림과 같이 한 변의 길이가
$$4 \, \mathrm{cm}$$
 인 정삼각 형의 한 중선을 $\overline{\mathrm{AD}}$, 무게중심을 G 라고 할 때, $\overline{\mathrm{GD}}$ 의 길이는 $\frac{a\,\sqrt{b}}{3}$ 이다. $a+b$ 의 값을 $4\,\mathrm{cm}'$ 구하여라. (단, b 는 최소의 자연수)

때, GD 의 실어는 3 이다.
$$a+b$$
 의 없을 4cm / 구하여라. (단, b 는 최소의 자연수) / G B D B C

$$\overline{AD} = \frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3} \text{ (cm)}$$

$$\overline{GD} = 2\sqrt{3} \times \frac{1}{3} = \frac{2\sqrt{3}}{3}$$

3 3
따라서
$$a+b=2+3=5$$

22. 한 변의 길이가 10 인 정삼각형의 높이를 한 변의 길이로 하여 정육면 체를 만들었다. 이 정육면체의 대각선의 길이를 구하여라.

답:

▷ 정답: 15

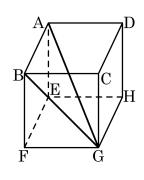
해섴

한 변의 길이가 10 인 정삼각형의 높이는

 $\frac{\sqrt{3}}{2} \times 10 = 5\sqrt{3}$ 이다.

또한 한 변의 길이가 $5\sqrt{3}$ 인 정육면체의 대각선의 길이는 $5\sqrt{3} \times \sqrt{3} = 15$ 이다.

23. 다음과 같이 $\overline{AD}=4\mathrm{cm}$ 인 정육면체가 있을 때, $\overline{AG}+\overline{BG}$ 의 길이를 구하여라.



cm

ightharpoonup 정답: $4\sqrt{2} + 4\sqrt{3} \, \text{cm}$

해설

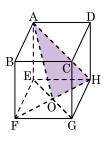
답:

한 변의 길이가 $4 \mathrm{cm}$ 이므로 $\overline{\mathrm{BG}} = \sqrt{4^2 + 4^2} = \sqrt{32} = 4\sqrt{2} \mathrm{(cm)}$ 가 된다.

 $\overline{\mathrm{AG}}$ 는 정육면체의 대각선이므로 $\sqrt{3} \times 4 = 4\sqrt{3} (\mathrm{cm})$ 이 된다.

 $\overline{AG} + \overline{BG} = 4\sqrt{2} + 4\sqrt{3}(cm)$

24. 다음 그림과 같이 한 모서리의 길이가 8 인 정육 면체에서 밑면의 두 대각선의 교점을 점 Ο 라 할 때, ΔΑΟΗ 의 넓이를 구하여라.



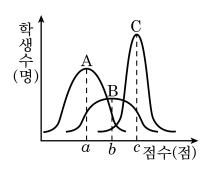
$$\overline{OH} = 4\sqrt{2}, \ \overline{AH} = 8\sqrt{2}$$
 $\overline{AO} = \sqrt{(4\sqrt{2})^2 + 8^2} = \sqrt{32 + 64}$
 $= \sqrt{96} = 4\sqrt{6}$

 $\overline{AH}^2 = \overline{OH}^2 + \overline{AO}^2$

즉, $(8\sqrt{2})^2 = (4\sqrt{2})^2 + (4\sqrt{6})^2$ 이므로 $\triangle AOH$ 는 직각삼각형이다.

(
$$\triangle$$
AOH 의 넓이)= $4\sqrt{2} \times 4\sqrt{6} \times \frac{1}{2} = 16\sqrt{3}$

25. 다음 그림은 A,B,C 세 학급의 수학 성적을 나타낸 그래프이다. 다음 설명 중 옳지 <u>않은</u> 것은?



- ① B반 성적은 A반 성적보다 평균적으로 높다.
- ② 그래프에서 가장 많이 분포되어 있는 곳이 평균이다.
- ③ C반 성적이 가장 고르다.
- ④ 평균 주위에 가장 밀집된 반은 A 반이다.
- ⑤ B반보다 A반의 성적이 고르다.

해설

평균 주위에 가장 밀집된 반은 C반이므로 C반 성적이 가장 고르다.

26. 다음 표는 S 중학교 5 개의 학급에 대한 학생들의 미술 실기 점수의 평균과 표준편차를 나타낸 것이다. 다음 설명 중 옳지 않은 것은? (단, 각 학급의 학생 수는 모두 같다.)

학급	A	В	С	D	E
평균(점)	77	77	73	70	82
표준편차	2.2	$2\sqrt{2}$	$\frac{\sqrt{10}}{2}$	$\sqrt{4.5}$	$\sqrt{5}$

- ① A 학급의 학생의 성적이 B 학급의 학생의 성적보다 더 고른 편이다.
- ② 고득점자는 A 학급보다 B 학급이 더 많다.
- ③ B의 표준편차가 A의 표준편차보다 크므로 변량이 평균주위에 더 집중되는 것은 B이다.
 - ④ 가장 성적이 고른 학급은 C 학급이다.
- ⑤ D 학급의 학생의 성적이 평균적으로 A 학급의 학생의 성적보다 낮은 편이다.

딁	L	서	
Οŀ	11		

표준편차를 근호를 이용하여 나타내면 다음과 같다.

학급	A	В	С	D	Е
표준 편차	$2.2 = \sqrt{4.84}$	$2\sqrt{2}$ $=\sqrt{8}$	$\frac{\sqrt{10}}{2}$ $= \sqrt{\frac{10}{4}}$ $= \sqrt{2.5}$	$\sqrt{4.5}$	$\sqrt{5}$

③ 표준편차가 작을수록 변량이 평균 주위에 더 집중된다. 따라 서 변량이 평균주위에 더 집중되는 것은 A이다. 27. 다음 표는 5 개의 학급 A, B, C, D, E에 대한 학생들의 수학 점수의 평균과 표준편차를 나타낸 것이다. 다음 설명 중 옳은 것을 모두 고르면? (단, 각 학급의 학생 수는 모두 같다.)

학급	A	В	С	D	E
평균(점)	67	77	73	67	82
표준편차	2.1	$\sqrt{2}$	$\frac{\sqrt{10}}{3}$	$\sqrt{4.4}$	$\sqrt{3}$

- ① A 학급의 학생의 성적이 B 학급의 학생의 성적보다 더 고른 편이다.
- ②B 학급의 학생의 성적이 D 학급의 학생의 성적보다 더 고른편이다.
- ③ 중위권 성적의 학생은 A 학급보다 C 학급이 더 많다.
 - ④ 가장 성적이 고른 학급은 E 학급이다.
- ⑤ D 학급의 학생의 성적이 평균적으로 C 학급의 학생의 성적보다 높은 편이다.

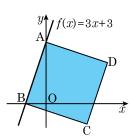
해설

표준편차를 근호를 이용하여 나타내면 다음과 같다.

학급	A	В	С	D	Е
표준 편차	$2.1 = \sqrt{4.41}$	$\sqrt{2}$	$\frac{\sqrt{10}}{3}$ $= \sqrt{\frac{10}{9}}$ $= \sqrt{1.1}$	$\sqrt{4.4}$	$\sqrt{3}$

- ① B 학급의 학생의 성적이 A 학급의 학생의 성적보다 더 고른 편이다.
- ④ 가장 성적이 고른 학급은 C 학급이다.
- ⑤ C 학급의 학생의 성적이 평균적으로 D 학급의 학생의 성적 보다 높은 편이다.

28. 함수 *f*(*x*) 와 *y* 축, *x* 축이 만나는 점을 각각 A, B 라고 할 때, AB 를 한 변으로 하는 정 사각형 ABCD 를 그린 것이다. □ABCD 의 넓이를 구하여라.



_ (0.2) P_ (1.0) 이미크

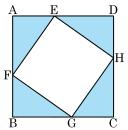
A = (0,3), B = (-1,0) 이므로 $\overline{OA} = 3, \overline{OB} = 1$

따라서 피타고라스 정리에 대입하면 $\overline{AB} = \sqrt{10}$ 이 성립한다.

그러므로 구하고자 하는 □ABCD 의 넓이는 10 이다.

다음 정사각형 ABCD 에서 $\overline{AF} = \overline{BG} =$ 29. $\overline{CH} = \overline{DE}$ 이고, 4 개의 직각삼각형의 넓이 의 합이 18√3 이 성립한다. □ABCD 의 둘

레의 길이가 $12\left(1+\sqrt{3}\right)$ 일 때, $\overline{\mathrm{AE}}^2+\overline{\mathrm{DE}}^2$



의 값을 구하여라.

$$\overline{AE} = a$$
, $\overline{DE} = b$ 라고 할 때,

직각삼각형의 넓이의 합이 $18\sqrt{3}$ 이므로 $\triangle AEF$ 의 넓이는 $\frac{18\sqrt{3}}{4}$

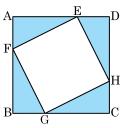
$$=\frac{1}{2}ab$$

$$\frac{1}{2}al$$

 $\square ABCD$ 의 둘레의 길이가 $12\left(1+\sqrt{3}\right)$ 이므로 $4\left(a+b\right)=$ $12(1+\sqrt{3})$

따라서
$$a+b=3+3\sqrt{3}$$
, $ab=\frac{18\sqrt{3}}{2}=9\sqrt{3}$ 이므로 $a^2+b^2=(a+b)^2-2ab=9+18\sqrt{3}+27-18\sqrt{3}=36$ 이다.

30. 다음은 정사각형 ABCD 의 내부에 ĀF = BG = CH = DE 가 성립하도록 □EFGH 를 그린 것이다. ĀE : ĀF = 2 : 1 , EF = √5 F일 때, 색칠된 부분의 넓이를 구하여라.



▶ 답:

▷ 정답: 4

해설

색칠된 4 개의 직각삼각형은 모두 합동이고 피타고라스 정리에 의해 $\overline{AE}^2 + \overline{AF}^2 = \overline{EF}^2$ 이 성립한다.

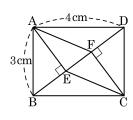
되어 $\overline{AE} + \overline{AF} = \overline{EF}$ 이 생립했다. $\overline{AE} \cdot \overline{AF} = 2 \cdot 1$ 이므로 $\overline{AE} = 2 \cdot \overline{AE} = 2 \cdot$

 $\overline{AE}:\overline{AF}=2:1$ 이므로 $\overline{AE}=2k,\ \overline{AE}=k\ (k>0)$ 라 하면 $(2k)^2+k^2=5$ 에서 k=1 이므로 $\overline{AF}=1,\ \overline{AE}=2$ 가 성립한다.

따라서 직각삼각형 하나의 넓이를 A 라고 할 때, $A = \frac{1}{2} \times \overline{AE} \times \overline{AE}$

 $\overline{AF} = 1$ 이므로 4A = 4 이다.

31. 다음 직사각형 ABCD 의 두 꼭짓점 A, C 에서 대각선 BD 에 내린 수선의 발을 각각 E, F 라 할 때, □AECF 의 넓이는?



①
$$\frac{8}{5}$$
 cm²

$$3 12 \, \text{cm}^2$$

$$4 11 \sqrt{3} \text{ cm}^2$$

⑤
$$12\sqrt{3}\,\mathrm{cm}^2$$

$$\overline{BD} = \sqrt{3^2 + 4^2} = 5 \text{ (cm)}$$

$$5 \times \overline{AE} = 3 \times 4$$

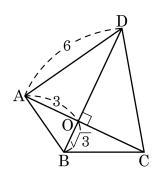
$$\therefore \overline{AE} = \frac{12}{5} \text{ cm}$$

$$\overline{BE} = \sqrt{3^2 - \left(\frac{12}{5}\right)^2} = \frac{9}{5} \text{ (cm)}$$

BE =
$$\overline{\rm DF}$$
 이므로 $\overline{\rm EF} = 5 - 2 \times \frac{9}{5} = \frac{7}{5}$ (cm)

$$\therefore \ \Box {\rm AECF} = \frac{12}{5} \times \frac{7}{5} = \frac{84}{25} ({\rm cm}^2)$$

32. 다음 그림과 같이 □ABCD 에서 두 대각선이 서로 직교하고, $\overline{AD} = 6$, $\overline{AO} = 3$, $\overline{BO} = \sqrt{3}$ 일 때, $\overline{CD}^2 - \overline{BC}^2$ 의 값을 구하여라.

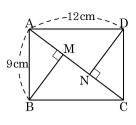


 $\triangle ABO$ 에서 $\overline{AB}^2 = 3^2 + (\sqrt{3})^2 = 12 \text{ 이므로}$

$$12 + \overline{CD}^2 = \overline{BC}^2 + 6^2$$

 $\overline{\mathrm{CD}}^2 - \overline{\mathrm{BC}}^2 = 36 - 12 = 24$

33. 다음 그림과 같이 직사각형 ABCD 의 점B, D 에서 대각선 AC 에 내린 수선의 발을 각각 M, N 이라고 할 때, MN 의 길이를



▶ 답:

구하여라

▷ 정답: 4.2

 $\overline{AC} = \sqrt{12^2 + 9^2} = 15, \overline{AM} = \overline{NC}$

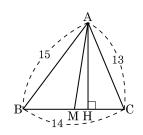
 $\overline{AB}^2 = \overline{AM} \times \overline{AC}$ 이므로

 $9^2 = \overline{AM} \times 15$ $\therefore \overline{AM} = 5.4$

 $\therefore \overline{MN} = \overline{AC} - 2\overline{AM} = 15 - 2 \times 5.4 = 4.2$

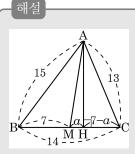
 34.
 다음 그림의 삼각형 ABC 에서 점 A 에서 BC

 BC 에 내린 수선의 발을 H 라 하고, 점 M 은 BC 의 중점일 때, AH – MH 의 길이를 구하여라.



▶ 답:

➢ 정답: 10



 $\overline{\mathrm{MH}} = a$ 라 할 때,

 $15^2 - (7+a)^2 = 13^2 - (7-a)^2$

따라서 $\overline{\text{MH}} = a = 2$, $\overline{\text{AH}} = \sqrt{13^2 - 5^2} = 12$

 $225 - (49 + 14a + a^2) = 169 - (49 - 14a + a^2), 28a = 56, a = 2$

이므로 $\overline{\mathrm{AH}}$ – $\overline{\mathrm{MH}}$ = 10

35. $\overline{AB}=3$, $\overline{AC}=4$, $\overline{BC}=5$ 인 삼각형 ABC 에서 변 BC 의 중점을 M 이라 하고, 점 B 에서 직선 AM 에 내린 수선의 발을 H 라 할 때, 선분 BH 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $\frac{12}{5}$

$$\overline{BM} = \overline{CM} = \overline{AM} = \frac{5}{2}$$
 점 A 에서 선분 BC 에 내린 수선의 발을 D 라 하면,

형이고 점 M 은 삼각형 ABC 의 외심이므로,

 $\overline{AB^2} + \overline{AC^2} = \overline{BC^2}$, 즉 삼각형 ABC 는 $\angle A = 90^\circ$ 인 직각삼각

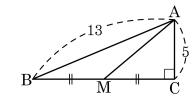
$$\overline{BC} \times \overline{AD} = \overline{AB} \times \overline{AC}$$
 이므로

$$\overline{\mathrm{BM}} \times \overline{\mathrm{AD}} = \overline{\mathrm{AM}} \times \overline{\mathrm{BH}}$$
 이므로

$$\therefore \overline{BH} = \frac{12}{5}$$

 $\therefore \overline{AD} = \frac{12}{5}$

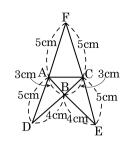
36. 다음 그림의 $\triangle ABC$ 에서 점 M 이 변BC 의 중점일 때, \overline{AM} 의 길이를 구하여라



$$ightharpoonup$$
 정답: $\sqrt{61}$

$$\overline{BC} = \sqrt{13^2 - 5^2} = 12 \qquad \therefore \overline{MC} = 6$$
$$\therefore \overline{AM} = \sqrt{6^2 + 5^2} = \sqrt{61}$$

37. 다음 그림과 같은 전개도를 가지는 삼각뿔의 부피를 구하여라.



D,E,F

4cm

5cm

5çm´

3cm

▶ 답:

▷ 정답: 6

형이다.

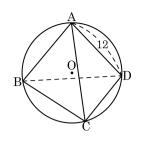
 $3^2 + 4^2 = 5^2$ 이므로 $\triangle ADB$ 와 $\triangle BEC$ 는 $\angle ABD = \angle CBE = 90^\circ$ 인 직각삼각

1

(삼각뿔의 부피) =
$$\frac{1}{3} \times \triangle ABC \times \overline{DB}$$

= $\frac{1}{3} \times \frac{1}{2} \times 3^2 \times 4 = 6$

38. 다음 그림은 한 모서리의 길이가 12 인 정사 면체에 외접하는 구를 그린 것이다. 이 구의 반지름의 길이는?



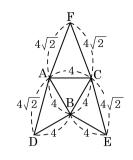
① $2\sqrt{3}$ ② $3\sqrt{5}$ ③ $3\sqrt{6}$ ④ $4\sqrt{3}$ ⑤ $5\sqrt{2}$

구의 중심 O 에서 점 A, B, C, D 에 선을 그으면, 밑면은 한 변의 길이가 12 인 정삼각형인 사면체 4 개가 된다. 이 사면체의 높이를 h 구의 반지름의 길이를 R이라고 하면 $R^2 = h^2 + (4\sqrt{3})^2$ 에서 $h = \sqrt{R^2 - 48}$ 이므로 그 정사면체들의 부피의 합은

정사면체의 부피는 $\frac{\sqrt{2}}{12} \times 12^3 = 144 \sqrt{2}$

$$\frac{\sqrt{3}}{4}\times12^2\times\sqrt{R^2-48}\times\frac{1}{3}\times4=144\sqrt{2}$$
 따라서 $R=3\sqrt{6}$ 이다.

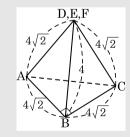
39. 다음 그림과 같은 전개도를 가지는 삼각뿔의 부피를 구하여라.



▶ 답:

$$ightharpoonup$$
 정답: $\frac{32}{3}$

$$4^2+4^2=\left(4\sqrt{2}\right)^2$$
 이므로 $\triangle ADB$ 와 $\triangle BEC는$ $\angle ABD=\angle CBE=90^\circ$ 인 직각이등변삼 각형이다.



$$\therefore$$
 (삼각뿔의 부피) $= \frac{1}{3} \times \triangle ABC \times \overline{DB}$
 $= \frac{1}{3} \times \frac{1}{2} \times 4^2 \times 4 = \frac{32}{3}$

40. 다음 그림의 원뿔은 밑면의 반지름의 길이가 8cm, 높이가 15cm 이다. 원뿔의 겉넓이를 구 하여라.

 cm^2



정답 : 200π cm²

$$\triangle OAH$$
 에서 $\overline{OA}^2 = \overline{AH}^2 + \overline{OH}^2$
 $\overline{OA} = \sqrt{15^2 + 8^2} = 17 \text{ (cm)}$

Q--17cm 밑면의 반지름의 길이가 8 (cm) 이므로 둘레의 길이는 $2\pi \times 8 =$

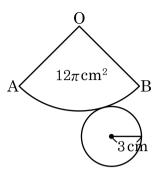
 $16\pi \, (\mathrm{cm})$ 전개도에서 옆면은 부채꼴이므로 (옆면의 넓이) $=\frac{1}{2}\times(부채꼴의 반지름)\times(호의 길이)$

$$= \frac{1}{2} \times 17 \times 16\pi$$

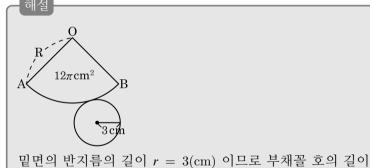
 $= 136\pi \, (\, \text{cm}^2)$

 \therefore (겉넓이) = $136\pi + 64\pi = 200\pi$ (cm²)

41. 다음 그림은 넓이가 12πcm² 인 부채꼴과 반지름이 3cm 인 원으로 만들어지는 원뿔의 전개도이다. 이 원뿔의 높이는?



- ① $\sqrt{3}$ cm
 - em ② $\sqrt{6}$ cm
 - $\sqrt{3}\sqrt{7}\,\mathrm{cm}$
- (4) $2\sqrt{3}$ cm (5) $\sqrt{13}$ cm



 $l=2\pi r=6\pi(\mathrm{cm})$ 이다.

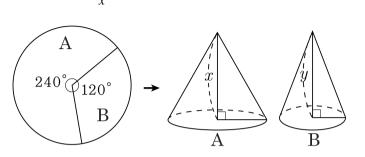
부채꼴 넓이이 $S=\frac{1}{2}\mathrm{Rl}=\frac{1}{2}\times\mathrm{R}\times6\pi=3\pi\mathrm{R}=12\pi$ 이므로 $\mathrm{R}=4(\mathrm{cm})$ 이다.

4,

원뿔의 높이 $h = \sqrt{4^2 - 3^2} = \sqrt{16 - 9} = \sqrt{7}$ (cm) 이다.

위의 전개도로 다음과 같은 원뿔이 만들어진다.

42. 반지름의 길이가 12 인 원을 다음 그림과 같이 중심각이 240°, 120° 가 되도록 잘라내어 2 개의 고깔을 만들었다. 두 고깔 A, B 의 높이를 각각 x, y 라 할 때, $\frac{y}{x}$ 의 값을 구하여라.



▶ 단:

$$ightharpoonup$$
 정답: $\frac{2\sqrt{10}}{5}$

화설 호의 길이는 각각
$$24\pi \times \frac{240^{\circ}}{360^{\circ}} = 16\pi$$
, $24\pi \times \frac{120^{\circ}}{360^{\circ}} = 8\pi$ 원기둥 A 에서 모선의 길이가 $12\mathrm{cm}$, 밑면의 반지름의 길이가 $8\mathrm{cm}$ 이므로 $x = \sqrt{144 - 64} = \sqrt{80} = 4\sqrt{5} (\mathrm{cm})$ 원기둥 B 에서 모선의 길이가 $12\mathrm{cm}$, 밑면의 반지름의 길이가 $4\mathrm{cm}$ 이므로 $y = \sqrt{144 - 16} = \sqrt{128} = 8\sqrt{2} (\mathrm{cm})$ $\therefore \frac{y}{x} = \frac{2\sqrt{10}}{5}$