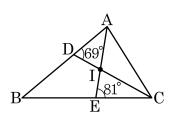
1. 다음 그림에서 점 I 는 △ABC 의 내심이고, ∠ADI = 69°, ∠CEI = 81° 일 때, ∠B 의 크기를 구하여라.

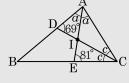


답:

▷ 정답: 40°

해설

점 I 는
$$\triangle$$
ABC 의 내심이므로
 \angle BAE = \angle CAE = a , \angle ACD = \angle BCD = c 라 하면



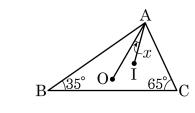
 \triangle AEC 에서 외각의 성질에 의해 \angle CAE + \angle ACE = \angle AEB 이므로 $a+2c=99^{\circ}\cdots$ \bigcirc

 \triangle ADC 에서 외각의 성질에 의해 \angle CAD + \angle ACD = \angle CDB 이므로 $2a+c=111^{\circ}\cdots$ ©

①, ⓒ을 더하면 $3a+3c=210\,^\circ$ 즉, $a+c=70\,^\circ$

 $\therefore \angle B = 180^{\circ} - 2(a+c) = 180^{\circ} - 140^{\circ} = 40^{\circ}$

2. 다음 그림의 $\triangle ABC$ 에서 $\angle B=35^\circ$, $\angle C=65^\circ$ 이고, 점 O 와 점 I 는 각각 $\triangle ABC$ 의 외심과 내심일 때, $\angle x$ 의 크기를 구하여라.

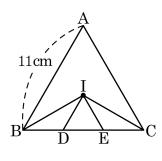


①
$$10^{\circ}$$
 ② 12° ③ 15° ④ 18° ⑤ 20°

점 O 와 점 C 를 이으면,
$$\begin{array}{c}
A \\
B \\
\hline
35^{\circ} O \cdot 1 \\
\hline
-65^{\circ} C
\end{array}$$
i) $\angle B = 35^{\circ}$ 이므로 $\angle AOC = 70^{\circ}$, $\angle OAC = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ} \therefore \angle OAC = 55^{\circ}$
ii) $\angle A = 180^{\circ} - (35^{\circ} + 65^{\circ}) = 80^{\circ}$ 이므로 $\angle IAC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}$

$$\angle x = \angle OAC - \angle IAC = 55^{\circ} - 40^{\circ} = 15^{\circ} \therefore \angle x = 15^{\circ}$$

3. 다음 그림에서 점 I 는 정삼각형 ABC 의 내심이다. $\overline{AB}//\overline{ID}, \overline{AC}//\overline{IE}$ 이고 $\overline{AB}=11\mathrm{cm}$ 일 때, ΔIDE 의 둘레의 길이는?



① $\frac{11}{3}$ cm

해설

- $2 \frac{11}{2} cm$
- ④ 12cm ⑤ 13cm

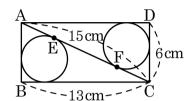
∠ABI = ∠IBD 이고 ∠ABI = ∠BID(∵ AB//ID) 이므로 ∠IBD =

 $\angle BID$ 이다. $\Rightarrow \overline{BD} = \overline{ID}$

같은 방법으로 $\angle ACI = \angle ICE$ 이고 $\angle ACI = \angle CIE$ ($: \overline{AC}//\overline{IE}$) 이므로 $\angle ICE = \angle CIE$ 이다. $\Rightarrow \overline{IE} = \overline{EC}$ 이다.

따라서 ($\triangle IDE$ 의 둘레의 길이) $= \overline{ID} + \overline{DE} + \overline{IE} = \overline{BD} + \overline{DE} + \overline{EC} = \overline{BC} = 11(cm)$ 이다.

4. 다음 그림과 같은 직사각형 ABCD 에서 두 원은 각각 △ABC, △ACD 의 내접원이다. 두 접점 E, F 사이의 거리는 ?

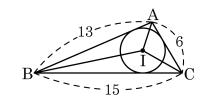


$$\overline{AE}$$
 를 x 라 하면
$$(15-x) + (6-x) = 13 : x = 4(cm)$$
 $\overline{AE} = \overline{CF} = 4(cm)$ 이므로

 $\therefore \overline{EF} = 15 - (4 + 4) = 7(cm)$

해설

5. 다음 그림에서 점 I 는 \triangle ABC 의 내심이고 $\overline{AB}=13$, $\overline{BC}=15$, $\overline{CA}=6$ 이다. \triangle AIB : \triangle BIC : \triangle CIA 를 a:b:c 라고 할 때, a+b-c의 값을 구하여라.(단, a, b, c는 서로 소인 자연수)



▶ 답:

해설
내접원의 반지름의 길이를
$$r$$
 이라 하면 $(\triangle AIB \ 의 넓이) = \frac{1}{2} \times r \times 13 = \frac{13}{2}r$

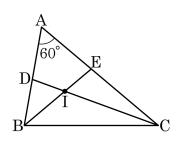
(
$$\triangle$$
BIC 의 넓이) = $\frac{1}{2} \times r \times 15 = \frac{15}{2}r$
(\triangle CIA 의 넓이) = $\frac{1}{2} \times r \times 6 = 3r$ 이다.

(ACIA 의 넓이) =
$$\frac{1}{2} \times r \times 6 = 3r$$
 이다.
AAIB: \triangle BIC: \triangle CIA = $\frac{13}{2}r: \frac{15}{2}r: 3r = 13: 15: 6 이므로,$

a = 13, b = 15, c = 6이다.

따라서 13 + 15 - 6 = 22 이다.

6. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. \angle A = 60° 일 때, \angle BDC + \angle BEC 의 크기를 구하여라.



▶ 답:

정답: 180°

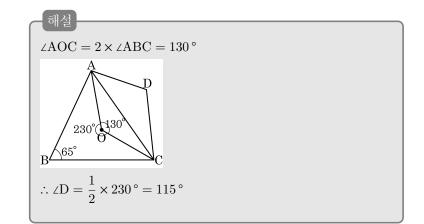
 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 120^{\circ}, \ \angle DIE = 120^{\circ}.$

 \square ADIE 에서 \angle ADI + \angle AEI + 60° + 120° = 360° \angle ADI + \angle AEI = 180° .

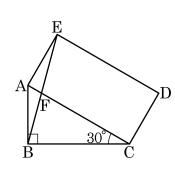
 $\angle BDI + \angle ADI + \angle CEI + \angle AEI = 360^{\circ}, \angle BDC + \angle BEC = 180^{\circ}$

7. 다음 그림에서 점 O는 $\triangle ABC$ 의 외심이면서 동시에 $\triangle ACD$ 의 외심일 때, $\triangle ACD$ 의 크기를 구하여라.

 $\begin{array}{c} A \\ D \\ O \end{array}$



8. 다음 그림에서 $\triangle ABC$ 는 $\angle B=90^\circ$ 인 직각삼각형이고, $\Box ACDE$ 는 직사각형이다. $\overline{AE}=\frac{1}{2}\overline{AC}$, $\angle ACB=30^\circ$ 일 때, $\angle DEF$ 와 $\angle EFC$ 의 크기의 차는?



①30° ② 32° ③ 34° ④ 36° ⑤ 38°

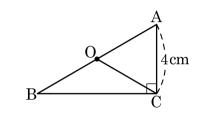
 \overline{AC} 의 중점 O 를 잡으면 점 O 는 $\triangle ABC$ 의 외심으로 \overline{AE} = \overline{AO} = \overline{OC} = \overline{OB} 이다. $\angle BAC$ = 60° 이므로

$$\angle EAB = 60^{\circ} + 90^{\circ} = 150^{\circ}$$

 $\angle ABE = \angle AEB = (180^{\circ} - 150^{\circ}) \div 2 = 15^{\circ}$
 $\angle DEF = 90^{\circ} - 15^{\circ} = 75^{\circ}$

∠EFC = $90^{\circ} + 15^{\circ} = 105^{\circ}$ ∴ ∠EFC - ∠DEF = $105^{\circ} - 75^{\circ} = 30^{\circ}$

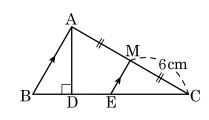
다음 그림과 같이 직각삼각형 ABC의 외심이 점 O일 때, $\overline{AB} + \overline{AC} =$ 9. 12cm 이면 ∠ABC 의 크기는?



 $\overline{OA} + \overline{OB} + \overline{AC} = 12 \text{cm}$ 이고

 $\overline{OA} = \overline{OB} = \overline{OC}$ 이므로 $\overline{OA} = \overline{OC} = \overline{AC} = 4$ cm이다. 따라서 $\triangle AOC$ 는 정삼각형이므로 $\angle OAC = 60^{\circ}$

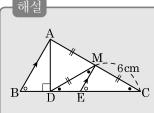
10. 다음 그림과 같이 $\triangle ABC$ 의 꼭짓점 A 에서 변 BC에 내린 수선의 발을 점 D라고 하고, \overline{AB} 와 평행하면서 빗변 AC의 중점 M을 지나는 선분 ME를 이었다. $\angle B = 2 \times \angle C$, $\overline{CM} = 6 \mathrm{cm}$, $\triangle DEM$ 의 둘레의 길이가 $14 \mathrm{cm}$ 일 때, 선분 ME의 길이를 구하여라.



cm

 ■ 답:

 ▷ 정답:
 4 cm



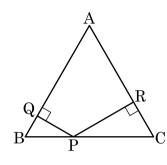
점 M은 \triangle ADC의 외심이므로 $\overline{MA} = \overline{MD} = \overline{MC}$ \triangle MDC는 이등변삼각형이므로 \angle C = \angle MDC \angle B = \angle MEC = $2\angle$ MDC

 \angle DME = \angle C = \angle MDC 따라서 \triangle EMD는 이등변삼각형이다.

따라서 $\overline{DE} = \overline{ME}$ 이므로 \overline{ME} 의 길이를 x라 하면 ΔMDE 의 둘레의 길이는 2x + 6 = 14

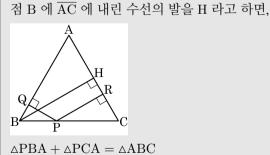
 $\therefore \overline{\text{ME}} = 4\text{cm}$

11. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 $\triangle ABC$ 에서 밑변 BC 위의 한 점 P 에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 Q, R 이라 한다. \overline{PQ} = 3 cm, $\overline{PR} = 5 \text{cm}$ 일 때, 점 B 에서 \overline{AC} 에 이르는 거리를 구하여라.



cm

해설



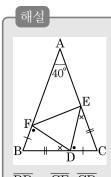
 $\frac{1}{2} \times \overline{BA} \times 3 + \frac{1}{2} \times \overline{CA} \times 5 = \frac{1}{2} \times \overline{CA} \times \overline{BH}$ $\overline{BH} = 8 \text{ (cm)}$

12. 다음 그림은 $\overline{AB} = \overline{AC}$, $\angle A = 40^{\circ}$ 인 이등변삼각형 ABC 의 변 위에 $\overline{BD} = \overline{CE}$, $\overline{CD} = \overline{BF}$ 가 되도록 점 D, E, F 를 잡은 것이다. 이 때, $\angle DEF$ 의 크기를 구하여라.

A 40° E B

▶ 답:

➢ 정답: 55°



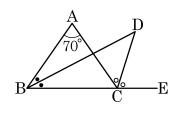
$$\overline{\mathrm{BD}} = \overline{\mathrm{CE}}, \overline{\mathrm{CD}} = \overline{\mathrm{BF}}$$
이고, $\angle \mathrm{B} = \angle \mathrm{C}$ 이므로
 $\triangle \mathrm{BDF} \equiv \triangle \mathrm{CED}$ (∵ SAS 합동)

$$= 180^{\circ} - (\angle BDF + \angle BFD)$$

∴ ∠EDF = ∠B =
$$\frac{180^{\circ} - 40^{\circ}}{2}$$
 = 70° $\overline{DF} = \overline{DE}$ 이므로 △DEF는 이등변삼각형이다.

$$\therefore \angle DEF = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$$

13. \triangle ABC 에서 $\overline{AB} = \overline{AC}$ 이고, $\angle C$ 의 외각의 이등분선과 $\angle B$ 의 이등분선의 교점을 D 라고 한다, $\angle A = 70^\circ$ 일 때, $\angle D$ 의 크기는?



① 32.5° ② 35° ③ 37.5° ④ 40° ⑤ 42.5°

$$\triangle ABC$$
 가 이등변삼각형이므로 $\angle ABC = \angle ACB = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$

$$\angle ACD = \frac{1}{2}(\angle A + \angle ABC)$$
$$= \frac{1}{2}(70^{\circ} + 55^{\circ})$$

 $= 62.5^{\circ}$

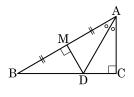
$$\angle DBC = \frac{1}{2}(\angle ABC) = \frac{1}{2} \times 55^{\circ} = 27.5^{\circ}$$

$$\therefore \angle D = 180^{\circ} - (27.5^{\circ} + 55^{\circ} + 62.5^{\circ})$$

$$= 180^{\circ} - 145^{\circ}$$

$$= 35^{\circ}$$

14. 다음 그림과 같이 ∠C = 90°인 ΔABC에서 ∠A의 이등분선과 ĀB의 수직이등분선이 BC 위의 점 D에서 만날 때, ∠B의 크기를 구하여라.

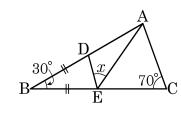


$$\triangle ACD \equiv \triangle AMD \text{ (RHA 합동), } \triangle AMD \equiv \triangle BMD \text{ (SAS 합동)}$$
 이므로 $\angle B = \angle MAD$ 이다.

$$\angle B + \angle A = 90$$
 °이코
 $\angle A = 2\angle MAD = 2\angle B$ 이므로

3∠B = 90°, 따라서 ∠B = 30°이다.

15. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{BD} = \overline{BE}$, $\overline{CA} = \overline{CE}$ 이고 $\angle DBE = 30^{\circ}$, $\angle ACE = 70^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.



△BED 이 스 △BED =
$$\frac{1}{2}(180^{\circ} - 30^{\circ}) = 75^{\circ}$$

△CAE 이 스 △AEC = $\frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$

∴ $\angle x = 180^{\circ} - (75^{\circ} + 55^{\circ}) = 50^{\circ}$

16. 최대 4 명까지 탈 수 있는 2 대의 배에 8 명을 나누어 태우는 방법의 가짓수를 구하여라.

▶ 답: <u>가지</u>

정답: 70 가지

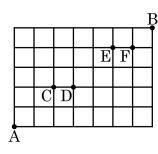
해설

정원이 4 명인 2 대의 배를 A, B 라 하면

배 A, B 에 8 명이 나누어 타는 경우는 (4명, 4명) 뿐이다. 8 명 중 A 배에 탈 4 명을 뽑는 경우의 수는

 $\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} = 70 (가지) 이다.$

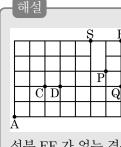
나머지 4 명은 배 B 에 타면 되므로 경우의 수는 1 가지이다. 따라서 구하는 경우의 수는 70 가지이다. 17. 다음 그림의 A 에서 출발하여 B 까지 가는 최단 경로 중 선분 CD는 반드시 지나고, 선분 EF는 반드시 지나지 않는 경로의 가짓수를 구하여라.



답:

<u>가지</u>

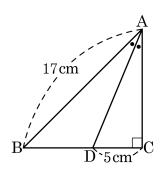
정답: 138



선분 EF 가 없는 경우와 같고 선분 CD 는 반드시 지나므로

- (1) A → C 까지 가는 경우의 수 : $\frac{4!}{2!2!} = 6($ 가지)
- (2) C → D 까지 가는 경우의 수: 1 가지
- (3) D → B 까지 가는 경우의 수 ¬ D → Q → B : 1 가지
 - ① D → P → B : $\frac{4!}{1!3!} \times \frac{3!}{1!2!} = 12(7 ? \)$
- 따라서 A 에서 B 까지 가는 최단경로의 가짓수는 $6 \times 1 \times 23 =$

138(가지)이다. (단, $n! = n \times (n-1) \times (n-2) \cdots 3 \times 2 \times 1$ 이다.) 18. 다음 그림에서 $\angle C = 90^\circ$ 이고, $\overline{AC} = \overline{BC}$ 인 직각이등변삼각형 ABC 에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D 라 하고, \overline{AB} = 17cm, $\overline{DC} = 5$ cm 일 때, $\triangle ABD$ 와 $\triangle ADC$ 의 넓이의 차는?

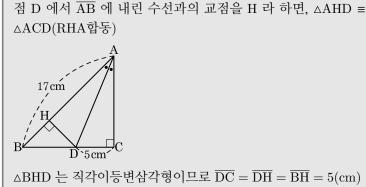


① $\frac{11}{2}$ cm²

 $4.33 \, \text{cm}^2$

 25 cm^2

 \bigcirc 51cm²



 $\frac{1}{2} = 30 (\text{cm}^2)$ 이다. \triangle ABD 와 \triangle ADC 의 넓이의 차는 $\frac{85}{2} - 30 = \frac{25}{2} (\text{cm}^2)$ 이다.

 $3 \frac{75}{2} \text{cm}^2$

19. A, B 두 사람이 5전 3승제로 탁구 시합을 하고 있는데 현재 A가 2 승 1 패로 앞서가고 있다. 앞으로 A는 1 승을, B는 2 승을 더 해야만 승리를 할 수 있다고 한다. 두 사람이 한 게임에서 이길 확률이 서로 같을 때, A가 이길 확률은 B가 이길 확률의 몇 배인가? (단, 비기는 게임은 없다)

해설

A가 4번째 게임이나 5번째 게임에서 이기면 탁구 시합에서 승리하게 되므로, 구하는 확률은 (4번째 게임에서 이길 확률) + (5번째 게임에서 이길 확률) 이다.
4회 때 이길 확률은
$$\frac{1}{2}$$
5회 때 이길 확률은 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
따라서, A가 이길 확률은 $\frac{1}{2} + \frac{1}{4} = \frac{3}{4}$ 이고, B가 이길 확률은 $1 - \frac{3}{4} = \frac{1}{4}$ 이므로 3배이다.

20. KOREA의 5개 문자를 무심히 일렬로 나열할 때, 모음이 모두 인접할 확률을 구하면?

①
$$\frac{1}{10}$$
 ② $\frac{1}{5}$ ③ $\frac{3}{10}$ ④ $\frac{2}{5}$ ⑤ $\frac{1}{2}$

전체 경우의 수는 다섯 개의 문자를 일렬로 배열하는 경우의 수와 같고, 위의 경우는 KOREA 중에 모음은 O, E, A 3 개 이 므로 이를 하나로 보고 일렬로 나열한 후 이들끼리 자리 바꾸는 경우로 생각해 보면 된다.

$$\therefore \frac{(3 \times 2 \times 1) \times (3 \times 2 \times 1)}{5 \times 4 \times 3 \times 2 \times 1} = \frac{3}{10}$$