
1. 다음 그림에서 $\angle C=90^\circ$, $\overline{BM}=\overline{CM}$, $\overline{AB}=25\mathrm{cm}$, $\overline{AC}=7\mathrm{cm}$ 이다. 이 때, \overline{AM} 의 길이는?

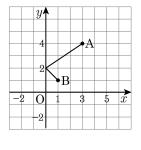


- √190cm
 √194cm
- ② $\sqrt{191}$ cm ③ $\sqrt{199}$ cm
- $\sqrt{193}$ cm

2. 대각선의 길이가 $6\sqrt{2}$ 인 정사각형의 넓이는?

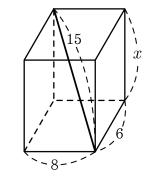
① 12 ② 18 ③ 24 ④ 36 ⑤ 42

3. 다음 그림과 같이 $\overline{AB}=\overline{AC}=9\,\mathrm{cm}$, $\overline{BC}=6\,\mathrm{cm}$ 인 이등변삼각형 ABC 의 넓이를 구하여라.


좌표평면 위의 두 점 A(-1, 1), B(x, 5) 사이의 거리가 4 $\sqrt{2}$ 일 때, x 의 값을 구하여라.

) 답: x = _____

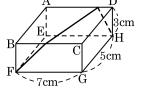
4.


) 답: x = _____

5. 좌표평면 위의 점 A(3, 4)에서 y축 위의 점을 한번 거쳐 B(1, 1)로 가는 최단 거리가 a 일 때, a의 값을 구하여라.

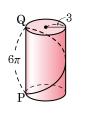
) 답: a = _____

6. 다음 직육면체에서 x 의 값을 구하여라.

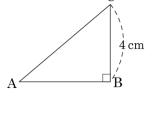


① $\sqrt{5}$ ② $2\sqrt{5}$ ③ $3\sqrt{5}$ ④ $4\sqrt{5}$ ⑤ $5\sqrt{5}$

7. 어떤 정육면체의 대각선의 길이가 9 일 때, 이 정육면체의 한 모서리의 길이는?


① $2\sqrt{3}$ ② $3\sqrt{3}$ ③ $6\sqrt{3}$ ④ 6 ⑤ $2\sqrt{6}$

8. 다음 그림과 같은 직육면체의 꼭짓점 F 에서 모서리 BC 와 AD를 지나 꼭짓점 H 에이르는 최단 거리를 구하여라.


답: _____

9. 다음 그림과 같은 원기둥에서 점 P 에서 옆면을 따라 점 Q 에 이르는 최단 거리를 구하여라.

>	답:	

10. 다음 그림과 같은 직각삼각형 ABC 에서 $\sin A = \frac{2}{3}$ 이고, \overline{BC} 가 4cm 일 때, \overline{AB} 의 길이는?

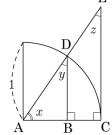
 $3 2\sqrt{7} \,\mathrm{cm}$

④ 3 cm

① $2\sqrt{5}$ cm

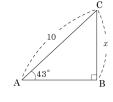
- ② $4\sqrt{5}$ cm ③ $4\sqrt{3}$ cm
- 0 1 (0 01

- **11.** 다음 중 옳은 것을 모두 고르면? (정답 2개)
 - ② $\sin 30^{\circ} = \cos 60^{\circ} = \tan 45^{\circ}$


① $\sin 90^{\circ} = \cos 90^{\circ} = \tan 90^{\circ}$

- $\Im \sin 90^\circ = \cos 0^\circ = \tan 90^\circ$
- ① $\sin 90^{\circ} + \cos 90^{\circ} + \tan 45^{\circ} = 2$ ① $\cos 0^{\circ} + \tan 0^{\circ} = \sin 90^{\circ}$

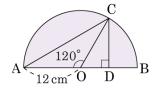
에 대하여 ∠DAB = x, ∠ADB = y, ∠DEC = z 라 할 때, 다음 중 옳지 <u>않은</u> 것은?


12. 다음 그림과 같이 반지름의 길이가 1 인 사분원

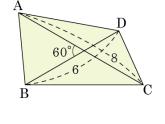
- ① $\sin y = \sin z$ ② $\cos y = \cos z$ ③ $\tan x = \tan z$ ④ $\cos z = \overline{BD}$

© van 22

13. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

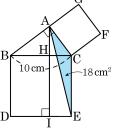


〈삼각비의 표〉


x	sin x	cos x	tan x
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6821	1.0724

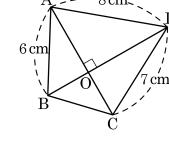
① 6.82 ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314

- 14. 다음 그림에서 ĀB 는 원 O 의 지름이고 ∠AOC = 120°, ∠ADC = 90°, ĀO = 12cm 일 때, △AOC 의 넓이는?
 - ① $12\sqrt{3}\text{cm}^2$ ② $24\sqrt{3}\text{cm}^2$
 - ③ $36\sqrt{3}\text{cm}^2$ ④ $48\sqrt{3}\text{cm}^2$ ⑤ $60\sqrt{3}\text{cm}^2$


15. 다음 그림과 같은 사각형 ABCD의 넓이 를 구하면?

① $12\sqrt{3}$ ② $11\sqrt{3}$ ③ $10\sqrt{3}$ ④ $9\sqrt{3}$ ⑤ $8\sqrt{3}$

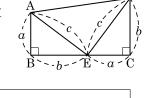
ABC 의 두 변 AC, BC 를 각각 한 변으로 하는 정사각형 ACFG 와 정사각형 BDEC 를만들고, 점 A 에서 변 BC 에 수선을 그어 두변 BC, DE 와만난 점을 각각 H, I 라할때, BC = 10 cm, ΔAEC = 18 cm²이다. 사각형BDIH 의 넓이를 구하여라. (단, 단위는 생명)


16. 다음 그림과 같이 $\angle A = 90$ ° 인 직각삼각형

) 답: _____ cm²

17. 두 대각선이 서로 수직이고 각 변의 길이가 $\overline{AB}=6 {
m cm}, \overline{AD}=8 {
m cm}, \overline{CD}=7 {
m cm},$ 사각형 ABCD에서 변 BC의 길이는 몇 ${
m cm}$ 인가?

A ---8 cm

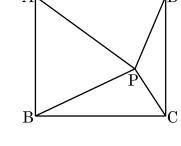

4 $\sqrt{23}$ cm

① $\sqrt{17}$ cm

 $\sqrt{26}$ cm

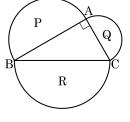
② $\sqrt{19}$ cm

18. 다음은 사다리꼴 ABCD 를 이용하여 피타 고라스 정리를 설명한 것이다. 옳지 않은 것을 골라 기호로 써라.



 \bigcirc 사다리꼴 넓이 공식을 적용하면 $S=\left(a+b\right)^2$ 이고,

사다리꼴의 넓이를 S 라고 할 때,

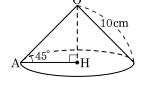

- ① 세 개의 삼각형의 넓이의 합을 이용하면 $S = \frac{1}{2}ab + \frac{1}{2}ab + \frac{1}{2}c^2$ ② 따라서 $\frac{1}{2}(a+b)^2 = \frac{1}{2}ab + \frac{1}{2}ab + \frac{1}{2}c^2$ 이다. ② 이를 정리하면 $a^2 + b^2 = c^2$
- ▶ 답: _____

19. 다음 직사각형 ABCD 에서 $\overline{PA}=5$, $\overline{PB}=2\sqrt{5}$, $\overline{PC}=2\sqrt{2}$ 일 때, \overline{PD} 의 길이를 구하여라.

▶ 답: _____

20. 다음 그림에서 ∠A = 90° 인 ΔABC 의세 변을 지름으로 하는 반원의 넓이를 각각 P, Q, R 라고 하자. P = 12πcm², Q = 4πcm² 일 때, R의 지름의 길이를 구하여라.

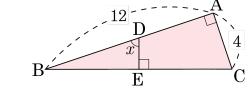
> 답: _____ cm


- 21. 다음 그림에서 직사각형 ABCD 의 점 A 에서 대각선 BD 까지의 거리를 구하여라.
- A B C

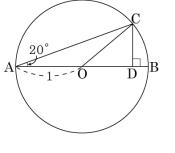
▶ 답: ____

- 22. 다음 그림과 같이 지름이 $12 \, \mathrm{cm}$ 인 원에 내 접하는 정육각형의 넓이를 $a\sqrt{b}$ cm² 라고 할 때, $\frac{a}{b}$ 의 값을 구하여라. (단, b는 최소의 자연수이다.) ① 16 ② 18 ③ 20
- _ -12cm- _

④ 22 ⑤ 24


- ① $\frac{160\sqrt{3}}{3}\pi \text{ cm}^3$ ② $70\sqrt{2}\pi \text{ cm}^3$ ③ $\frac{250\sqrt{2}}{3}\pi \text{ cm}^3$ ④ $\frac{280\sqrt{2}}{3}\pi \text{ cm}^3$ Ac

24. $\sin^2 x = \cos x$ 일 때, $\frac{1}{1 - \cos x} - \frac{1}{1 + \cos x}$ 의 값을 구하여라.


> 답: _____

25. 다음 그림과 같은 $\triangle ABC$ 에서 $\sin x \times \cos x \times \tan x$ 의 값을 구하여라.

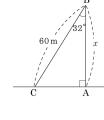
▶ 답: ____

26. 다음 그림과 같이 반지름의 길이가 1인 원 위의 점 C에서 지름 AB에 내린 수선의 발을 D라 할 때, 다음 중 옳지 <u>않은</u> 것은?

- ② $\overline{BD} = 1 \cos 40^{\circ}$

① $\overline{\text{CD}} = \sin 40^{\circ}$

- (3) $\overline{AC} = \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$ (4) $\triangle CAD = \frac{1}{2} \sin 40^{\circ} \times (1 + \cos 40^{\circ})$ (5) $\triangle CAO = \frac{1}{2} \sin 40^{\circ}$

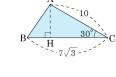

 ${f 27}$. 직선 ℓ 은 x 축과 양의 방향으로 60° 를 이루는 직선과 평행하고, (-6,4)를 지날 때, 직선 ℓ 의 방정식을 구하면?

- ① $y = 3x + 4\sqrt{3}$ ② $y = \sqrt{3}x + 4$ ③ $y = 3\sqrt{3}x + 4$ ④ $y = \sqrt{3}x + 4\sqrt{3}$

① $\frac{\sqrt{3}}{2}$ ② 1 ③ $\frac{1+\sqrt{3}}{2}$ ④ ③ $\frac{2+\sqrt{3}}{2}$

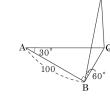
- ${f 29.}\ \ {
 m B}\ {
 m 지점에}\ {
 m H}\ {
 m 있는}\ {
 m 기구는}\ {
 m 길이가}\ 60{
 m m}\ {
 m 인}\ {
 m 줄을}\ {
 m 연결하여}\ {
 m C}\ {
 m 지점에}$ 묶여있다. 기구에서 지면을 수직으로 내려다 본 지점이 A 일 때, $\angle {
 m CBA} = 32^{\circ}$ 이다. 기구가 지면에서 떨어진 높이 $\overline{
 m AB}$ 를 버림하여 일의 자리까지 구하면? (단, $\cos 32^{\circ} = 0.8480$)

 $\bigcirc 50\,\mathrm{m}$



② $51 \,\mathrm{m}$ ③ $52 \,\mathrm{m}$ ④ $53 \,\mathrm{m}$ ⑤ $54 \,\mathrm{m}$

- 30. 다음 그림과 같이 시계의 추가 B 지점과 B' 지점 사이를 일정한 속도로 움직이고 있다. 추의 길이는 30cm 이고, ∠BOA = ∠AOB' = 45°, ∠BOB = 90° 이다. 추가 가장 높은 위치에 있을 때, 추는 A 지점을 기준으로 하여 몇 cm 의 높이에 있는가?
 - 30 cm 45
 - $4 \ 30(2 \sqrt{2}) \text{cm}$ $35(2 \sqrt{2}) \text{cm}$

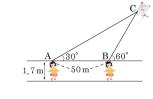

① $15(2-\sqrt{2})$ cm ② $20(2-\sqrt{2})$ cm ③ $25(2-\sqrt{2})$ cm

31. 다음 그림의 \triangle ABC 에서 \triangle ABH 둘레의 길이는?

- $3 5 + 2\sqrt{3} \sqrt{37}$
- ① $5-2\sqrt{3}+\sqrt{37}$ ② $5+2\sqrt{3}+\sqrt{37}$
- $\bigcirc 6 + 2\sqrt{3} + \sqrt{37}$

32. 다음 그림과 같이 ĀB = 100m, ∠ABQ = 90°, ∠BAQ = 30° 이고, B 지점에서 기구가 있는 P 지점을 올려다 본 각이 60°일 때, 기구의 높이를 구하면?

④ 110 m

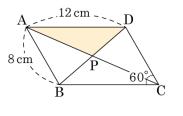

① 80 m

⑤ 120 m

 \bigcirc 90 m

- ③ 100 m

33. A,B 두 사람이 다음 그림과 같이 연을 바라보았을 때, 연의 높이는?

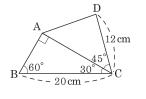


- ① $(20\sqrt{2} + 1.7)$ m ③ $(25\sqrt{2} + 1.7)$ m
- ② $(25\sqrt{3} + 1.7)$ m ④ $(28\sqrt{2} + 1.7)$ m
- $(30\sqrt{3} + 1.7)$ m
- \oplus (28 **V**2 + 1.7)II

34. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 BD 와 AC 의 교점을 P 라 한다. ∠BCD = 60°, AD = 12cm, AB = 8cm 일 때, △APD 의 넓이를 구하여라.

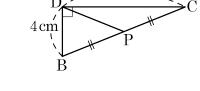
② $14\sqrt{3}$

① $12\sqrt{3}$



⑤ $20\sqrt{3}$

③ $16\sqrt{3}$


④ $18\sqrt{3}$

35. 다음 그림과 같은 □ABCD 의 넓이를 구하여라.

〕답: _____ cm²

36. 직각삼각형 BCD 에서 $\overline{BD}=4\mathrm{cm},\ \overline{CD}=10\mathrm{cm}$ 이고, 점 P 가 \overline{BC} 를 이등분할 때, \overline{PD} 의 길이는?

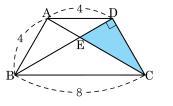
- ① $\sqrt{29} \text{ cm}$ ④ $4\sqrt{2} \text{ cm}$
- ② $\sqrt{30} \, \text{cm}$ ③ $\sqrt{33} \, \text{cm}$

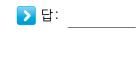
 $3\sqrt{31}\,\mathrm{cm}$

37. $\overline{AP} = \overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = \overline{EF} = 2$ 일 때, 다음 그림에서 길이가 4 가 되는 선분은?

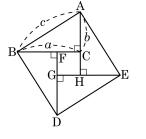
B A P

 $\overline{9}$ \overline{PD}

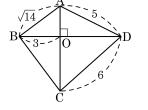

 $\overline{4}$ \overline{PE}

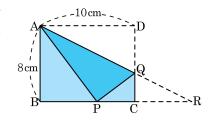

⑤ <u>PF</u>

 \bigcirc \overline{PC}


 \bigcirc \overline{PB}

38. 다음 그림과 같은 등변사다리꼴 ABCD 에서 \triangle CDE 의 넓이는 $\frac{b\sqrt{3}}{a}$ 이다. 이 때, b-a 의 값을 구하여라.(단, a,b는 유리수)

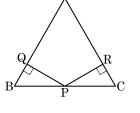

39. 다음 그림에서 \square ABDE는 한 변의 길이가 c 인 정사각형이다. 다음 보기에서 옳지 <u>않은</u> 것을 모두 골라라.


	보기
\bigcirc $\triangle ABC \equiv \triangle BDF$	\bigcirc $\overline{\mathrm{CH}} = a + b$
© □FGHC는 정사각형	
> 답:	

▶ 답: _____

- 40. 다음 그림과 같은 사각형 ABCD 에서 \overline{AC} \bot \overline{BD} 일 때, \overline{OC} 의 길이를 구하여라.
 - ① 5
- 2 4
- $3 2\sqrt{5}$
- $4 1 + \sqrt{14}$
- ⑤ $3\sqrt{13}$

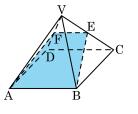
41. 다음 그림과 같이 □ABCD 의 꼭 짓점 D 가 \overline{BC} 위의 점 P 에 오도 록 접는다. $\overline{AD} = 10\,\mathrm{cm}$, $\overline{AB} =$ 8 cm 일 때, △APR 의 넒이는?



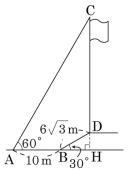
 $42 \,\mathrm{cm}^2$

 $\textcircled{1} \ \ 36\,\mathrm{cm}^2$

 $2 38 \,\mathrm{cm}^2$ \bigcirc 44 cm² $3 40 \, \mathrm{cm}^2$


- **42.** 한 변의 길이가 10 인 정삼각형 ABC 에서 \overline{BC} 위에 임의의 점 P 를 잡고, 점 P 에서 $\overline{AB},\,\overline{AC}$ 에 내린 수선의 발을 각각 Q, R 이 라 할 때, $\overline{PQ} + \overline{PR}$ 를 구하면? ③ $5\sqrt{2}$
 - ① $5\sqrt{3}$ ② $2\sqrt{5}$ **4** 6
 - ⑤ 8

인 정사각뿔에서 \overline{VC} , \overline{VD} 의 중점을 각각 E, F 라고 할 때, □ABEF 의 넓이를 구하면? ① $11\sqrt{10}\,\mathrm{cm}^2$ ② $12\sqrt{3}\,\mathrm{cm}^2$


43. 다음 그림과 같이 모서리의 길이가 모두 $8 \, \mathrm{cm}$

- $3 12 \sqrt{6} \text{ cm}^2$ $4 12 \sqrt{11} \text{ cm}^2$
- (5) $24\sqrt{3}$ cm²
- ⑤ $24\sqrt{3}\,\mathrm{cm}^2$

서 있다. A 지점에서 국기 게양대의 꼭대기 C 를 올려다 본 각이 60°이고, A 지점에서 국기 게양대 방향으로 10 m 걸어간 B 지점에서부터 오르막이 시작된다. 오르막 \overline{BD} 의 길이가 $6\sqrt{3}$ m 이고 오르막의 경사가 30°일 때, 국기 게양대의 높이 \overline{CD} 를 구하여라.

44. 다음 그림과 같이 언덕 위에 국기 게양대가

〕답: _____ m

- **45.** 함수 $y = \sin^2 x 2\sin x + 2$ 의 최댓값과 최솟값은? (단, $0^{\circ} \le x \le 90^{\circ}$)
 - ③ 최댓값 2, 최솟값 -1
 ④ 최댓값 4, 최솟값 1
 - ① 최댓값 2, 최솟값 1 ② 최댓값 3, 최솟값 1
 - ⑤ 최댓값 1, 최솟값 -3
- · 1/2 × 1/2