
1. 다음 중 옳은 것은?

- $n(\emptyset) = n(\{0\})$ ② $n(\{1,2,4\}) - n(\{1,4\}) = 2$
- $n(\{4\}) = 4$
- $n(\{x|x = 40 \ \text{이하의 짝수}\}) = 40$
- $n(\{x|x = 2 < x < 4인 홀수\}) = 1$

2. 두 집합 A, B 가 아래의 표를 만족하도록 \bigcirc 에 적절한 그림을 고르면?

 $A \cup B$

	9
(2)	

3. 전체집합 $U = \{1, 3, 5, 7, 9\}$ 의 두 부분집합 A, B 에 대하여 A - B = $\{3\}$, $B-A=\{5\}$, $A^c\cap B^c=\{7,9\}$ 일 때, $A\cap B$ 는?

① {1} ② {3}

④ {1,3,5} ⑤ {1,5}

4. 전체집합 U의 두 부분집합 A, B에 대하여 $A = \{3, 4, 5, 6\}$, $(A \cup B) \cap (A^c \cup B^c) = \{3, 5, 7\}$ 일 때, 집합 B를 구하면?

① {4, 6} ② {4, 5, 6} ③ {4, 6, 7}

4 5, **6**, **7 5 4**, **5**, **6**, **7**

5. 전체집합 $U = \{x | x = 10 \text{ 이하의 자연수}\}$ 의 두 부분집합 $A = \{x | x = 8 \text{ 의 약수}\}$, $B = \{2, 4, 6\}$ 에 대하여 다음 중 옳은 것은?

① n(A-B)=2

② $n(A \cap B) = 1$ ④ $n(B^c) = 2$

 $\odot n(D) =$

6. 40 명의 학생 중에서 수학을 선택한 학생이 20 명, 국어를 선택한 학 생이 17명이었다. 수학과 국어를 모두 선택한 학생이 5명 이상일 때, 수학과 국어 중 적어도 하나를 선택한 학생은 최대 a 명이고, 최소 b명이다. 이때, a + b 의 값은?

① 20 ② 32 ③ 37 ④ 47 ⑤ 52

7. p_n 이 다음과 같을 때, $f(p_n)=1$ $(p_n$ 이 명제이면) $f(p_n)=-1$ $(p_n$ 이 명제가 아니면) 로 정의한다. 이 때, $f(p_1)+f(p_2)+f(p_3)$ 의 값을 구하면? (단, n=1,2,3)

p₁: x² - x - 2 = 0 p₂: 16의 양의 약수는 모두 짝수이다.

 $p_3:\sqrt{3}$ 은 유리수이다.

8. 다음 명제 중 참인 것은?

- ① p 가 소수이면 \sqrt{p} 는 무리수이다.
- ② x < y이면 $\frac{1}{x} > \frac{1}{y}$ 이다. (단, $x \neq 0, y \neq 0$) ③ $\triangle ABC$ 가 직각삼각형이면 $\overline{AB}^2 + \overline{BC}^2 = \overline{AC}^2$ 이다.
- ④ a + b가 짝수이면 a, b는 짝수이다.
- ⑤ 12와 18의 공약수는 9의 약수이다.

9. 다음 명제의 이가 참이 <u>아닌</u> 것은?

- 실수 a,b,c 에 대하여 ac = bc 이면 a = b 이다.
 두 집합 A, B 에 대하여 A ⊂ B 이면 A ∩ B = A 이다.
- ③ 실수 x,y 에 대하여 x > 1, y > 1 이면 xy > 1, x + y > 2 이다.
- ④ 대각선이 직교하면 마름모이다.
- ⑤ 두 각이 같으면, △ABC 는 이등변삼각형이다.

10. 다음은 'a, b, c 가 자연수일 때, $a^2 + b^2 = c^2$ 이면 a, b 중 적어도 하나는 3의 배수이다.'임을 증명한 것이다.

a,b 가 모두 (가)가 아니라고 가정하면, $a=3m\pm 1,b=3n\pm 1$

(단, m, n 은 자연수)로 놓을 수 있다. 이 때, $a^2 + b^2 = 3M + ()$ (단, M은 자연수 $) \cdots$ 또, c = 3l, $3l \pm 1$ (단, l 은 자연수)라 하면, $c^2 = 3M'$ 또는 $c^2 = 3M'' + (다)$ (단, M', M'' 은 자연수)가 되어 \bigcirc 의 3M + (나)의 꼴로는 쓸 수 없다. 따라서, 모순이므로 a,b 중 적어도 하나 는 3의 배수이어야 한다.

위의 증명 과정에서 (가), (나), (다)에 알맞은 것을 차례로 적으면?

① 자연수, 1, 2 ② 자연수, 2, 1

③ 3의 배수, 1, 2 ④ 3 의 배수, 2, 1 ⑤ 3의 배수, 2, 2

 ${f 11.}$ 다음 보기중 조건 p 가 조건 q 이기 위한 필요충분조건이 되는 것을 모두 고른 것은? 보기

- ① p: xy < 0, q: |x| + |y| > |x + y|
- © $p: xy \le 0, q: ||x| |y|| = |x + y|$
- © p: 임의의 실수 a 에 대하여 ax + y = 0,
- q: |x| + |y| = 0

(4 (L), (E), (D) (S) (L), (E), (E), (D)

12. 세 조건 a,b,c 를 만족하는 값들의 집합을 각각 A,B,C 라고 할 때, $A=\{2p\},B=\{p^2+1,4\},C=\{4,2p+1\}$ 이다. a 가 b 이기위한 충분조건이고, b 는 c 이기위한 필요충분조건일 때, p 의 값은?

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

13. x > 0, y > 0 일 때, $\left(x + \frac{9}{y}\right) \left(y + \frac{1}{x}\right)$ 의 최솟값을 구하면?

① 16 ② 14 ③ 12 ④ 10

⑤ 8

- 코시-슈바르츠 부등식 (a²+b²+c²)(x²+y²+z²) ≥ (ax+by+cz)²을 이용하여 가로, 세로, 높이가 각각 a,b,h이고, 대각선의 길이가 5 인 직육면체에서 모든 모서리의 길이의 합의 최댓값을 구하면?
 ① 5√3 ② 4√5 ③ 20√3
- h h
- $\textcircled{4} \ 25\sqrt{5} \qquad \textcircled{5} \ 24\sqrt{6}$

15. 전체집합 $U = \{1, 2, 3, 4, \cdots, 100\}$ 의 부분집합 중에서 다음의 두 조건을 만족하고, 원소의 개수가 가장 적은 집합을 A라 할 때 n(A)를 구하면?

 \bigcirc $m, n \in A$ 이고, $mn \in U$ 이면 $mn \in A$ 이다.

① 6 ② 8 ③ 10 ④ 12

- **⑤** 16

고르면? 3 개의 홀수와 1 개의 짝수로 이루어져있다.

① {x | x는 7 미만의 소수} ② {x | x는 7 이하의 소수}

16. 다음을 만족하는 집합을 조건제시법으로 알맞게 나타내지 <u>않은</u> 것을

원소들은 각각 2 개의 약수만을 가진 수이다. 원소는 10 미만의 자연수이다.

③ {x | x는 9 미만의 소수}

⑤ {x | x는 10 미만의 소수}

④ {x | x는 9 이하의 소수}

17. 집합 A, B, C, D, E 의 관계가 보기와 같을 때, 다음 중 옳은 것은?

 $A \subset C, B \subset C, C \subset E, D \subset E$

- ② 집합 *B* 는 집합 *D* 의 부분집합이다.
- ③ $D \subset C$ 이면, $B \subset D$ 이다.

① 집합 A 는 집합 B 의 부분집합이다.

- ④ $E \subset D$ 이면, $A \subset D$ 이다.
- ⑤ 집합 *B* 와 집합 *E* 는 같을 수 없다.

18. 공집합이 아닌 두 집합 A, B 에 대하여 집합 A 의 부분집합의 개수가 집합 B의 부분집합의 개수보다 B 개 더 많을 때, B0 의 값을 구한 것은?

① 1 ② 2 ③ 3 ④ 7 ⑤ 9

19. 다음 [보기]에서 옳은 것을 모두 고르면?

명, 둘 다 가지고 있는 학생이 3 명일 때, 축구공 또는 농구공을 가지고 있는 학생은 몇 명인가?

20. 축구공을 가지고 있는 학생은 15 명, 농구공을 가지고 있는 학생은 10

① 21 명 ② 22명 ③ 23 명 ④ 24 명 ⑤ 25 명

 $B = \{x | x 는 12의 약수\},$ $C = \{x | x 는 20$ 이하의 홀수}

21. 세 집합 $A = \{x | x = 20 \text{ 이하의 } 3 = 10\}$,

- 에 대하여 $C-(A\cap B)$ 로 알맞은 것은?
- ② {1, 5, 7, 11, 13, 17, 19}
- ③ {1, 3, 5, 7, 11, 13, 17, 19}

① {5, 7, 11, 13, 17, 19}

- **4** {1, 5, 7, 9, 11, 13, 17, 19}
- ⑤ {1, 5, 7, 9, 11, 13, 15, 17, 19}

- **22.** 전체집합 $U = \{1, 2, 3, 4, 5\}$ 의 두 부분집합 A, B 에 대하여 $B = \{1, 3, 4\}, A^C \cap B = \{4\}$ 일 때, 집합 A 가 될 수 있는 모든 집합의 개수는?
 - ① 1 개 ② 2 개 ③ 3 개 ④ 4 개 ⑤ 5 개

- ${f 23}$. 전체집합 U 의 두 부분집합 $A,\ B$ 에 대하여 $A-B=\varnothing$ 일 때, A= $\{1, 2, 3, 6\}$ 이라면 집합 B 로 알맞지 <u>않은</u> 것은?
 - ③ $B = \{1, 2, 3, 4, 6, 7, 8\}$ ④ $B = \{1, 2, 3, 5, 7, 8\}$
 - ① $B = \{1, 2, 3, 6, 8\}$ ② $B = \{1, 2, 3, 6, 7, 8\}$

24. 자연수 n 의 양의 배수의 집합을 A_n 이라 할 때, 다음 <보기>에서 옳은 것을 모두 고른 것은? (단, m, n 은 자연수)

① $A_5 \cap A_7 = \emptyset$ ⓒ $A_4 \cup A_6 = A_4$ ⓒ m, n이 서로소이면 $A_m \cap A_n = A_{mn}$ ② m = kn(k는 양의 정수) 이면 $A_m \subset A_n$

④ ℂ, ₾, ₴

① ①, ②, ②

⑤ ⑤, ❷

② ①, ©

③ ⑦, ₺, ₴

 ${f 25}$. 세 조건 p,q,r의 진리집합을 각각 P,Q,R라 하면 $P\cup Q=P,\ P\cap R=\phi$ 인 관계가 성립한다. 이 때, 다음 중 반드시 참이라고 할 수 <u>없는</u> 것 은?

- ① $p \rightarrow \sim r$ ② $\sim p \rightarrow \sim q$ ③ $q \rightarrow r$

- **26.** 두 조건 p_n , $q_n(n=1, 2)$ 에 대하여 $P_n = \{x | x \vdash p_n \in \mathbb{C} \}$ 만족한다. $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 인조한다. $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \{x | x \vdash q_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in \mathbb{C} \} \}$ 이고, $\{y_n \in \mathbb{C} \}$ 이고, $\{y_n \in$ p_n 이기 위한 충분조건일 때, 다음 중 옳지 <u>않은</u> 것은?
- ③ $(P_1 \cup Q_1) \cup P_2 = P_1$ ④ $(P_1 \cup Q_1) \cap P_2 = P_2$

① $P_1 \cap P_2 = P_2$ ② $P_1 \cap Q_1 = Q_1$

27. $A = \{1, 2, 4\}$ 에 대하여 $B = \{x \mid x = a \times b, \ a \in A, \ b \in A\}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?

- ① $5 \notin B$ ② $8 \in B$ ③ $\{16\} \notin B$

28. 13ⁿ (n 은 자연수)의 일의 자리 수의 모임을 집합 A 라 할 때, 집합 A 의 부분집합의 개수를 a, 집합 A 의 원소의 합을 b 라 하면 a + b 의 값은?

① 30 ② 34 ③ 36 ④ 38 ⑤ 40

29. 집합 $S = \{1, 2, 3, 4, 5, 6\}$ 의 부분집합 중에서 홀수가 하나만 속하는 것을 A_1 , A_2 , A_3 , \cdots , A_n 이라 하고, $A_k(k=1, 2, \cdots, n)$ 의 원소의 합을 S_k 라고 할 때, $S_1+S_2+S_3+\cdots+S_n$ 의 값은?

① 216

② 240 ③ 672 ④ 696

⑤ 728

 ${f 30.}$ 두 집합 $P,\ Q$ 에 대하여 집합의 연산 $\vartriangle \ \cong X \vartriangle Y = (X-Y) \cup (Y-X)$ 로 약속할 때, $A = \{1, 2, 4, 8\}$, $B = \{2, 4, 8\}$, $C = \{4, a\}$ 에 대하여 다음과 같다면 a 의 값은?

 $(A \triangle B) \triangle C = \{1, 4, 9\}$

① 6 ② 7

③ 8 ④ 9 ⑤ 10

31. a > 0, b > 0, c > 0, $a^2 = b^2 + c^2$, $b + c \le ka$ 를 만족하는 양의 상수 k의 최솟값은?

① 1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④ $\sqrt{6}$ ⑤ $\sqrt{7}$

32.
$$x < 0$$
인 실수 x 에 대하여 $f(x)$ 가 $2f(x) = \frac{1}{x} + f\left(\frac{1}{x}\right)$ 를 만족할 때, $f(x)$ 의 최댓값은?

①
$$-\frac{2\sqrt{3}}{3}$$
④ $2\sqrt{2}$

①
$$-\frac{2\sqrt{2}}{3}$$
 ② $-\frac{\sqrt{2}}{3}$ ③ $\frac{\sqrt{2}}{3}$ ④ $\frac{4\sqrt{2}}{3}$

$$\bigcirc 3 \quad \frac{\cancel{3}}{3}$$

33. a, b가 양의 상수이고, x, y가 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 을 만족하면서 변할 때, x+y의 최댓값은?

① a^2 ② b^2 ③ $\sqrt{a^2 + b^2}$ ④ $a^2 + b^2$