1. 이차함수 $y = -2x^2$ 의 그래프를 x 축의 방향으로 -3 만큼 y 축의 방향으로 4 만큼 평행이동시켰을 때, 최댓값을 구하면?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

 $y = -2(x+3)^2 + 4$ 따라서 x = -3 일 때, 최댓값은 4 이다.

해설

- **2.** 다음 함수 중 최댓값을 갖는 것은?
 - ① $y = 2(x-3)^2$ ③ $y = 3x^2 - x + 2$
- ② y = x(x-1)④ $y = -x^2 + 4x - 3$
- ⑤ y = (2x + 1)(2x 1)

 $y = ax^2 + bx + c$ 에서 a < 0일 때 이차함수가 최댓값을 갖는다.

3. 다음 표는 선영이의 5 회 동안의
 횟수(회)
 1
 2
 3
 4
 5

 점수(점)
 8
 7
 x
 7
 9
 수학 쪽지 시험의 성적을 나타낸 표이다. 5 회의 평균이 8 점일 때, 3 회의 점수를 구하여라.

점

▷ 정답: 9점

▶ 답:

해설

 $\frac{8+7+x+7+9}{5}=8,\,\frac{31+x}{5}=8,\,31+x=40$ ∴ x = 9 점

4. 다음은 A, B, C, D, E 다섯 학급의 학생들의 평균 몸무게에 대한 편차를 나타낸 표이다. 이 다섯 학급의 몸무게의 평균이 65kg 일 때, A 학급의 몸무게와 다섯 학급의 표준편차를 차례대로 나열한 것은? (단, 각 학급의 학생 수는 모두 같다.)

학급 A B C D E

7.0	11	ן בי		יב	
편차(kg)	-1	2	3	0	X

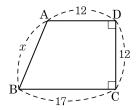
464kg, $\sqrt{6}$ kg 5 64kg, $\sqrt{7}$ kg

① 60kg, $\sqrt{2}$ kg ② 61kg, $\sqrt{3}$ kg ③ 62kg, 2kg

A 학급의 몸무게는 65 + (-1) = 64(kg)또한, 편차의 합은 0 이므로

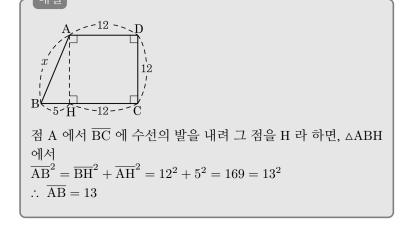
해설

-1 + 2 + 3 + 0 + x = 0, x + 4 = 0 $\therefore x = -4$ 따라서 분산이 $\frac{(-2)^2 + 1^2 + 3^2 + 0^2 + (-4)^2}{5} = \frac{30}{5} = 6$

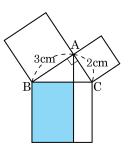

이므로 표준편차는 $\sqrt{6}\,\mathrm{kg}$ 이다.

5. 성적이 가장 고른 학급은? (단, 각 학급의 학생 수는 모두 같다.) 학급 ABCDE

약급	A	В	C	D	E
평균(점)	7	8	6	7	6
표준편차(점)	1	2	1.5	2.4	0.4


표준편차가 작을수록 변량이 평균 주위에 더 집중된다. 따라서 성적이 가장 고른 학급은 표준편차가 가장 작은 *E* 이다.

6. 다음 사각형 ABCD 에서 \overline{AB} 의 길이를 구하여라.



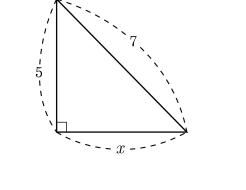
답:

➢ 정답: 13

7. 다음 그림과 같은 직각삼각형 ABC 의 각 변을 한 변으로 하는 3개의 정사각형을 만들었을 때, 색칠된 부분의 넓이를 구하여라.

 ▷ 정답:
 9 cm²

답:


 $\overline{
m AB}$ 를 포함한 사각형의 넓이와 색칠한 부분의 넓이는 같다.

해설

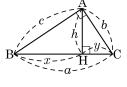
따라서 $3^2 = 9(\text{cm}^2)$ 이다.

 $\underline{\mathrm{cm}^2}$

8. 다음을 만족하는 x 의 값을 구하여라.

① $2\sqrt{3}$ ② $2\sqrt{6}$ ③ $3\sqrt{8}$ ④ 4 ⑤ 6

해설


빗변이 7 인 직각삼각형이므로 피타고라스 정리에 의해 $x^2+5^2=$ 7² 성립해야 하므로 $x^2 = 7^2 - 5^2$

$$= 49 - 25$$

= 24

 $\therefore x = \sqrt{24} = 2\sqrt{6} \ (\because x > 0)$

9. 다음 그림과 같이 ∠A = 90° 인 직각삼각형 ABC 의 점 A 에서 BC 에 내린 수선의 발을 H 라 할 때, 보기에서 옳은 것을 모두 골라라.
 B

 답:

▶ 답:

▶ 답:

▶ 답:

 ▷ 정답: ⑤

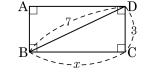
 ▷ 정답: ⑥

▷ 정답: ②

▷ 정답: ⑭

· 레 서

10. 다음 그림은 직사각형 ABCD 의 점 B 가 점 D 에 오도록 접은 것이다. \overline{BF} 의 길이는?


D 에 오도록 접은 것이다. BF 의 길이는?

① 10 ② 12 ③ 14 ④ 16 ⑤ 18

해설

 $\overline{BF} = \overline{FD}$ $\therefore \overline{BF} = 10$

11. 다음 그림에서 x 의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $x=2\sqrt{10}$

피타고라스 정리에 따라서 $49 = 9 + x^2$ x는 변의 길이이므로 x > 0 $\therefore x = 2\sqrt{10}$ 이다.

12. 넓이가 $52\sqrt{3}$ cm² 인 정삼각형의 높이를 구하여라.

▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 2√39 cm

정삼각형의 한 변의 길이를 *a* 라고 하면,

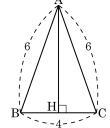
정삼각형의 넓이는 $\frac{\sqrt{3}}{4}a^2$ 이므로 $\frac{\sqrt{3}}{4}a^2 = 52\sqrt{3}$ $a^2 = 208$ $\therefore a = \sqrt{208} = 4\sqrt{13}$ 따라서 정삼각형의 높이는

$$a^2 = 208$$

$$\therefore a = \sqrt{208} = 4$$

$$\frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times 4\sqrt{13} = 2\sqrt{39} \text{(cm)}$$

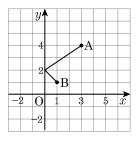
13. 지름이 10인 원 안에, 다음과 같이 정육각형이 내접해 있다. 이때, 정육각형의 넓이는?



- ① $\frac{71\sqrt{3}}{2}$ ② $\frac{73\sqrt{3}}{2}$ ② $\frac{79\sqrt{3}}{2}$ ③ $\frac{79\sqrt{3}}{2}$

해설 (정육각형의 넓이) = (정삼각형의 넓이) × 6 이므로 $\frac{\sqrt{3}}{4} \times 25 \times 6 = \frac{75\sqrt{3}}{2}$

 ${f 14.}$ 다음 그림의 이등변삼각형 ABC 에서 높이 ${f \overline{AH}}$


① $\sqrt{2}$ ② $2\sqrt{2}$ ③ $3\sqrt{3}$

 $\overline{AH} = \sqrt{6^2 - 2^2} = 4\sqrt{2}$

해설

15. 좌표평면 위의 점 A(3, 4)에서 y축 위의 점을 한번 거쳐 B(1, 1)로 가는 최단 거리가 a 일 때, a의 값을 구하여라.

➢ 정답: a = 5

▶ 답:

점 B 를 y 축에 대해 대칭이동한 점을 B'라 하면

해설

B'(-1, 1), 최단거리= ĀB'
∴ ĀB' = √3² + 4² = 5 이다.

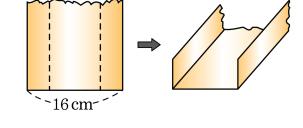
16. 차가 12 인 두 수가 있다. 이 두 수의 곱이 최소가 될 때, 두 수 중 큰 수를 구하여라.

▶ 답:

▷ 정답: 6

해설

두 수를 각각 x, x + 12 라 하면 y = x(x + 12)


 $= x^2 + 12$

 $x = (x+6)^2 - 36$ x = -6 일 때, 최솟값 -36을 갖는다.

x = -6, -6 + 12 = 6

따라서 두 수 중에서 큰 수는 6 이다.

17. 다음 그림과 같이 너비가 16cm 인 철판의 양쪽을 접어 직사각형인 물받이를 만들었다. 단면의 넓이를 최대가 되게 하는 높이를 구하여라.

▶ 답: $\underline{\mathrm{cm}}$ ▷ 정답: 4<u>cm</u>

높이를 xcm, 넓이를 ycm 2 라고 두면

해설

y = x(16 - 2x) $= -2x^2 + 16x$

 $= -2(x^2 - 8x + 16) + 32$

 $=-2(x-4)^2+32$ 이다. 따라서 x = 4 일 때, 최댓값 32 를 가진다.

18. 지면으로부터 초속 $30\mathrm{m}$ 로 던져 올린 물체의 t 초 후의 높이를 $h\mathrm{m}$ 라고 하면 $h = 30t - 5t^2$ 인 관계가 성립한다. 이 물체가 가장 높이 올라갔을 때의 높이는?

45m ① 60m ③ 50m \bigcirc 55m ⑤ 40m

 $h = 30t - 5t^2$

해설

 $= -5(t^2 - 6t + 9) + 45$ $= -5(t - 3)^2 + 45$

19. 5개의 변량 3, a, 4, 8, b의 평균이 5이고 분산이 3일 때, $a^2 + b^2$ 의 값을 구하여라.

▶ 답:

➢ 정답: 51

해설

5개의 변량의 평균이 5이므로 a+b=10이다. $(3-5)^2+(a-5)^2+(4-5)^2$

$$\frac{(3-5)^2 + (a-5)^2 + (4-5)^2}{5} + \frac{(8-5)^2 + (b-5)^2}{5} = 3$$

$$4 + (a-5)^2 + (b-5)^2 = 1$$

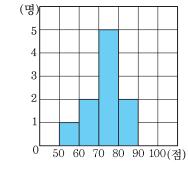
$$(a-5)^2 + (b-5)^2 = 1$$

$$a^{2} + b^{2} - 10(a+b) + 50 = 1$$
$$a^{2} + b^{2} - 10(10) + 50 = 1$$

$$\therefore a^2 + b^2 = 51$$

- **20.** 다음 네 개의 변수 a, b, c, d 에 대하여 다음 보기 중 옳지 <u>않은</u> 것을 모두 고르면?
 - ① a+1, b+1, c+1, d+1의 평균은 a, b, c, d의 평균보다 1 만큼 크다.
 - ② a + 3, b + 3, c + 3, d + 3의 평균은 a, b, c, d의 평균보다 3 배만큼 크다.
 - ③ 2a+3, 2b+3, 2c+3, 2d+3의 표준편차는 a, b, c, d의 표준편차보다 2배만큼 크다.
 ④ 4a+7, 4b+7, 4c+7, 4d+7의 표준편차는 a, b, c, d의
 - 표준편차의 4배이다. ⑤ 3a, 3b, 3c, 3d의 표준편차는 a, b, c, d의 표준편차의 9
 - 배이다.

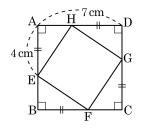
② a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다


해설

3 배만큼 크다. → a+3, b+3, c+3, d+3 의 평균은 a, b, c, d 의 평균보다 3 만큼 크다.

⑤ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 9 배이다.

→ 3a, 3b, 3c, 3d 의 표준편차는 a, b, c, d 의 표준편차의 3 배이다.

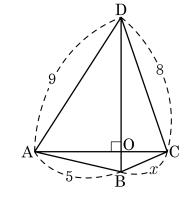

21. 다음 히스토그램은 학생 10 명의 영어 성적을 나타낸 것이다. 이 자료 의 분산은?

① 72 ② 74 ③ 76 ④ 78 ⑤ 80

(평균) =
$$\frac{55 \times 1 + 65 \times 2 + 75 \times 5 + 85 \times 2}{10} = \frac{730}{10} = 73$$
(점)
(분산) = $\frac{1}{10} \left\{ (55 - 73)^2 \times 1 + (65 - 73)^2 \times 2 \right\}$
+ $\frac{1}{10} \left\{ (75 - 73)^2 \times 5 + (85 - 73)^2 \times 2 \right\}$
= $\frac{760}{10} = 76$

$oldsymbol{22}$. 다음 그림과 같은 정사각형에서 $\overline{ ext{EH}}$ 의 길 이는?

 $\bigcirc 3 \, \mathrm{cm}$ $4\sqrt{2}$ cm


 \bigcirc 4 cm ⑤5 cm

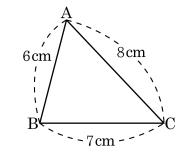
 $3\sqrt{2}$ cm

 $\triangle AEH \equiv \triangle EBF \equiv \triangle FCG \equiv \triangle GDH$ 이므로

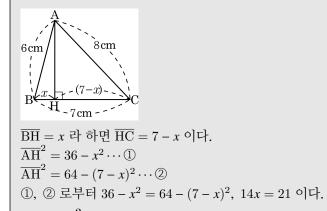
□EFGH 는 정사각형이다. $\overline{\mathrm{AH}}=3\,\mathrm{cm}$ 이므로 $\overline{\mathrm{EH}}=5\,\mathrm{cm}$

23. 다음 그림처럼 $\overline{AC}\bot\overline{BD}$ 이고 $\overline{AB}=5,\overline{CD}=8,\overline{AD}=9$ 일 때, x 의 값으로 적절한 것을 고르면?

① 1 ② $\sqrt{2}$ ③ 2


 $4 2\sqrt{2}$

⑤ 4

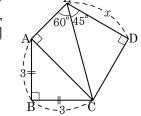

 $\overline{AB}^2 + \overline{CD}^2 = \overline{AD}^2 + \overline{BC}^2$ 이므로 $5^2 + 8^2 = 9^2 + x^2$ $25 + 64 = 81 + x^2$

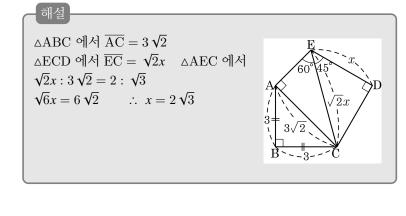
 $x^2=8, x>0$ 이므로 $x=2\sqrt{2}$

24. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}=6cm,\ \overline{BC}=7cm,\ \overline{CA}=8cm$ 일 때, △ABC 의 넓이를 구하면?

- ① $\frac{\sqrt{15}}{4} \text{cm}^2$ ② $\frac{3\sqrt{11}}{4} \text{cm}^2$ ③ $\frac{5\sqrt{13}}{4} \text{cm}^2$ ③ $\frac{5\sqrt{13}}{4} \text{cm}^2$

$$\overline{AH}^2 = 64 - (7 - x)$$


$$\therefore x = \frac{3}{2} \text{(cm)}$$


$$\therefore \overline{AH} = \sqrt{36 - \frac{9}{4}} = \frac{3\sqrt{15}}{2} \text{(cm)}$$

$$(\triangle ABC의 템) = \frac{1}{2} \times 7 \times \frac{3\sqrt{15}}{2} = \frac{21\sqrt{15}}{4} \text{(cm}^2)$$

$$\triangle ABC$$
의 넓이) = $\frac{1}{2} \times 7 \times \frac{1}{2} = \frac{1}{4}$ (cm

- **25.** 다음 그림에서 \triangle ABC, \triangle EAC, \triangle EDC 는 모두 직각삼각형이고, $\overline{AB} = \overline{BC} = 3$, $\angle AEC = 60$ °, $\angle CED = 45$ ° 일 때, x 의 값은?
 - $2\sqrt{3}$ ① 2 3 4 ⑤ $2\sqrt{6}$
 - $4 \ 3\sqrt{2}$

