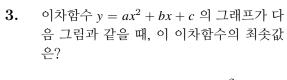
- 1. 꼭짓점의 좌표가 (-2, 3) 이고, 한 점 (1, -6) 을 지나는 포물선을 그래프로 하는 이차함수의 식이 $y = ax^2 + bx + c$ 일 때, a + b + c 의 값은?
 - ① -2 ② 2 ③ -6 ④ 6 ⑤ 1

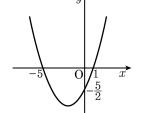
y = a(x + 2)² + 3 이 점 (1, -6) 을 지나므로 -6 = a(1 + 2)² + 3, a = -1 이다.

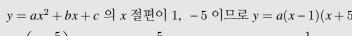
 $\therefore y = -(x+2)^2 + 3 = -x^2 - 4x - 1$


- $\therefore a+b+c=-1-4-1=-6$

해설

- 이차함수 $y = -x^2 + ax + b$ 의 그래프가 x 축과 두 점 (-1,0),(-4,0)**2**. 에서 만날 때, 꼭짓점의 좌표는?
- ① $\left(-\frac{1}{2}, \frac{1}{4}\right)$ ② $\left(-\frac{1}{3}, \frac{5}{4}\right)$ ③ $\left(-5, \frac{9}{4}\right)$ ④ $\left(-2, 3\right)$


 $y = -x^2$ 과 계수는 같고, x 절편이 -1, -4 인 식의 꼭짓점이므로 y = -(x+1)(x+4) $y = -(x^2 + 5x + 4) = -\left(x + \frac{5}{2}\right)^2 + \frac{9}{4}$ 따라서 꼭짓점의 좌표는 $\left(-\frac{5}{2}, \frac{9}{4}\right)$ 이다.


$$v = -(r^2 + 5r + 4)$$

$$y = ax^2 + bx + c$$
 의 x 절편이 1 , -5 이므로 $y = a(x-1)(x+5)$ 점 $\left(0, -\frac{5}{2}\right)$ 를 지나므로 $-\frac{5}{2} = a(0-1)(0+5)$, $a = \frac{1}{2}$

$$\therefore y = \frac{1}{2}(x-1)(x+5)$$

$$= \frac{1}{2}x^2 + 2x - \frac{5}{2}$$

$$= \frac{1}{2}(x+2)^2 - \frac{9}{2}$$

$$= \frac{1}{2}(x+2)^{2} - \frac{1}{2}$$

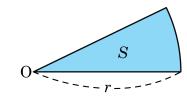
따라서 $x = -2$ 일 때, 최솟값은 $-\frac{9}{2}$

- 이차함수 $y = x^2 + ax + b$ 는 한 점 (-2, -5) 을 지나고, x = m 일 때 4. 최솟값 2m 을 갖는다. m 의 값을 구하면?
 - ① -1

해설

- ② -2
- ③ -3 ④ -4 ⑤ -5

 $y = x^2 + ax + b$ 의 꼭짓점의 좌표가 (m, 2m) 이므로


 $y = (x - m)^2 + 2m$ 에 (-2, -5)를 대입한다. $-5 = (-2 - m)^2 + 2m$

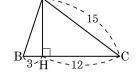
 $m^2 + 6m + 9 = 0$

 $(m+3)^2 = 0$

따라서 m = -3 이다.

둘레의 길이가 $12 \mathrm{cm}$ 인 부채꼴의 반지름의 길이가 $r \mathrm{cm}$ 일 때, 넓이를 **5**. $S \, \mathrm{cm}^2$ 라고 한다. S 가 최대일 때, r 의 값은? (단, 반지름의 길이가 r, 호의 길이가 l 인 부채꼴의 넓이는 $\frac{1}{2}lr$ 임을 이용하여라.)

①3

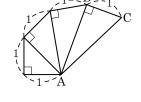

② 6 ③ 7 ④ 9

⑤ 10

둘레의 길이가 $12 \mathrm{cm}$ 인 부채꼴의 반지름을 $r \mathrm{cm}$ 이라 하면 호의 길이는 (12-2r) cm 이다. (부채꼴의 넓이) = $\frac{1}{2}r(12-2r) = -r^2 + 6r$

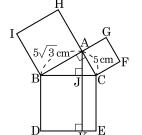
 $= -(r-3)^2 + 9$ 따라서 r=3 일 때, 부채꼴의 최대의 넓이는 9 이다.

- 6. 다음 그림과 같은 삼각형 $\overline{\mathrm{ABC}}$ 에서 $\overline{\mathrm{AB}}$ 의 길이를 구하여라.
 - ① $7\sqrt{2}$ $40 3\sqrt{10}$ **⑤** 5
- ② 13 ③ $6\sqrt{2}$



해설

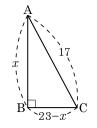
 $\triangle AHC$ 에서 $\overline{AH}=\sqrt{15^2-12^2}=\sqrt{81}=9$ $\triangle ABH$ 에서 $\overline{AB}=\sqrt{9^2+3^2}=\sqrt{90}=3\sqrt{10}$


- 7. 다음 그림에서 \overline{AC} 의 길이는 ?

 - ① 2 ② $\sqrt{5}$ ③ $\sqrt{6}$ (4) $\sqrt{7}$ (5) $2\sqrt{2}$

 $\overline{\mathrm{AC}} = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2} = \sqrt{5}$ 이다.

- R. 다음 그림은 ∠A = 90° 인 직각삼각형 ABC 의 세 변을 각각 한 변으로 하는 정사각형을 그린 것이다. AB = 5√3 cm, AC = 5 cm 일 때, EK 의 길이는?
 - ① 2 cm ② 2.5 cm ③ 3 cm
 - ④ 3.5 cm ⑤ 4 cm


 $\overline{\mathrm{BC}}=10\,\mathrm{cm}$ 이코, $\square\mathrm{ACFG}=\square\mathrm{JKEC}$ 이므로

해설

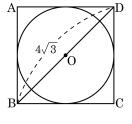
□ACFG = □JKEC = 25 cm² 이다. 따라서 $\overline{EK} \times 10 = 25$ 이므로 $\overline{EK} = 2.5$ cm 이다.

다음 그림의 $\triangle ABC$ 에서 $\angle B=90^\circ$ 일 때, x 의 값을 9. 모두 구하면? (정답 2개)

- ① 6
- ③ 12 ④ 15
 - ⑤ 18

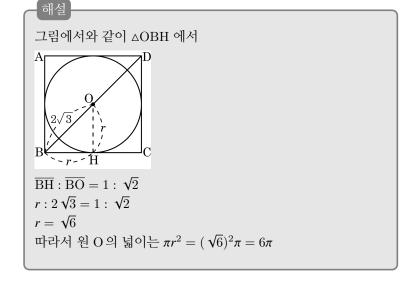
 $17^2 = (23 - x)^2 + x^2$, $289 = 529 - 46x + 2x^2$, $x^2 - 23x + 120 = 0$

해설

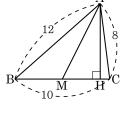

$$(x-15)(x-8) = 0$$

$$\therefore x = 15 \, \text{\pm \frac{1}{12}} \, x = 8$$

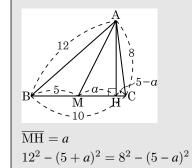
10. 다음 그림의 □ABCD 에서 $\overline{AD}^2 + \overline{BC}^2$ 의 값은?


- ① 11
- ② 30 3 41 **⑤**61 **4** 56

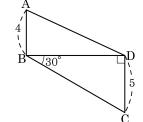
해설 대각선이 직교하는 사각형에서 두 쌍의 대변의 제곱의 합이 서로 같다. $\overline{AD}^2 + \overline{BC}^2 = 5^2 + 6^2 = 61$


11. 다음 그림과 같이 대각선의 길이가 $4\sqrt{3}$ 인 정사각형에 내접하는 원의 넓이는?

① 4π ② 6π ③ $6\sqrt{2}\pi$ ④ $6\sqrt{3}\pi$ ⑤ $\sqrt{6}\pi$

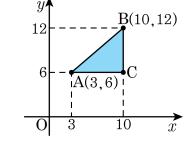

 ${f 12}$. 다음 그림의 삼각형 ABC 에서 점 A 에서 ${f BC}$ 에 내린 수선의 발을 H 라 하고, 점 M 은 $\overline{
m BC}$ 의 중점일 때, $\overline{\mathrm{MH}}+\overline{\mathrm{AH}}$ 의 길이는?

- ① $\sqrt{7}$ ② $2 + \sqrt{7}$
- $3 + 2\sqrt{7}$


해설

 $144 - (25 + 10a + a^2) = 64 - (25 - 10a + a^2), \ 20a = 80, \ a = 4$

따라서 $\overline{\text{MH}} = a = 4$, $\overline{\text{AH}} = \sqrt{8^2 - 1^2} = \sqrt{63} = 3\sqrt{7}$ 이므로 $\overline{\mathrm{MH}} + \overline{\mathrm{AH}} = 4 + 3\sqrt{7}$


- 13. 다음 그림과 같이 ĀB = 4, CD = 5, ∠CBD = 30°, ĀB⊥BD 일 때, ĀC 의 길 이를 구하면?
 - ① $2\sqrt{37}$ ② $2\sqrt{39}$ ③ $2\sqrt{41}$
 - $4.5\sqrt{3}$ $5.\sqrt{91}$

 $\overline{BD} = 5\sqrt{3}$ $\overline{AC} = \sqrt{4 + 4}$

 $\overline{AC} = \sqrt{(4+5)^2 + (5\sqrt{3})^2} = 2\sqrt{39}$

14. 다음 좌표평면 위의 두 점 A(3,6), B(10,12) 사이의 거리를 구하는 과정이다. ☑ 안에 알맞은 수를 구하여라.

(두 점 A, B 사이의 거리)= AB
$$\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$$

$$= (10-3)^2 + (12-6)^2$$

$$= 49 + 36$$

$$= 85$$
∴ AB = □

① $3\sqrt{5}$ ② 6 ③ $6\sqrt{7}$ ④ 8

 $\sqrt{85}$

(두 점 A, B 사이의 커리)= \overline{AB} $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$ $= (10-3)^2 + (12-6)^2$ = 49 + 36 = 85

- 15. 어떤 정육면체의 대각선의 길이가 $9 \mathrm{cm}$ 일 때, 이 정육면체의 겉넓이를 구하여라.
 - ① $81\sqrt{3}$ cm² 486cm^2
- ② $486\sqrt{3}\text{cm}^2$ ③ $162\sqrt{3}\text{cm}^2$

해설

 $\bigcirc 162 \mathrm{cm}^2$

정육면체의 한 모서리의 길이를 a 라 하면

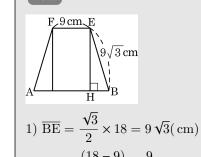
 $\sqrt{3}a = 9$ 이므로 한 모서리의 길이가 $3\sqrt{3}$ cm이다. 정육면체의 겉넓이는 $6a^2$ 이므로 $6 \times \left(3\sqrt{3}\right)^2 = 162 (\mathrm{cm}^2)$

16. 대각선의 길이가 $2\sqrt{6}$ 인 정육면체의 부피는?

① $16\sqrt{3}$ ② $16\sqrt{2}$ ③ $8\sqrt{2}$ ④ $\frac{16\sqrt{3}}{3}$ ⑤ $2\sqrt{2}$

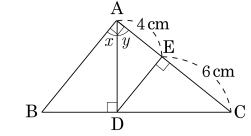
해설 한 모서리의 길이를 x라고 하면

(대각선의 길이) = $\sqrt{3}x = 2\sqrt{6}$, $x = 2\sqrt{2}$ \therefore (부피) = $(2\sqrt{2})^3 = 16\sqrt{2}$

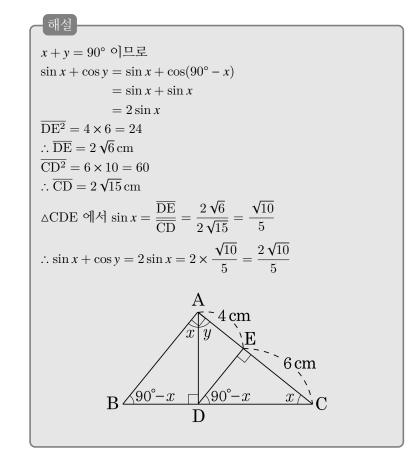

- 17. 한 변의 길이가 12인 정사면체의 부피를 구하면?

 - ① $124\sqrt{2}\text{cm}^3$ ② $144\sqrt{2}\text{cm}^3$ ③ $169\sqrt{2}\text{cm}^3$ ④ $225\sqrt{2}\text{cm}^3$ ⑤ $256\sqrt{2}\text{cm}^3$

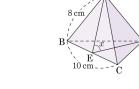
정사면체의 부피는 $\frac{\sqrt{2}}{12}a^3 = \frac{\sqrt{2}}{12} \times 12^3 = 144\sqrt{2}$


- 18. 다음 그림과 같이 밑면이 한 변의 길이가 $18 \, \mathrm{cm}$ 인 정사각형이고 옆면의 모서리의 길이가 18 cm 인 정사각뿔 V – ABCD 에서 $\overline{\text{VC}}$, $\overline{\text{VD}}$ 의 중점을 각각 E, F 라고 할 때, $\Box \text{ABEF}$ 의 넓이
 - 18 cm

- ① $81\sqrt{11} \text{ cm}^2$ ② $\frac{243\sqrt{11}}{4} \text{ cm}^2$ ③ $\frac{243\sqrt{15}}{2} \text{ cm}^2$ ④ $135\sqrt{11} \text{ cm}^2$ ⑤ $\frac{325\sqrt{15}}{2} \text{ cm}^2$



- $2) \ \overline{BH} = \frac{(18-9)}{2} = \frac{9}{2} (\,\mathrm{cm})$
- 3) $\overline{EH} = \sqrt{(9\sqrt{3})^2 (\frac{9}{2})^2} = \frac{9\sqrt{11}}{2} (\text{cm})$ $\therefore \Box ABEF = \frac{1}{2} \times \frac{9\sqrt{11}}{2} \times 27 = \frac{243\sqrt{11}}{4} (cm^2)$


19. 다음 그림과 같이 $\angle A$ 가 직각인 $\triangle ABC$ 의 꼭짓점 A 에서 변 BC 에 내린 수선의 발을 D 라 하고, D 에서 변 AC 에 내린 수선의 발을 E 라 한다. $\overline{AE} = 4 \mathrm{cm}, \ \overline{CE} = 6 \mathrm{cm}$ 이고, $\angle BAD = x, \angle CAD = y$ 일 때, $\sin x + \cos y$ 의 값은?

- 5

20. 다음 그림의 삼각뿔은 옆면이 모두 합동인 이등변삼각형이고 밑면은 한 변의 길이가 10 인 정삼각형이다. 모서리 BC 의 중점을 E 라 하고, $\angle AED = x$ 일 때, $\tan x$ 의 값은?

- ① $\frac{\sqrt{23}}{\frac{5}{5}}$ ② $\frac{2\sqrt{23}}{\frac{5}{5}}$ ③ $\frac{3\sqrt{23}}{5}$ ④ $\frac{4\sqrt{23}}{5}$ ⑤ $\sqrt{23}$

$$\overline{AE} = \sqrt{\overline{AB^2} - \overline{BE^2}} = \sqrt{64 - 25} = \sqrt{39}$$

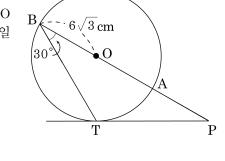
점 A 에서 \overline{ED} 에 내린 수선의 발을 H 라 하면

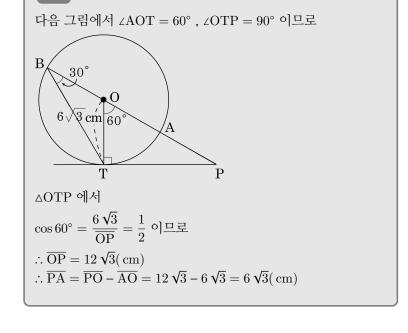
$$\overline{EH} = \frac{\sqrt{3}}{2} \times 10 \times \frac{1}{3} = \frac{3\sqrt{3}}{3}$$

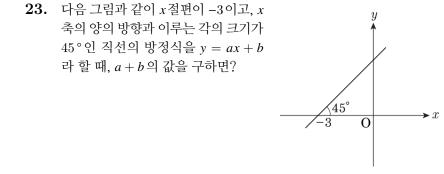
$$\overline{AH} = \sqrt{39 - \frac{25}{3}} = \sqrt{\frac{92}{3}} =$$

$$\overline{EH} = \frac{\sqrt{3}}{2} \times 10 \times \frac{1}{3} = \frac{5\sqrt{3}}{3}$$

$$\overline{AH} = \sqrt{39 - \frac{25}{3}} = \sqrt{\frac{92}{3}} = \frac{2\sqrt{69}}{3}$$


$$\therefore \tan x = \frac{2\sqrt{69}}{5\sqrt{3}} = \frac{2\sqrt{23}}{5}$$


21. 다음에서 (1)과 (2)의 식의 값으로 바르게 짝지은 것은?


- (1) $2\sin 45$ ° × $\cos 90$ ° $-\sin 90$ ° × $\cos 30$ ° (2) $(\sin 90^{\circ} - 2\cos 90^{\circ})(\cos 0^{\circ} - 2\sin 0^{\circ})$
- ① $(1) \frac{\sqrt{3}}{3}, (2)1$ ② $(1) \frac{\sqrt{3}}{2}, (2)1$ ③ $(1) \frac{\sqrt{3}}{2}, (2)2$ ④ $(1) \frac{\sqrt{3}}{3}, (2)2$ ⑤ $(1) \frac{\sqrt{3}}{4}, (2)3$

(1) (준시) = $2 \times \frac{\sqrt{2}}{2} \times 0 - 1 \times \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2}$ (2) (준시) = $(1 - 2 \times 0)(1 - 2 \times 0) = 1$

- **22.** 다음 그림에서 직선 PT 는 반지름의 길이가 $6\sqrt{3}$ cm 인 원 O 이 전성이고 (PPT 20° 의
 - 의 접선이고 ∠PBT = 30° 일
 - 때, PA 의 길이는?
 - ① $3\sqrt{3}$ cm
 - \bigcirc 6 cm
 - $\bigcirc 6\sqrt{3}$ cm
 - ④ 12 cm
 - \bigcirc 12 $\sqrt{3}$ cm

① 4 ② 5 ③ 6 ④ 7

⑤ 8

y = ax + b에서 기울기 $a = \tan 45$ ° = 1

해설

y = x + b에서 (-3,0)을 대입하면 0 = -3 + b, b = 3

 $\therefore a+b=4$

24. $y = -2\cos^2 x + 4\cos x + 5$ 가 최댓값을 가질 때, x 의 값은?(단, $0^{\circ} \le x \le 90^{\circ}$)

①0° ② 30° ③ 45° ④ 60° ⑤ 90°

 $\cos x = A \ (0 \le A \le 1)$ 라 하면 $y = -2A^2 + 4A + 5 = -2(A - 1)^2 + 7$

해설

A=1 일 때, 최댓값 7 을 가지므로 $\cos x=1$ 일 때 $x=0^\circ$

25. $0^{\circ} < x < 90^{\circ}$ 일 때, $2\sin^2 x - 3\sin x + 1 = 0$ 을 만족시키는 x 의 값은?

① 0°

② 15°

③30°

④ 45° ⑤ 60°

해설

 $\sin x = A$ 라고 하면 $2A^2 - 3A + 1 = 0$

(2A - 1)(A - 1) = 0

 $A=\frac{1}{2},\ 1$

 $\sin x = \frac{1}{2}$, $\sin x = 1$ 즉, $x = 30^\circ$ 또는 $x = 90^\circ$ 이다. $0^{\circ} < x < 90^{\circ}$ 이므로 $x = 30^{\circ}$ 이다.