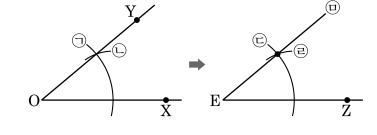
- **1.** 다음은 작도에 대한 설명이다. 옳지 <u>않은</u> 것은?
 - ① 컴퍼스는 선분의 길이를 옮길 때 사용한다.
 - ② 눈금 없는 자는 선분을 연장할 때 사용한다.
 - ③ 선분의 수직이등분선의 작도로 90°를 작도할 수 있다.④ 90°의 삼등분선을 작도할 수 있다.

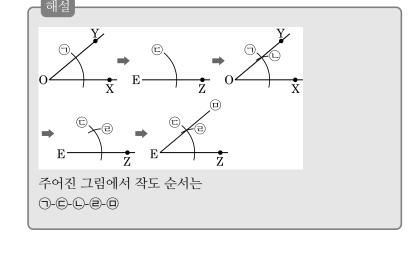
 - ⑤ 모든 각의 크기를 작도할 수 있다.

④ 정삼각형의 작도와 각의 이등분선의 작도를 이용한다.

2. 다음 그림은 ∠XOY 와 크기가 같은 각을 EZ 를 한 변으로 하여 작도 하는 과정을 나타낸 것이다. 작도 순서로 옳은 것은?

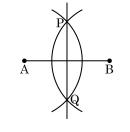


- ₩ Û-Û-Û-Û-Û-Û-Û



3. 다음은 어떤 도형을 작도하는 방법인가?

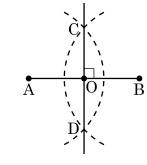
- ① 수직이등분선
- ② 선분의 수직이등분선 ③ 평행선
- • •
- ④ 각의 이등분선
- ⑤ 각의 삼등분선



선분의 양 끝점을 중심으로 반지름의 길이가 같은 원을 그려

만나는 점을 P, Q 라 한다. 두 점 P 와 Q 를 지나는 선을 그린다. 이때, 직선 PQ 가 선분 AB 의 수직이등분선이다

4. 다음 그림은 선분 AB 의 수직이등분선을 작도한 것이다. 옳지 <u>않은</u> 것은?



- ① $\overline{AB} \perp \overline{CD}$ ④ $\overline{CO} = \overline{DO}$

해설

 $\overline{CA} = \overline{CB}$

- 다음 그림은 ∠XOY 의 이등분선을 작도하는 **5.** 과정이다. 다음 중 옳지 <u>않은</u> 것은?
- ① $\overline{OA} = \overline{OB}$ \bigcirc $\overline{AC} = \overline{BC}$

- 4 $\angle XOY = 2\angle XOC$ $\overline{\text{(3)}}\overline{\text{AO}} = \overline{\text{AB}}$

 $\overline{\mathrm{AO}} = \overline{\mathrm{OB}}$

- **6.** 다음 중 각의 이등분선의 작도로 그릴 수 $\underline{\text{없는}}$ 각은?
 - 4 20° ① 90° ② 45° ③ 135° ⑤ 22.5°

- ② 45° 는 90° 의 이등분선을 작도하여 얻는다. ③ $135^{\circ} = 90^{\circ} + 45^{\circ}$
- ⑤ 22.5° 는 45° 의 이등분선을 작도하여 얻는다.

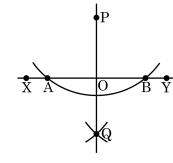
- 7. 다음 중 컴퍼스와 눈금 없는 자만으로 작도할 수 없는 것은?
 - ① 30°
 - ② 주어진 각과 크기가 같은 각
 - ③ 선분의 수직이등분선 ④ 140°

 - ⑤ 90°

140°는 작도할 수 없다.

해설

8. 다음 그림은 점 P 를 지나는 \overrightarrow{XY} 의 수선을 작도하는 과정을 나타낸 것이다. 다음 중 반드시 성립해야 하는 것을 모두 고르면?



 $\bigcirc \overline{AP} = \overline{BP}$ $\bigcirc \overline{AQ} = \overline{BQ}$ $\bigcirc \overline{OX} = \overline{OY}$ $\textcircled{4} \ \overline{PX} = \overline{PY} \qquad \qquad \textcircled{5} \ \overline{AX} = \overline{BY}$

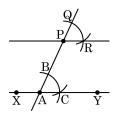
해설

 $\overline{OA}, \overline{OB}$ 는 점 O를 중심으로 하는 원의 반지름 : $\overline{OA} = \overline{OB}$ \overline{AQ} , \overline{BQ} 는 점 Q를 찾기 위해 A, B를 중심으로 같은 반지름의

 \overleftrightarrow{XY} 위의 점 $A,\ B$ 에서 수전위의 한 점까지의 거리는 같음 : $\overline{AP} = \overline{BP}$

원을 그린 것 : $\overline{AQ} = \overline{BQ}$

9. 다음 그림은 점 P 를 지나고 직선 XY 에 평행한 직선을 작도하는 순서이다. <u>잘못</u> 설명한 것은?



	점 P 늘 시나는 식선을 그어서 식선 XY 와의 교점을 A 리
	한다. ① 를 중심으로 하는 원을 그려서 두 직선 PA, XY
	와의 교점을 각각 B, C 라고 한다. ②를 중심으로 하고
	③ 을 그려 PA 와의 교점을 (
	라고 한다. ④ 를 중심으로 하고 ⑤ 를 반지름으로
	하는 원을 그려 ③에서 그린 원과의 교점을 R 이라 한다. 점 I
	와 점 R 을 이으면 직선 PR 과의 평행선이 된다.
_	

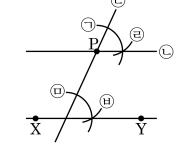
① 점 A

②점 B

- ③ ①에서 그린 반지름의 길이가 같은 원④ 점 Q
- ⑤ 선분 BC

② 점 P 를 중심으로 하여 그린다.

10. 다음 그림은 점 P 를 지나고 \overrightarrow{XY} 에 평행한 직선을 작도하는 과정이다. 다음 작도는 어떤 도형의 작도 방법을 활용하였는가?



- ② 선분의 이등분선
- ③ 90° 의 삼등분선

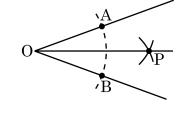
① 각의 이등분선

- ④ 선분의 수직이등분선
- ⑤ 주어진 각과 크기가 같은 각

두 직선이 다른 한 직선과 만나서 생기는 동위각의 크기가 같으면

두 직선은 서로 평행하다.

11. 각의 이등분선을 작도한 것이다. 다음 중 반드시 성립해야 하는 것을 고르면?



- ① $\overline{OA} = \overline{AP}$ ④ $\overline{AB} = \overline{BP}$
 - ② $\overline{AB} = \overline{AP}$ ③ $\overline{OB} = \overline{BP}$

- © 0D D.

각의 이등분선의 작도에서 $\overline{\mathrm{AP}} = \overline{\mathrm{BP}}$ 이다.

- 12. 두 변의 길이가 각각 7, 15 인 삼각형을 작도할 때, 나머지 한 변 x 의 범위를 구하면?
 - ① 7 < x < 15 ② 7 < x < 22 ③ 8 < x < 15
 - $\textcircled{9} 8 < x < 22 \qquad \qquad \textcircled{5} \ \ 22 < x < 23$

15 - 7 < x < 15 + 7

∴ 8 < x < 22

- 13. $\triangle ABC$ 에서 다음과 같이 변의 길이나 각의 크기가 주어졌을 때, 삼각 형을 작도 할 수 있는 것은?
 - ① ∠A, ∠B, ∠C \bigcirc \overline{BC} , $\angle B$, $\angle C$ 4 $\angle C$, \overline{AB} , \overline{BC}

 \bigcirc $\angle A$, \overline{BC} , \overline{CA} \bigcirc \bigcirc $\angle A$, \overline{AB} , \overline{BC}

해설 ① 세 각의 크기를 알 때 하나의 삼각형을 작도할 수 없다.

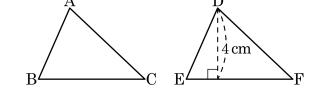
- ② ,③ ∠A 는 끼인 각이 아니다.
- ④ ∠C 는 끼인 각이 아니다.

- 14. 다음 중 삼각형의 모양과 크기가 하나로 결정되는 경우가 <u>아닌</u> 것을 모두 고르면?
 - ① 세 변의 길이가 주어질 때
 - 주 변의 길이와 한 각의 크기가 주어질 때
 - ③ 두 변의 길이와 그 끼인 각의 크기가 주어질 때 ④ 세 각의 크기가 주어질 때
 - ⑤ 한 변의 길이와 그 양 끝각의 크기가 주어질 때

④ 삼각형의 모양과 크기가 무수히 많다.

해설

15. 다음 그림에서 $\triangle ABC \equiv \triangle DEF$ 이다. $\triangle ABC$ 의 넓이가 $12 \, \mathrm{cm}^2$ 일 때, \overline{BC} 의 길이는?



① 3 cm ② 4 cm ③ 5 cm ④ 6 cm ⑤ 7 cm

 $\triangle ABC \equiv \triangle DEF$ 이므로 $\overline{EF} \times 4 \times \frac{1}{2} = 12, \overline{EF} = \overline{BC} = 6 \text{ (cm)}$

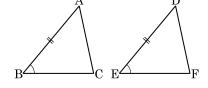
해설

- 16. 다음 도형 중 서로 합동이 <u>아닌</u> 것을 모두 고르면? (정답 2 개)
 - ① 넓이가 같은 두 삼각형
 ② 넓이가 같은 두 정사각형
 - © # 1/1 EC 1 0/17
 - ③ 넓이가 같은 두 원
 - ④둘레의 길이가 같은 두 마름모
 - ⑤ 한 변의 길이가 같은 두 정삼각형

넓이가 같거나 한 변의 길이가 같은 정사각형, 원, 정삼각형은

합동이다.

17. 다음 그림에서 AB = DE, ∠B = ∠E 일 때, ΔABC 와 ΔDEF 가서로 합동이기 위해 필요한 조건을 모두 고르면?



해설

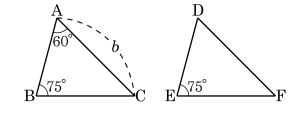
② ∠B = ∠F

 $\odot \overline{AB} = \overline{DF}$

 $\overline{AB} = \overline{DE}$, $\angle B = \angle E$, $\overline{BC} = \overline{EF}$: SAS 항동

 $\overline{AB} = \overline{DE}$, $\angle B = \angle E$, $\angle A = \angle D$: ASA 합동

18. 다음 그림에서 $\triangle ABC \equiv \triangle FED$ 일 때, 다음 중 옳지 <u>않은</u> 것은?



- ① $\angle A = \angle F$, $\angle B = \angle E$ ③ $\angle D = 45^{\circ}$
- ② AB 의 대응변은 DE 이다.
- ⑤ $\overline{\mathrm{DF}}$ 의 길이는 b 이다.

AB 의 대응변은 ₹E 이다.

- 19. 다음 중 삼각형의 SSS 합동의 조건인 것은 어느 것인가?
 - ① 세 변의 길이의 비가 같다. ② 두 변의 길이의 비가 같고 그 끼인각의 크기가 같다.
 - ③ 세 변의 길이가 같다.
 - ④ 세 각의 크기가 같다.

 - ⑤ 한 변의 길이의 비가 같고 양 끝각의 크기가 같다.

삼각형의 합동 조건

해설

• 대응하는 세 변의 길이가 같을 때

- 대응하는 두 변의 길이와 그 끼인각이 같을 때 • 대응하는 한 변의 길이와 양 끝각의 크기가 같을 때
- 이 중 '대응하는 세 변의 길이가 같을 때' 를 SSS 합동이라고 한다.

- 20. 다음 그림의 두 삼각형에서 $\angle B = \angle F$, $\angle C = \angle E$ 이다. 두 삼각형이 ASA 합동이기 위해 필요한 나머지 한 조건을 모두 B 고르면?
 - ${\color{red} \textcircled{4}} \overline{BC} = \overline{FE}$

 $\angle B = \angle F$, $\angle C = \angle E$ 이므로 $\angle A = \angle D$ 이다.

해설

두 삼각형이 ASA 합동이기 위해서는 $\overline{AB} = \overline{DF}$ 또는 $\overline{BC} = \overline{FE}$ 또는 $\overline{AC} = \overline{DE}$ 이다.

21. 작도에 대한 설명 중 옳지 <u>않은</u> 것은?

- ① 작도할 때에는 눈금이 없는 자와 컴퍼스를 사용한다. ② 작도 시에는 각도기를 사용하지 않는다.
- ③ 두 선분의 길이를 비교할 때에는 자를 사용한다. ④ 선분을 연장할 때에는 자를 사용한다.
- ⑤ 원이나 호를 그릴 때는 컴퍼스를 사용한다.

③ 두 선분의 길이를 비교할 때에는 컴퍼스를 사용한다.

해설

22. 다음은 작도에 관한 설명이다. ()안에 알맞은 말은?

눈금이 있는 자와 각도기 등을 사용하여 길이나 각의 크기를 재어 도형을 그리면 ()때문에 정확한 도형을 그릴 수 없 다. 따라서, 작도에서는 눈금 없는 자와 ()만을 가지고 도형을 그린다.

③ 오차-각도기

① 선분-눈금있는 자

- ② 선분- 각도기 ④ 오차-컴퍼스
- ⑤ 오차-눈금있는 자

해설

- 작도: 눈금 없는 자와 컴퍼스만을 사용하여 도형을 그리는 것컴퍼스: 원을 그리거나 선분의 길이를 옮길 때 • 눈금 없는 자: 두 점을 잇는 선을 그리거나 선분을 연장할 때
- 사용

23. 다음과 같이 직선 l 위에서 세 점 A,B,C 가 $\overline{AB}=\overline{BC}$ 가 되도록 작도할 때, 사용하는 작도 도구는?

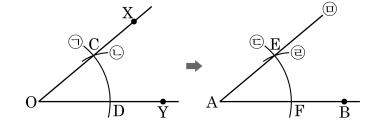
④ 삼각자⑤ 각도기

해설

- ① 눈금 있는 자 ② 눈금 없는 자 ③ 컴퍼스

길이가 같은 선분을 작도하기 위해서는 컴퍼스를 이용해서 작도 한다.

 ${f 24}$. 다음 그림은 $\angle {
m XOY}$ 와 크기가 같은 각을 선분 AB 위에 작도하는 과정이다.



위의 그림에서 다음 중 옳지 <u>않은</u> 것은?

 \bigcirc $\overline{OC} = \overline{AF}$

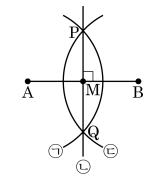
 \bigcirc \angle COD = \angle EAF

해설

 $\overline{\mathrm{OC}} = \overline{\mathrm{OD}} = \overline{\mathrm{AE}} = \overline{\mathrm{AF}} \; (\because$ 원의 반지름)

 $\overline{\mathrm{CD}} = \overline{\mathrm{EF}}, \ \angle{\mathrm{COD}} = \angle{\mathrm{EAF}}$ $\textcircled{4} \ \overline{\mathrm{OC}} \neq \overline{\mathrm{CD}}$

25. 다음은 무엇을 작도한 것인지 구하면?



② 크기가 같은 각의 작도

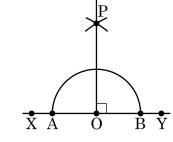
① 길이가 같은 선분의 작도

- ③ 선분의 이등분선의 작도④ 선분의 수직이등분선의 작도
- ⑤ 선분의 수선의 작도

수직이등분선은 선분의 길이를 반으로 나누면서 수직으로 만나

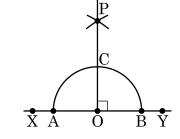
는 선분이다.

26. 다음은 평각 \angle XOY 의 이등분선을 작도한 것이다. 다음 중 옳은 것은?



- ① $\overline{OA} = \overline{OP}$ ③ $\overline{OX} = \overline{OP}$

OA = OB 이고, ∠AOP = ∠BOP = ∠POX = ∠POY = 90° 이다. AB⊥OP 이다. $oldsymbol{27}$. 다음은 평각 $\angle XOY$ 의 이등분선을 작도한 것이다. $oldsymbol{ ext{}}$ 안에 들어 갈 것끼리 바르게 짝지어진 것은?



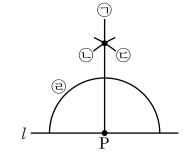
① OA = 이다.
© ∠AOC = = 90° 이다.
© XY OP 이다.

- ① \overline{OP} , $\angle BOC$, // ② \overline{OP} , $\angle BOC$, \bot ③ \overline{OP} , $\angle POX$, // ④ \overline{OC} , $\angle BOC$, //
- ⑤OC, ∠BOC, ⊥
- 해설

이다.

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}} = \overline{\mathrm{OC}}$ 이다. $\angle \mathrm{AOC} = \angle \mathrm{BOC} = 90^\circ$ 이다. $\overline{\mathrm{XY}} \bot \overline{\mathrm{OP}}$

28. 다음 그림은 평각 (180°) 의 이등분선의 작도이다. 순서를 바르게 나타낸 것은?



1 7-6-6-4 **2**-7-C-L

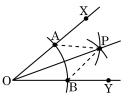
2 C-U-J-E ⑤ ¬-@-©-心

(3) @-@-W-9

① 직선 위의 한 점 O 를 중심으로 적당한 원을 그려 교점을 A, B

- 라 한다. ② 두 점 A, B 를 중심으로 하여 반지름의 길이가 같은 두 원을
- 그려 교점을 만든다. ③ 점 O 와 교점을 이으면 평각의 이등분선이 된다.
- \therefore @-(© , ©)-① (괄호안의 순서는 상관없음)

29. 다음 그림에서 반직선 OP는 ∠XOY의 이 등분선이다. 다음 중 옳지 <u>않은</u> 것을 모두 고르면?



① $\overline{PA} = \overline{PB}$ ③ $\angle APO = \angle BPO$ $\bigcirc \overline{OA} = \overline{OP}$

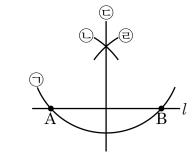
⑤ ∠AOP = ∠BOP

 $4 \triangle AOP = \angle APO$

△AOP ≡ △BOP이다.

해설

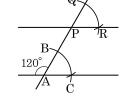
30. 다음은 무엇을 작도한 것인지 고르면?



- AB 길이의 이등분선
 AB 의 길이 옮기기
- ② AB 의 각 옮기기 ④ AB 의 수선
- ⑤ AB 의 삼등분선

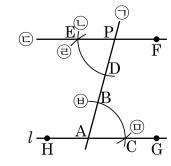
 $\overline{
m AB}$ 의 수선의 작도는 수직이등분선 작도와 같다.

- 31. 다음은 크기가 같은 각의 작도법을 이용하여 \overrightarrow{AC} 와 평행한 \overrightarrow{PR} 를 작도한 것이다. $\angle QPR$ 의 크기는 얼마인가?
 - ① 40° ② 50° 4 70°
- ③60°
 - ⑤ 80°



 $\angle QPR = \angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$

32. 다음 그림은 직선 l 위에 있지 않은 한 점 P 를 지나며 직선 l 에 평행한 직선을 작도한 것이다. $\angle DPE$ 와 같은 것을 찾으면?



④ ∠DAH

① ∠DPF

② ∠BAC ⑤ ∠APF

③ ∠ВАН

해설

엇각의 성질을 이용해서 작도한 것이기 때문에 $\angle DPE = \angle BAC$ 이다

33. 45° 를 작도할 때, 필요한 것을 다음 보기에서 모두 골라라.

 보기

 ① 각의 이등분선
 ⑥ 선분의 수직이등분선

 ⑥ 각의 이동
 @ 선분의 이등분

45° 를 작도하는 방법은 선분의 수직이등분선을 긋고, 이 때

해설

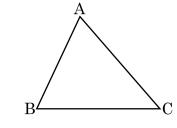
만들어진 90° 의 각의 이등분선을 작도한다. 필요한 것은 ⑦, ⑥ 이다.

- **34.** 눈금 없는 자와 컴퍼스만을 사용하여 작도할 수 <u>없는</u> 각은?
 - ① 130° ② 90° ③ 75° ④ 30° ⑤ 225°

-해설 - 예설

- ② 90° 의 작도는 평각(180°)의 이등분선의 작도 이용 ③ 75° = 30° + 45°
- ④ 30° = 60° ÷ 2 임을 이용
- $30 = 60 \div 2 = 50$ $225^{\circ} = 180^{\circ} + 45^{\circ}$

35. 다음 그림의 $\triangle ABC$ 에 대하여 \square 안에 알맞은 것으로 짝지어진 것은?



 $\angle A$ 의 대변은 \square 이고, \overline{AC} 의 대각은 \square 이다.

① \overline{AB} , $\angle B$ ② \overline{BC} , $\angle A$ 4 \overline{AC} , $\angle C$ 5 \overline{AC} , $\angle A$

 \bigcirc \overline{BC} , $\angle B$

대변: 한 각과 마주 보는 변, 대각: 한 변과 마주 보는 각

36. 세 변의 길이가 3 cm, 6 cm, a cm 인 삼각형을 작도하려고 한다. 이때, 정수 a의 값이 될 수 있는 수의 개수는?

① 3개 ② 4개 ③ 5개 ④ 6개 ⑤ 7개

해설 카자 7

가장 긴 변이 6일 때, 3+a>6, a>3가장 긴 변이 a일 때, 9>a따라서 3<a<9인 정수 a는 4, 5, 6, 7, 8의 5개이다.

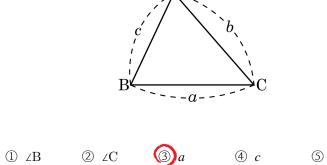
37. \triangle ABC에 대한 설명 중 옳지 <u>않은</u> 것은?

- ① $\angle B$ 의 대변은 \overline{AC} 이다. ② \overline{AB} 의 대각은 $\angle C$ 이다. ③ BC의 대각은 ∠CAB이다. ④AB>AC+BC
- \bigcirc $\overline{AC} < \overline{AB} + \overline{BC}$

해설

④ 삼각형에서 한 변의 길이는 나머지 두 변의 길이의 합보다 작다.

38. 다음 그림과 같은 \triangle ABC 에서 \angle A 의 크기와 b 가 주어졌을 때, 다음 중 삼각형이 하나로 결정되기 위해 더 필요한 조건이 <u>아닌</u> 것은?



④ c ⑤ a, c

① $\angle B$ 의 크기를 알면 $\angle C$ 의 크기도 알 수 있으므로 삼각형이

하나로 결정된다.

39. 다음 보기에서 삼각형이 하나로 결정되는 경우를 모두 찾은 것은? 보기

- ⊙ 세 변의 길이
- ⑤ 두 변의 길이와 그 끼인 각의 크기
- ◎ 세 각의 크기
- ② 한 변의 길이와 그 양 끝각의 크기
- ◎ 한 변의 길이와 두 각의 크기

(4) ¬¬, □, □
⊙ ¬, □, □, □

삼각형이 하나로 결정되는 조건

세 변의 길이가 주어질 때두 변의 길이와 그 끼인각의 크기가 주어질 때

- 한 변의 길이와 그 양 끝각의 크기가 주어질 때

40. 다음 도형 중 서로 합동인 것끼리 바르게 짝지어진 것은?

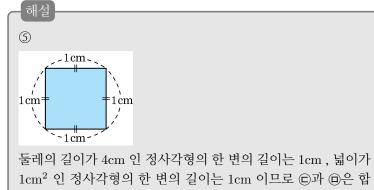
© 한 변의 길이가 2cm 인 정사각형

⊙ 한 변의 길이가 2cm 인 정삼각형

- ⓒ 둘레의 길이가 4cm 인 정사각형
- ② 둘레의 길이가 6cm 인 삼각형 ◎ 넓이가 1cm² 인 정사각형

(S) (C)-(D)

① ¬-C ② ¬-@ ③ C-C ④ C-0



동이다.

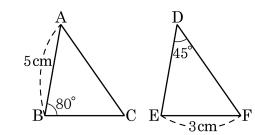
- 41. 도형의 합동에 대한 다음 설명 중 옳지 <u>않은</u> 것은?
 - 넓이가 같은 두 정삼각형은 합동이다.
 반지름의 길이가 같은 두 원은 합동이다.

 - ③ 넓이가 같은 두 도형은 합동이다.
 - ④ 대응하는 변의 길이는 각각 같다.
 - ⑤ 둘레의 길이가 같은 두 정사각형은 합동이다.

③ 넓이가 같다고 해서 두 도형이 합동은 아니다.

해설

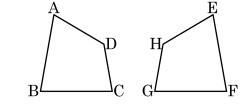
42. 다음 그림에서 \triangle ABC \equiv \triangle DEF 일 때, 다음 중 옳지 않은 것은?



- ① $\overline{BC} = 3 \, \mathrm{cm}$ $\textcircled{4} \ \overline{\mathrm{DE}} = 5\,\mathrm{cm}$
- ② $\angle E = 80^{\circ}$ $\bigcirc \angle A = 40^{\circ}$
- \bigcirc $\angle F = 55^{\circ}$

- ③ $\angle F = 180^{\circ} (45^{\circ} + 80^{\circ}) = 55^{\circ}$ ⑤ $\angle A = \angle D = 45^{\circ}$

43. 다음 그림에서 $\square ABCD \equiv \square EFGH$ 일 때, 다음 중 옳은 것을 <u>모두</u> 구하면?



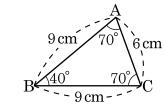
- ① 점 C와 대응하는 점은 점 F이다.
- $\overline{\text{AB}} = \overline{\text{EF}}$
- ③ 변 AB 와 대응하는 변은 변 EH 이다. ④ ∠D = ∠H
- ⑤ ∠C = ∠E

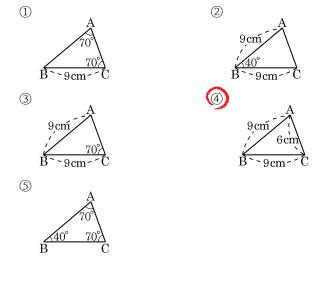
해설

$\square ABCD \equiv \square EFGH$ 이므로 $A \to E, B \to F, C \to G, D \to H$

- ① 점 C 와 대응하는 꼭짓점은 점 G ③ 벼 A B 와 대유하는 벼우 벼 E E
- ③ 변 AB 와 대응하는 변은 변 EF
- ⑤ ∠C 와 대응하는 각은 ∠G

44. 다음 삼각형 중에서 다음 그림의 $\triangle ABC$ 와 SSS 합동이라고 말할 수 있는 삼각형은?



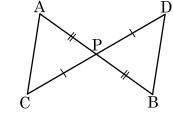


삼각형의 합동조건은

1. 대응하는 세 변의 길이가 각각 같을 때(SSS 합동)

- 2. 대응하는 두 변의 길이가 각각 같고, 그 끼인각의 크기가 같을
- 때 (SAS 합동) 3. 대응하는 한 변의 길이가 같고, 그 양 끝각의 크기가 같을 때 (ASA 합동)
- ① ASA 합동
- ② SAS 합동
- ④ SSS 합동

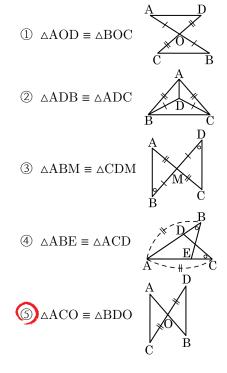
45. 아래 그림에서 점 P가 \overline{AB} , \overline{CD} 의 중점일 때, $\triangle ACP \equiv \triangle BDP$ 이다. 다음 보기 중 $\triangle ACP \equiv \triangle BDP$ 임을 설명하기 위한 조건이 <u>아닌</u> 것을 모두 고르면?



4 c, 0, H 5 L, c, 0, H

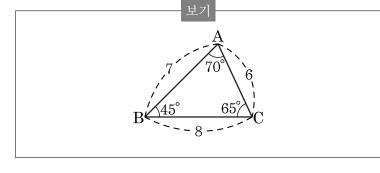
해설

| AP = BP, CP = DP, ∠APC = ∠BPD (맞꼭지각) ∴ SAS합동 **46.** 다음 그림에서 서로 합동이 될 수 $\underline{\text{없는}}$ 것은?

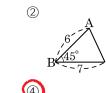


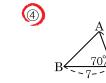
⑤ $\overline{\mathrm{CO}} = \overline{\mathrm{OD}}, \ \angle \mathrm{AOC} = \angle \mathrm{BOD}$ 의 조건으로 합동이라고 말할 수 없다.

47. 다음 중 보기와 SAS 합동인 것은?



1

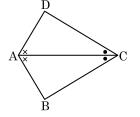




(5)

④ $\overline{AC}=6, \overline{AB}=7, \angle A=70^{\circ}~(\mathrm{SAS}$ 합동)

48. 다음 \triangle ADC \equiv \triangle ABC 이 ASA 합동이 되기 위해 필요하지 <u>않은</u> 것을 모두 고르면?



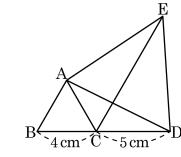
① AC 는 공통

 $\boxed{\textcircled{AD}} = \overline{AB}$

 \overline{AC} 는 공통, $\angle BAC = \angle DAC$, $\angle DCA = \angle BCA$

따라서 $\triangle ADC \equiv \triangle ABC(ASA합동)$ 이다.

49. 아래 그림에서 $\triangle ABC$ 는 정삼각형이다. 변 BC 의 연장선 위에 점 D 를 잡고 $\overline{\mathrm{AD}}$ 를 한 변으로 하는 정삼각형 ADE 를 그린다. $\overline{\mathrm{BC}}=4\mathrm{cm}$, $\overline{\mathrm{CD}}=5\mathrm{cm}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?



 \bigcirc $\angle BAD = \angle CAE$

② $\angle AEC = \angle ADB$ \bigcirc \triangle ACD \equiv \triangle ACE

해설

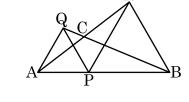
 $\angle {\rm BAD} = \angle {\rm CAE}$ (:: $\angle BAD = \angle CAE = 60^{\circ} + \angle DAC$)

∴ △ABD ≡ △ACE (SAS 합동)

합동이면 대응하는 변의 길이와 각의 크기는 같으므로

 $2\angle AEC = \angle ADB$

50. 다음 그림에서 \triangle APQ, \triangle BPR 는 정삼각형이고, \overline{AR} 와 \overline{BQ} 의 교점이 C 일 때 다음 설명 중 옳은 것을 고르면?



- ① △APQ ≡ △BPR (SAS 합동) ② △APR ≡ △QPB (ASA 합동)

△APR 와 △QPB 에서

해설

 $\overline{AP} = \overline{QP}$, $\overline{PR} = \overline{PB}$, $\angle APR = \angle QPB = 120^{\circ}$ 이므로 $\triangle APR \equiv \triangle QPB$ (SAS 합동)