
1. 다음 그림의 직각삼각형에서 선분 AB 의 길이는?

① $8\sqrt{2}$ ② $\sqrt{105}$ ③ $\sqrt{137}$ ④ 13 ⑤ 15

 $\overline{AB} = \sqrt{4^2 + 11^2} = \sqrt{16 + 121} = \sqrt{137}$

2. 다음은 직각삼각형의 각 변을 한 변으로 하는 정사각형을 그린 그림이다. 이때, 색칠한 부분의 넓이는?

해설

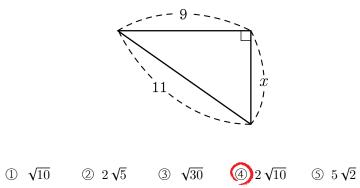
① 35 ② 625 ③ $5\sqrt{5}$ ④ 50 ⑤ $5\sqrt{7}$

빗변을 한 변으로 하는 삼각형의 넓이는 나머지 두 변을 각각 한 변으로 하는 두 정사각형의 넓이의 합과 같다. ∴ (색칠한 부분의 넓이) = 15 + 20 = 35 **3.** 세 변의 길이가 각각 x+1, x-1, x+3 인 삼각형이 직각삼각형이 되게 하려고 할 때, 만족하는 x 값의 구하여라.

▶ 답:

▷ 정답: 7

삼각형의 세 변은 모두 양수이어야 하므로 가장 작은 변인 x-1


이 양수이어야 한다. x - 1 > 0, x > 1 $(x+3)^2 = (x+1)^2 + (x-1)^2$

 $x^{2} + 6x + 9 = x^{2} + 2x + 1 + x^{2} - 2x + 1$ $x^2 - 6x - 7 = 0$

x = −1 또는 7

x > 1 이므로 x = 7 이다.

4. 다음 그림의 직각삼각형에서 x 의 값은?

피타고라스 정리에 따라 $9^2 + x^2 = 11^2$ $x^2 = 121 - 81 = 40$

x > 0 이므로 $x = 2\sqrt{10}$ 이다.

다음 그림에서 $\angle C=90^{\circ}$, $\overline{BM}=\overline{CM}$, $\overline{AB}=25\,\mathrm{cm}$, $\overline{AC}=7\,\mathrm{cm}$ 이다. 이때, **5.** $\overline{\mathrm{AM}}$ 의 길이는?

 $\sqrt{193}$ cm

① $\sqrt{190}$ cm $4 \sqrt{194} \, \mathrm{cm}$

- $2 \sqrt{191} \text{ cm}$ $\sqrt{199} \, \mathrm{cm}$


해설

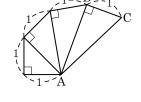
 ΔABC 에서 $\overline{BC}^2 = 25^2 - 7^2 = 576$ $\therefore \overline{\mathrm{BC}} = 24$

 $\overline{\mathrm{MC}} = \frac{1}{2}\overline{\mathrm{BC}} \ \therefore \overline{\mathrm{MC}} = 12 (\,\mathrm{cm})$ $\Delta AMC \circlearrowleft AMC$ $\overline{AM}^2 = 7^2 + 12^2 = 193$

 $\therefore \overline{AM} = \sqrt{193} (cm)$

6. 다음 그림은 두 직각삼각형을 붙여 놓은 것이다. x+y의 값을 구하면?

- ① $9 + \sqrt{149}$ ④ $10 + \sqrt{150}$
- ② $10 + \sqrt{149}$

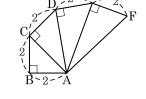

 $x = \sqrt{6^2 + 8^2} = \sqrt{100} = 10$ $y = \sqrt{x^2 + 7^2} = \sqrt{100 + 49} = \sqrt{149}$

 $\therefore x + y = 10 + \sqrt{149}$

- $39 + \sqrt{150}$
- $9 + \sqrt{151}$

- 7. 다음 그림에서 \overline{AC} 의 길이는 ?

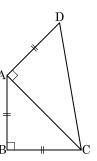
 - ① 2 ② $\sqrt{5}$ ③ $\sqrt{6}$ (4) $\sqrt{7}$ (5) $2\sqrt{2}$


 $\overline{\mathrm{AC}} = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2} = \sqrt{5}$ 이다.

8. 다음 그림에서 $\triangle AEF$ 의 둘레의 길이는?

 $\bigcirc 6 + 2\sqrt{5}$

② $5+2\sqrt{5}$


③ $4+2\sqrt{5}$ ④ $3+2\sqrt{5}$ ⑤ $2+2\sqrt{5}$

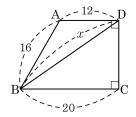
 $\overline{AE} = \sqrt{2^2 + 2^2 + 2^2 + 2^2} = 4,$ $\overline{AF} = \sqrt{4^2 + 2^2} = 2\sqrt{5}$

따라서 $\triangle AEF$ 의 둘레를 구하면 $4+2+2\sqrt{5}=6+2\sqrt{5}$ 이다.

9. 다음은 $\overline{AB} = \overline{BC} = \overline{DA}$ 인 $\square ABCD$ 에서 \overline{CD} 는 \overline{AB} 의 몇 배인지 구하여라.

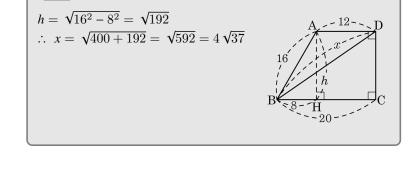
▷ 정답: √3 <u>배</u>

답:

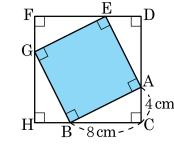

해설

 $\overline{\rm AB}=\overline{\rm BC}=\overline{\rm DA}=a$ 라고 하자. 피타고라스 정리에 의해 $\overline{\rm AC}=a\,\sqrt{2}$ 이므로 $\overline{\rm CD}=a\,\sqrt{3}$ 이 성립

따라서 $\overline{\text{CD}}$ 는 $\overline{\text{AB}}$ 의 $\sqrt{3}$ 배이다.


배

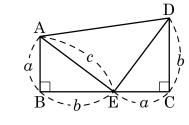
10. 다음 그림에서 x 의 값을 구하여라.



▶ 답:

정답: 4√37

11. 다음 그림의 □FHCD 는 △ABC 와 합동인 직각삼각형을 이용하여 만든 사각형이다. □BAEG 의 넓이를 구하여라.


 $\underline{\mathrm{cm}^2}$

 ▷ 정답:
 80 cm²

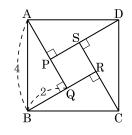
▶ 답:

 $\overline{AB} = \sqrt{8^2 + 4^2} = \sqrt{64 + 16} = \sqrt{80} = 4\sqrt{5}$ $\Box BAEG = (4\sqrt{5})^2 = 80 \text{ (cm}^2)$

12. 다음은 그림을 이용하여 피타고라스 정리를 설명한 것이다.

(가),(나) 에 알맞은 것을 차례대로 쓴 것을 고르면?

$$\triangle ABE + \triangle AED + \triangle ECD = \square ABCD$$
 이므로 $\frac{1}{2}ab + (7) + \frac{1}{2}ab = \frac{1}{2}(a+b)^2$ 따라서 (나)이다.


(1)
$$(7)$$
 $\frac{1}{2}c^2$ (1) $a^2 + b^2 = c^2$
(2) (7) c^2 (1) $b^2 + c^2 = a^2$
(3) (7) $\frac{1}{2}c^2$ (1) $a^2 + b^2 = c$
(4) (7) c^2 (1) $b^2 - a^2 = c^2$
(5) (7) $\frac{1}{2}c^2$ (1) $a + b = c$

(3)
$$(7)$$
) $\frac{1}{2}c^2$ (나) $a^2 + b^2 =$

④ (가)
$$c^2$$
 (나) $b^2 - a^2 =$

$$y = (y_1) \frac{1}{2}$$

13. 다음 그림의 정사각형 ABCD 에서 네 개의 직각삼각형이 합동일 때, 정사각형 PQRS 의 한 변의 길이는?

 $4 \ 3(\sqrt{3}-1)$ $5 \ 3$

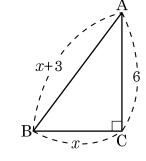
해설

- ① $2(\sqrt{2}-1)$ ② $2(\sqrt{3}-1)$ ③ $3(\sqrt{2}-1)$

 $\overline{AP} = \overline{BQ} = 2, \ \overline{AQ} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$ $\overline{PQ} = \overline{AQ} - \overline{AP} = 2\sqrt{3} - 2$ \therefore \Box PQRS 의 한 변의 길이는 $2(\sqrt{3}-1)$ 이다.

- **14.** 세 변의 길이가 각각 x, x + 2, x 7 인 삼각형이 직각삼각형일 때, 빗변의 길이를 구하여라.
 - ① 15 ② 17 ③ 19 ④ 20 ⑤ 21

 $\begin{cases} (x+2)^2 = x^2 + (x-7)^2 \\ x^2 - 18x + 45 = 0 \end{cases}$


해설

 $x^{2} - 18x + 45 = 0$ (x - 15)(x - 3) = 0

 $\therefore x = 15(\because x > 7)$

따라서 빗변의 길이는 x + 2이므로 17이다.

15. 다음 그림의 $\triangle ABC$ 에서 $\angle C=90^\circ$ 일 때, x 의 값을 구하여라.

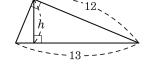
ightharpoonup 답: $rac{9}{2}$

$$(x+3)^2 = x^2 + 6^2$$

$$x^2 + 6x + 9 = x^2 + 36$$

$$6x = 27$$

$$\therefore x = \frac{27}{6} = \frac{9}{2}$$


16. 직각삼각형 ABC의 각 변의 길이는 x-1, x, x+1 이다. x의 값은?

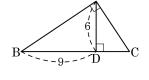
① 1 ② 2 ③ 3 ④ 4

해설 $(x+1)^2 - x^2 + (x-1)^2$

 $(x+1)^2 = x^2 + (x-1)^2$ $x^2 + 2x + 1 = x^2 + x^2 - 2x + 1$ $x^2 - 4x = 0$ $\therefore x = 4(\because x > 0)$

- 17. 다음은 빗변을 밑변으로 하는 직각삼각형 이다. 높이 h 를 구하여라.

답:


ightharpoonup 정답: $rac{60}{13}$

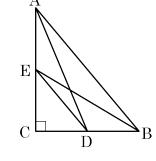
직각삼각형이므로 피타고라스 정리에 의해 길이가 주어지지

않은 변의 길이는 5 이다. 주어진 직각삼각형의 넓이는 두 가지 방법으로 구할 수 있고,

이는 서로 같다. 즉, $12 \times 5 = 13h$ 이므로 $h = \frac{60}{13}$

18. 다음 그림의 △ABC 에서 ∠A = 90°, AD⊥BC 이고, AD = 6, BD = 9 일 때, CD 의 길이를 구하여라.

 ► 답:

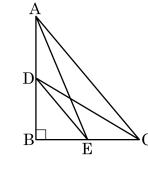

 ▷ 정답:
 4

0_1

해설

 $6^2 = 9x$ $\therefore x = 4$

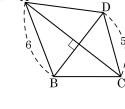
19. 다음 그림과 같이 $\angle C=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AD}^2+\overline{BE}^2=21$ 일 때, $\overline{DE}^2+\overline{AB}^2$ 을 구하여라.



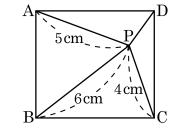
▷ 정답: 21

▶ 답:

 $\overline{\mathrm{DE}}^2 + \overline{\mathrm{AB}}^2 = \overline{\mathrm{AD}}^2 + \overline{\mathrm{BE}}^2$ 이므로 $\overline{\mathrm{DE}}^2 + \overline{\mathrm{AB}}^2 = 21$

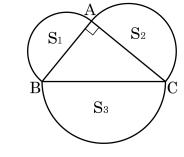

20. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{\rm DE}^2+\overline{\rm AC}^2=3\sqrt{3}$ 일 때, $\overline{\rm AE}^2+\overline{\rm DC}^2$ 의 값은?

① $\sqrt{21}$ ② $\sqrt{23}$ ③ 5 ④ $3\sqrt{3}$ ⑤ $\sqrt{29}$


 $\overline{AE}^2 + \overline{DC}^2 = \overline{DE}^2 + \overline{AC}^2$ 이므로 $\overline{DE}^2 + \overline{AC}^2 = 3\sqrt{3}$

- **21.** 다음 그림의 □ABCD에서 $\overline{AD}^2 + \overline{BC}^2$ 의 값은?
 - ① 11
- ② 30 ⑤ 61
- 3 41
- **4** 56 **(5)**

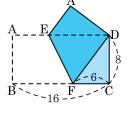
해설


22. 다음 그림과 같이 직사각형 ABCD 의 내부에 한 점 P가 있다. $\overline{AP}=5\,\mathrm{cm}, \overline{BP}=6\,\mathrm{cm}, \ \overline{CP}=4\,\mathrm{cm}$ 일 때, \overline{PD} 의 길이를 구하면?

- ① $3\sqrt{2}$ cm ④ $3\sqrt{3}$ cm
- $3 5\sqrt{2} \text{ cm}$

 $\overline{PD^2} + 6^2 = 5^2 + 4^2 , \overline{PD} = \sqrt{5} \text{ cm}$

23. 다음 그림과 같이 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 반원의 넓이를 S_1 , S_2 , S_3 라 하자. $S_1=10\pi\mathrm{cm}^2$, $S_2=15\pi\mathrm{cm}^2$ 일 때, S_3 의 값을 구하여라.

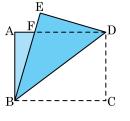

 $\underline{\mathrm{cm}^2}$

▷ 정답: 25π cm²

▶ 답:

 $S_1 + S_2 = S_3$ 이므로 $S_3 = 25\pi (ext{cm}^2)$

24. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접은 것이다. $\overline{\rm DF}$ 의 길이를 구하여라.

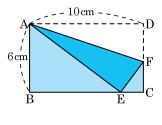


 ► 답:

 ▷ 정답:
 10

 $\overline{BF} = \overline{FD}$ $\therefore \overline{BF} = 16 - 6 = 10 = \overline{DF}$

25. 다음 그림과 같이 직사각형 ABCD 에서 \overline{BD} 를 접는 선으로 하여 접었다. $\triangle BFD$ 는 어떤 삼각형인가?

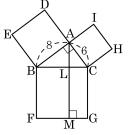

- ③ BF = DF 인 이등변삼각형
 ② ∠F = 90° 인 직각삼각형
- ② ZF = 90 인 식각점각
- ③ ∠B = 90° 인 직각삼각형
 ④ 2BF = BD 인 삼각형
- ⑤ $2\overline{\mathrm{BF}} = \overline{\mathrm{BD}}$ 인 정삼각형

 $\triangle ABF \equiv \triangle EDF$ 이므로 $\triangle BFD$ 는 $\overline{BF} = \overline{DF}$ 인 이등변삼각형

해설

이다.

26. 다음 그림과 같이 $\overline{AB}=6\,\mathrm{cm},\ \overline{AD}=$ $10\,\mathrm{cm}$ 인 직사각형 모양의 종이를 점 D 가 $\overline{\mathrm{BC}}$ 위에 오도록 접었을 때, $\overline{\mathrm{BE}}$ 의 길이는?


45 cm

① $2\sqrt{2}$ cm

②8 cm \Im 7 cm $3 2\sqrt{3} \text{ cm}$

 $\overline{\mathrm{AE}}=\overline{\mathrm{AD}}$ 이므로 피타고라스 정리에서 $\overline{\mathrm{BE}}=\sqrt{10^2-6^2}=\sqrt{64}=8 (\,\mathrm{cm})$

27. 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC 의 세 변을 각각 한 변으로 하는 정사각형을 그린 것이다. $\overline{AB} = 8$, $\overline{AC} = 6$, $\overline{AM} \bot \overline{FG}$ 일 때, \overline{FM} 의 길이를 구하여라.

답:▷ 정답: 6.4

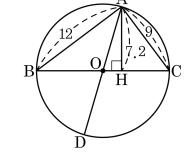
 $\overline{BC} = \sqrt{8^2 + 6^2} = 10$ 이다.

해설

□ADEB = □BFML 이므로 64 = 10 × FM 이다. 따라서 FM = 6.4 이다. 28. 세 변의 길이가 3, 5, a 인 삼각형이 있을 때, 직각삼각형이 되도록 하는 a 의 값들의 합을 구하여라.

▶ 답:

ightharpoonup 정답: $4+\sqrt{34}$


가장 긴 변의 길이가 주어지지 않았으므로 가장 긴 변의 길이를

해설

정해주어야 한다. 3은 가장 긴 변이 될 수 없으므로, 5 또는 a 가 가장 긴 변의 길이가 된다. (i) 5 가 가장 긴 변일 경우, $5^2=3^2+a^2, a^2=16, a=4$

(ii) a 가 가장 긴 변일 경우, $a^2 = 3^2 + 5^2 = 34, a = \sqrt{34}$ 두 값의 합은 $4 + \sqrt{34}$ 가 된다.

29. 다음 그림에서 O 는 $\triangle ABC$ 의 외접원이고 \overline{AD} 는 지름이다. $\overline{AB}=12,\ \overline{AC}=9,\ \overline{AH}=7.2$ 일 때, 이 원의 지름을 구하여라.

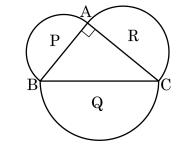
▷ 정답: 15

해설

▶ 답:

 $12 \times 9 = 7.2 \times \overline{BC}, \ \overline{BC} = 15$

30. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{AC}=12$, $\overline{BC}=5$, $\overline{DE}=\sqrt{6}$ 일 때, $\overline{AD}^2+\overline{BE}^2$ 의 값은?

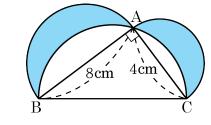


⑤ 177

 $\overline{AB}^2 + \overline{DE}^2 = \overline{BE}^2 + \overline{AD}^2$ $\overline{AB} = \sqrt{12^2 + 5^2} = 13$ 이므로 $\overline{AD}^2 + \overline{BE}^2 = 13^2 + \sqrt{6}^2 = 175$

① 169 ② 171 ③ 173

31. 다음 그림과 같이 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 반원의 넓이를 각각 P , Q , R 이라 하자. $P=10\pi cm^2$, $R=15\pi cm^2$ 일 때, \overline{BC} 의 길이를 구하여라.


 $\underline{\mathrm{cm}}$

정답: 10√2 cm

답:

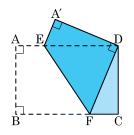
 $Q = P + R = 25\pi \text{ cm}^2 \text{ 이므로 } \frac{1}{2} \cdot \left(\frac{1}{2}\overline{\text{BC}}\right)^2 \cdot \pi = 25\pi, \left(\frac{1}{2}\overline{\text{BC}}\right)^2 = 50, \frac{1}{2}\overline{\text{BC}} = 5\sqrt{2} \text{ 이다. 따라서 } \overline{\text{BC}} = 10\sqrt{2} \text{ cm}$

32. 다음 그림은 $\overline{AC}=4\,\mathrm{cm},\ \overline{AB}=8\,\mathrm{cm},\ \angle A=90^\circ$ 인 직각삼각형 ABC 의 세 변을 지름으로 하는 반원을 그린 것이다. 색칠한 부분의 넓이를 구하면?

 $416\,\mathrm{cm}^2$

 \odot 22 cm²

 $2 12 \, \mathrm{cm}^2$


 $3 14 \,\mathrm{cm}^2$

 $(\overline{AB}$ 를 지름으로 하는 반원의 넓이) = 8π $(\overline{AC}$ 를 지름으로 하는 반원의 넓이) = 2π 이므로

해설

 $(\triangle ABC$ 와 두 반원의 넓이의 합)= $(16+10\pi)\,\mathrm{cm}^2$ 또, $\triangle ABC$ 에서 $\overline{BC}=4\sqrt{5}\,\mathrm{cm}$ 이므로 $(\overline{BC}$ 를 지름으로 하는 반원의 반지름)= $2\sqrt{5}\,\mathrm{cm}$, $(\overline{BC}$ 를 지름으로 하는 반원의 넓이) = 10π 따라서 색칠한 부분의 넓이는 $(16+10\pi)-10\pi=16(\,\mathrm{cm}^2)$

33. 다음 그림은 직사각형 ABCD 를 점 B 가 점 D 에 오도록 접은 것이다. 다음 보기 중 옳지 <u>않은</u> 것은?

 \bigcirc \triangle BEF \equiv \triangle DEF

 \bigcirc $\overline{\mathrm{ED}} = \overline{\mathrm{DF}}$

 \bigcirc \bigcirc , \bigcirc ④ ⑤, ₴

해설

(3)(2), (1)

② ⋽, ₴

 $\textcircled{3} \ \textcircled{L}, \textcircled{\Box}$

 \bigcirc $\overline{\mathrm{ED}} = \overline{\mathrm{FD}}$, $\overline{\mathrm{CF}} = \overline{\mathrm{A'E}}$, $\overline{\mathrm{CD}} = \overline{\mathrm{A'D}}$ 이므로 $\triangle \mathrm{A'ED} \equiv \triangle \mathrm{CDF}$

이다. $\ \, \underline{\mathbb{C}} \, \, \overline{\mathbb{E}}\overline{\mathbb{D}} = \overline{\mathbb{B}}\overline{\mathbb{F}} = \overline{\mathbb{D}}\overline{\mathbb{F}} = \overline{\mathbb{B}}\overline{\mathbb{E}}$ © $\overline{\rm EF}$ 는 공통, $\overline{\rm BE}=\overline{\rm DF}$, $\overline{\rm ED}=\overline{\rm BF}$ 이므로 $\Delta {\rm BEF}\equiv \Delta {\rm DEF}$

이다.