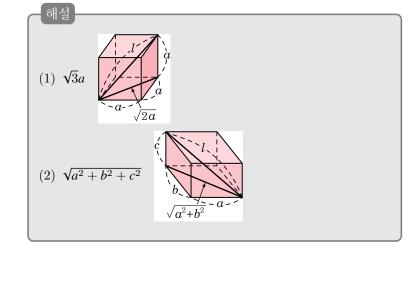
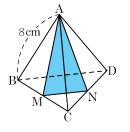
- 1. 세 모서리의 길이가 각각 5cm, 5cm, 5cm 인 정육면체의 대각선의 길이와, 세 모서리의 길이가 각각 1cm, 4cm, 5cm 인 직육면체의 대 각선의 길이를 차례로 구하면?
 - ① $4\sqrt{3}$ cm, $\sqrt{41}$ cm ③ $6\sqrt{3}$ cm, $\sqrt{40}$ cm

② $5\sqrt{3}$ cm, $\sqrt{42}$ cm ④ $5\sqrt{3}$ cm, $\sqrt{41}$ cm


 \bigcirc 5 $\sqrt{2}$ cm, $\sqrt{42}$ cm

o o voom, vii on


 $\sqrt{3}a = 5\sqrt{3}$ (cm) $\sqrt{1^2 + 4^2 + 5^2} = \sqrt{42}$ (cm)

- 2. 다음 입체도형을 보고 두 도형의 대각선의 길이를 바르게 짝지은 것을 고르면?

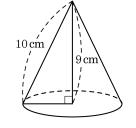
 - ③ (1) $\sqrt{2}a$, (2) $\sqrt{a^2 + b^2 + c^2}$ ④ (1) $\sqrt{3}a$, (2) $\sqrt{a^2 + b^2 + c^2}$
- ① (1) $\sqrt{2}a$, (2) $\sqrt{a^2 + b^2 c^2}$ ② (1) $\sqrt{2}a$, (2) $\sqrt{a^2 b^2 c^2}$
 - $(1)\sqrt{3}a,(2)\sqrt{a^2-b^2+c^2}$
- (=) (=) (=)

 ${f 3.}$ 다음 정사면체에서 ${f M, N}$ 은 각각 ${f \overline{BC}, \overline{DC}}$ 의 중점이다. 정사면체의 한 모서리의 길이가 8cm 일 때, △AMN 의 넓이를 구하면?

 $4 \ 8\sqrt{2} \text{cm}^2$ $5 \ 16\sqrt{3} \text{cm}^2$

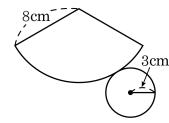
① $4\sqrt{11}\text{cm}^2$ ② $4\sqrt{3}\text{cm}^2$ ③ 4cm^2

 $\overline{\mathrm{AM}} = 4\sqrt{3} = \overline{\mathrm{AN}}$


 $\overline{\text{MN}} = 4$

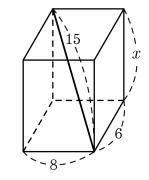
(△AMN의 높이)

 $= \sqrt{(4\sqrt{3})^2 - 2^2} = \sqrt{44} = 2\sqrt{11}$


 $\therefore \triangle AMN = 4 \times 2\sqrt{11} \times \frac{1}{2} = 4\sqrt{11}(cm^2)$

- 4. 다음 그림과 같이 높이가 9 cm 이고, 모선의 길이가 10인 원뿔이 있다. 이 원뿔의 밑면의 넓이는?
 - ① $17\pi \,\mathrm{cm}^2$ ② $18\pi \,\mathrm{cm}^2$ ③ $19\pi \,\mathrm{cm}^2$ ④ $20\pi \,\mathrm{cm}^2$
- . 20% cm

(밑면의 반지름) = $\sqrt{10^2 - 9^2} = \sqrt{19} (\mathrm{cm})$ (밑면의 넓이) = $\sqrt{19} \times \sqrt{19} \times \pi = 19\pi (\mathrm{cm}^2)$


다음 전개도로 만든 원뿔의 높이와 부피를 구한 것으로 알맞은 것은? **5.**

- ① $2\sqrt{55}$ cm, $2\sqrt{55}\pi$ cm³ ③ $\sqrt{50}$ cm, $\sqrt{55}\pi$ cm³
- ② $\sqrt{3}$ cm, $3\sqrt{3}\pi$ cm³ $4 \sqrt{35} \, \text{cm}, \, 3\sqrt{35}\pi \, \text{cm}^3$
- ⑤ $\sqrt{55}$ cm, $3\sqrt{55}\pi$ cm³

 $\frac{1}{25}$ 0]: $\sqrt{8^2 - 3^2} = \sqrt{64 - 9} = \sqrt{55}$ (cm) 부피: $9\pi \times \sqrt{55} \times \frac{1}{3} = 3\sqrt{55}\pi \, (\text{cm}^3)$

6. 다음 직육면체에서 x 의 값을 구하여라.

 $\bigcirc 5\sqrt{5}$

① $\sqrt{5}$ ② $2\sqrt{5}$ ③ $3\sqrt{5}$ ④ $4\sqrt{5}$

 $15 = \sqrt{6^2 + 8^2 + x^2}$ $225 = 36 + 64 + x^2 , x^2 = 125$

해설

x > 0 이므로 $x = 5\sqrt{5}$

- 7. 어떤 정육면체의 대각선의 길이가 9 cm일 때, 이 정육면체의 겉넓이를 구하여라.
 - 486cm^2
- ② $486\sqrt{3}\text{cm}^2$ ③ $162\sqrt{3}\text{cm}^2$

① $81\sqrt{3}$ cm²

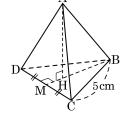
 $\bigcirc 162 \mathrm{cm}^2$

정육면체의 한 모서리의 길이를 a 라 하면

해설

 $\sqrt{3}a = 9$ 이므로 한 모서리의 길이가 $3\sqrt{3}$ cm이다. 정육면체의 겉넓이는 $6a^2$ 이므로 $6 \times \left(3\sqrt{3}\right)^2 = 162(\text{cm}^2)$

- 8. 다음 그림의 직육면체에서 $\overline{DE} + \overline{DF}$ 의 값은?
 - ① 3
- ② $3 + \sqrt{2}$
- 3 5
- ④ $5\sqrt{2}$


해설

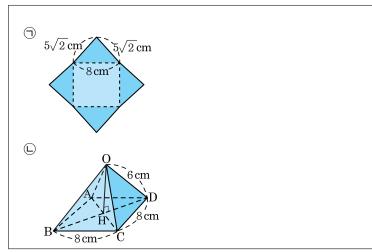
 $\overline{DE} = \sqrt{3^2 + 4^2} = 5$ $\overline{DF} = \sqrt{3^2 + 4^2 + 5^2} = 5\sqrt{2}$

 $DF = \sqrt{3^2 + 4^2 + 5^2} = 5\sqrt{2}$ $\therefore \overline{DE} + \overline{DF} = 5 + 5\sqrt{2} \text{ 이다.}$

- 9. 다음 그림과 같이 한 모서리의 길이가 5 cm 인 정사면체의 부피를 구하면?

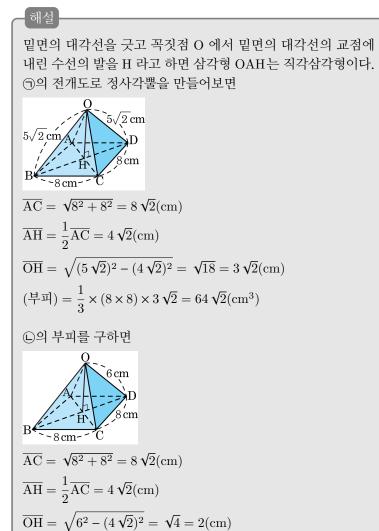
 - ① $\frac{121\sqrt{2}}{12}$ (cm³) ② $\frac{122\sqrt{2}}{12}$ (cm³) ③ $\frac{123\sqrt{2}}{12}$ (cm³) ④ $\frac{125\sqrt{2}}{12}$ (cm³) ⑤ $\frac{127\sqrt{2}}{12}$ (cm³)

부피를
$$V$$
라 하면
$$V = \frac{\sqrt{2}}{12} \times a^3 = \frac{\sqrt{2}}{12} \times 5^3 = \frac{125\sqrt{2}}{12} \text{ (cm}^3\text{)}$$


10. 부피가 $144\sqrt{2}$ cm³ 인 정사면체의 한 모서리의 길이를 구하여라.

① 10 cm ② 11 cm ③ 12 cm ④ 13 cm ⑤ 14 cm

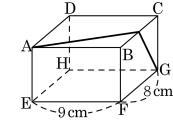
한 모서리의 길이를 $a \, \mathrm{cm}$ 라고 하면 $\frac{\sqrt{2}}{12} a^3 = 144 \, \sqrt{2}$


$$\begin{vmatrix} a^3 = 12 \times 144 = 2^6 3^3 = (2^2 \times 3)^3 \\ \therefore a = 12 \text{ (cm)} \end{vmatrix}$$

11. 다음 그림은 정사각뿔과 정사각뿔의 전개도이다. 다음 그림의 부피로 알맞은 것은?

① 64cm^3 , 64cm^3

② $64\sqrt{3}$ cm³, 24cm³

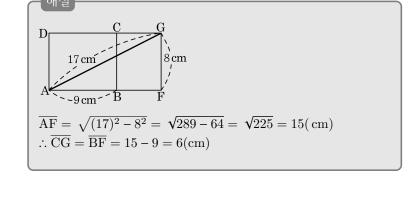

 $(\stackrel{\square}{-} \stackrel{\square}{=}) = \frac{1}{3} \times (8 \times 8) \times 2 = \frac{128}{3} (\text{cm}^3)$

- 12. 다음 그림과 같이 모선의 길이가 7 cm 인 원뿔의 밑면의 둘레의 길이가 10π cm 일 때 이 원뿔의 높이는?
 - 이 원뿔의 높이는? ① 3 cm ② 4 cm ③ 2 √6 cm ④ 3 √5 cm
 - ⑤ 6 cm
 - © 00m

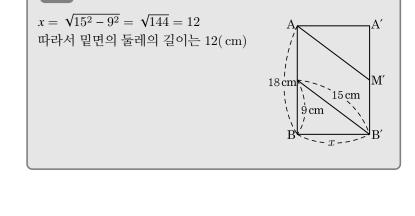
밑면의 둘레의 길이는 $2\pi r = 10\pi (\,\mathrm{cm})$ 이므로 밑면의 반지름은

5 cm 이다. 따라서 원뿔의 높이는 √7² - 5² = 2√6(cm) 이다.

13. 다음 그림과 같이 직육면체의 한 꼭짓점 A 에서 모서리 BC 를 지나 점 G 에 이르는 최단거리는 17 cm 이다. 이 때, 모서리 CG 의 길이를 구하면?

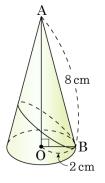

4 7 cm

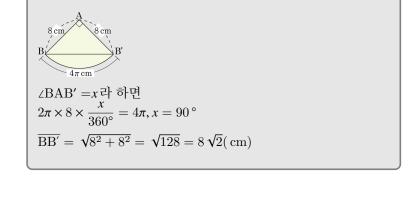
 \bigcirc 8 cm


 $36 \, \mathrm{cm}$

 \bigcirc 5 cm

 \bigcirc 4 cm



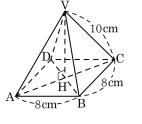

- 14. 다음 원기둥의 높이는 18 cm 이다. 점 M 은 높이의 중점이며, 그림과 같이 점 A 에서 출발하여 옆면을 따라 중점 M 을 지나 점 B 에 이르는 최단거리가 30 cm 이라 할 때, 밑면의 둘레의 길이를 구하면?
 - ③ 12 cm ④ 12.5 cm
 - ⑤ 13 cm
 - (J) 13 CIII

18 cm

- 15. 다음 그림과 같은 원뿔에서 점 B를 출발하여 옆면을 지나 다시 점 B 로 돌아오는 최단 거리는?
 - ① $7\sqrt{2}$ cm ② $7\sqrt{3}$ cm ③ $8\sqrt{2}$ cm
 - (4) $8\sqrt{3}$ cm (5) $9\sqrt{2}$ cm

- 16. 다음 그림은 한 모서리의 길이가 6 cm 인 정육 면체이다. 점 H에서 대각선 DF에 내린 수선 의 발 M 까지의 거리를 구하여라.

 $\bigcirc 2\sqrt{6}\,\mathrm{cm} \qquad \qquad \bigcirc 6\sqrt{3}\,\mathrm{cm}$


- 4 $6\sqrt{6}$ cm 5 $3\sqrt{6}$ cm
- $3 2\sqrt{5} \text{ cm}$

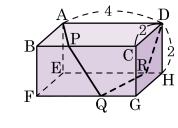
 $\overline{\text{HF}} = 6\sqrt{2}, \ \overline{\text{DF}} = \sqrt{6^2 + \left(6\sqrt{2}\right)^2} = 6\sqrt{3}$ $\triangle \mathrm{DHF} = \overline{\mathrm{DH}} imes \overline{\mathrm{HF}} imes \frac{1}{2} = \overline{\mathrm{DF}} imes \overline{\mathrm{HM}} imes \frac{1}{2}$ 이므로

 $6 \times 6 \sqrt{2} \times \frac{1}{2} = 6 \sqrt{3} \times \overline{\text{HM}} \times \frac{1}{2}$ $18\sqrt{2} = 3\sqrt{3} \times \overline{HM}$

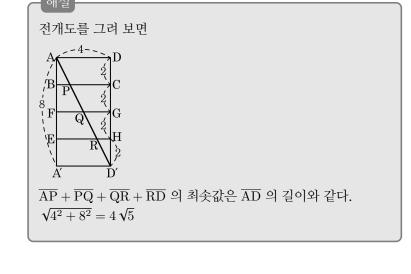
 $\therefore \overline{HM} = \frac{6\sqrt{2}}{\sqrt{3}} = \frac{6\sqrt{6}}{3} = 2\sqrt{6} \text{ (cm)}$

17. 다음 그림과 같이 밑면은 한 변의 길이가 8 cm 인 정사각형이고, 옆면의 모서리의 길이는 모두 $10\,\mathrm{cm}$ 인 정사각뿔에서 $\Delta\mathrm{VHC}$ 의 넓이는?

- ① $3\sqrt{34} \, \text{cm}^2$ ② $4\sqrt{17} \, \text{cm}^2$
 - $4 \ 20 \, \text{cm}^2$ $5 \ 24 \, \text{cm}^2$
- $\boxed{3}4\sqrt{34}\,\mathrm{cm}^2$


 $\square ABCD$ 가 정사각형이므로 $\overline{AC}=\sqrt{8^2+8^2}=8\sqrt{2}(\,\mathrm{cm})$ $\overline{\mathrm{HC}} = \frac{1}{2}\overline{\mathrm{AC}} = 4\sqrt{2}(\mathrm{\,cm})$

$$\therefore \overline{VH} = \sqrt{10^2 - (4\sqrt{2})^2} = \sqrt{68} = 2\sqrt{17} \text{ (cm)}$$


$$\triangle$$
VHC 의 넓이는 $S=rac{1}{2} imes 4\sqrt{2} imes 2\sqrt{17}=4\sqrt{34}(\mbox{ cm}^2)$ 이다.

$$\Delta VHC$$
 의 넓이는 $S = \frac{1}{2} \times 4\sqrt{2} \times 2\sqrt{17} = 4\sqrt{34}$

18. 다음 그림과 같은 직육면체에서 \overline{BC} , \overline{FG} , \overline{EH} 위에 각각 점 P,Q,R 를 잡을 때, $\overline{AP}+\overline{PQ}+\overline{QR}+\overline{RD}$ 의 최솟값은?

① $5\sqrt{5}$ ② 8 ② $4\sqrt{5}$ ④ 9 ⑤ $5\sqrt{13}$

