약점 보강 1

1. 이진법의 수를 아래와 같이 나타낼 때, ■■□을 이진 법의 수로 나타내면 ()₍₂₎ 이다. () 안에 알맞은 수를 구하여라.

0₍₂₎ ⇒ □ , 1₍₂₎ ⇒ ■ , 10₍₂₎ ⇒ ■□ , 11₍₂₎ ⇒ ■■ [배점 2, 하중]

▶ 답:

▷ 정답: 110

해설

- **■**은 1 , □은 0 을 나타내므로
- ■■□는 110(2) 이다.

2. 다음은 은희와 수지의 월요일 시간표이다.

	1교시	2교시	3교시	4교시	5교시	6교시
은희	도덕	국어	체육	수학	미술	한문
수지	국어	영어	음악	사회	컴퓨터	과학

은희의 시간표에 있는 교과의 집합을 A , 수지의 시간 표에 있는 교과의 집합을 B 라 할 때, $A \cap B$ 를 원소 나열법으로 나타내어라. [배점 2, 하중]

▶ 답:

▷ 정답: {국어}

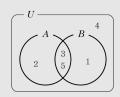
해설

 $A = \left\{ \mathbf{\Sigma} \mathbf{q} \;,\; \mathbf{\mathcal{A}} \mathbf{q} \;,\; \mathbf{\mathfrak{M}} \mathbf{\mathfrak{G}} \;,\; \mathbf{\mathcal{C}} \mathbf{\mathfrak{T}} \;,\; \mathbf{\mathcal{D}} \mathbf{\mathcal{E}} \right\}$ $B = \left\{ \mathbf{\mathcal{T}} \mathbf{q} \;,\; \mathbf{\mathcal{G}} \mathbf{q} \;,\; \mathbf{\mathcal{C}} \mathbf{\mathfrak{T}} \;,\; \mathbf{\mathcal{A}} \mathbf{\mathcal{T}} \mathbf{\mathcal{T}} \mathbf{\mathcal{T}} \right\}$ $A \cap B = \left\{ \mathbf{\mathcal{T}} \mathbf{q} \right\}$

3. $A \cup B = \{1, 3, 5, 7, 9\}$ 이고 A, B 가 보기를 만족할 때, 집합 A 의 부분집합이 아닌 것은?

보기

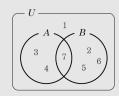
- $\lnot.\ A\cap B=\{3,5\}$
- \bot . $B A = \{1\}$
- \vdash . $(A \cup B)^c = \{4\}$


[배점 3, 하상]

- \bigcirc {2}
- ② {3}
- 3 $\{2,3\}$

- (4) $\{2,5\}$
- (5) $\{1,2,5\}$

해설


주어진 조건을 벤 다이어그램으로 나타내면 다음 그림과 같으므로 $A=\{2,3,5\}$ 이다. 따라서 A 의부분집합인 것은 \varnothing , $\{2\}$, $\{3\}$, $\{5\}$, $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2,3,5\}$ 이다.

- 4. 전체집합 U = {1,2,3,4,5,6,7} 의 두 부분집합 A, B 에 대하여 A B = {3, 4}, B A = {2,5,6}, (A ∪ B)^c = {1} 일 때, 집합 B 를 나타낸 것으로 옳은 것은?
 [배점 3, 중하]
 - ① $\{2,5,6\}$
- (2) $\{2,5,6,7\}$
- $3 \{1,2,5\}$
- (4) $\{1, 2, 5, 6\}$

해설

주어진 집합을 벤 다이어그램으로 나타내면

 $\therefore B = \{2,5,6,7\}$ [별해] $(A \cup B)^C = \{1\}$ 이므로 $A \cup B = \{2,3,4,5,6,7\}$ 이다. $B = (A \cup B) - (A - B) = \{2,5,6,7\}$

5. 가로, 세로, 높이가 각각 6, 12, 10 인 벽돌이 있다.이 벽돌을 쌓아 가장 작은 정육면체를 만들 때, 필요한 벽돌의 개수를 구하여라. [배점 3, 중하]

▷ 정답: 300 개

해설

정육면체의 한 모서리의 길이는 6, 12, 10 의 최 소공배수이므로 60 이다.

필요한 벽돌의 개수는

 $(60 \div 6) \times (60 \div 12) \times (60 \div 10) = 10 \times 5 \times 6 =$ 300(개) 이다.

6. 60 에 가장 작은 수 A 를 곱하여 어떤 자연수 B 의 제곱이 되게 하려고 한다. A + B 의 값을 구하여라.[배점 4, 중중]

▶ 답:

➢ 정답: 45

해설

 $60 \times A = B^2$

 $60 = 2^2 \times 3 \times 5$ 이므로 $A = 3 \times 5 = 15$ $2^2 \times 3 \times 5 \times 3 \times 5 = 2^2 \times 3^2 \times 5^2 = B^2$

 $B=2\times3\times5=30$

 $\therefore A + B = 45$

7. 어떤 자연수를 5로 나누면 3 이 남고, 6 으로 나누면4 가 남고, 7 로 나누면 5 가 남는다고 한다. 이러한조건을 만족하는 자연수 중에서 가장 작은 수는?

[배점 5, 중상]

- ① 207
- 208
- 3 209

- ④ 210
- ⑤ 211

해설

5,6,7 로 나누면 항상 2 가 부족하므로 구하는 수를 x 라 하면 x+2는 5,6,7 의 공배수이다. 5,6,7 의 최소공배수는 210 이므로 210 의 배수중 가장 작은 수는 210 이다.

따라서 x + 2 = 210 이므로 x = 208 이다.

- 8. 집합 $A = \{a, b, c\}, B = \{a, b, c, d, e\}$ 에 대하여 다음을 만족하는 집합 C 의 개수를 구하여라.
 - $\ \, \bigcirc \ \, A \not\subset C$
- \bigcirc $C \subset B$
- \bigcirc $a \in C, b \in C$

[배점 5, 중상]

▶ 답:

▷ 정답: 4개

해설

①과 ©에 의하여 $a\in C,\ b\in C,\ c\notin C$ 이다. 따라서 집합 $C\vdash a$ 와 b 를 포함하고 c 를 포함하지 않는 B 의 부분집합이므로 $2^{5-2-1}=2^2=4$ (개) 이다.

- 9. 최대공약수가 $3 \times x$ 인 두 자연수의 공약수가 4 개일 때, x 의 값이 될 수 있는 한 자리의 자연수는 모두 몇 개인가? [배점 5, 중상]
 - ① 1개
- ② 2 개
- ③ 3 개

- 4 4 개
- ⑤ 5 개

. 해설

두 수의 최대공약수는 $3 \times x$,

공약수, 즉 최대공약수의 약수가 4 개이므로 최대공약수는 $a \times b$ (단, a, b 는 소수, $a \neq b$ 이다.) 또는 a^3 꼴이어야 한다.

따라서 x 가 될 수 있는 수는 2, 5, 7, 9 의 4 개이 다.

- 10. 전체집합 U 의 두 부분집합 A, B 에 대하여 $n(U)=50,\ n(A)=30,\ n(B)=28,\ n(A^c\cap B^c)=8$ 일 때, n(A-B)+n(B-A) 의 값은? [배점 5, 중상]
 - ① 22
- ② 24
- **3**26
- **4** 28
- ⑤ 30

해설

$$n(A^c \cap B^c) = n(A \cup B)^c$$

$$= n(U) - n(A \cup B) = 8$$

$$\therefore n(A \cup B) = 42$$

$$n(A \cap B) = n(A) + n(B) - n(A \cup B)$$

$$=30+28-42=16$$

$$n(A-B) + n(B-A)$$

$$= n(A \cup B) - n(A \cap B) = 42 - 16 = 26$$

11. 두 집합 $A = \{x \mid x \in 12 \text{ 이하의 홀수 }\}, B = \{x \mid x \in 3 \text{ 이상 } 5 \text{ 이하의 소수 }\}$ 에 대하여 $X \subset A \text{ 이고 } B \subset X$ 일때, 집합 X 의 원소의 개수가 5 개인 집합 X 의 개수를 구하여라. [배점 5, 중상]

▶ 답:

▷ 정답: 4개

해설

 $A = \{1, 3, 5, 7, 9, 11\}$

 $B = \{3, 5\}$

 $X \subset A, B \subset X$ 이므로 $B \subset X \subset A$

 $\{3,\ 5\}\subset X\subset \{1,\ 3,\ 5,\ 7,\ 9,\ 11\}$

집합 X 는 집합 A 의 부분집합 중 원소 3, 5 는 반드시 포함하고 원소의 개수가 5개인 집 합이므로 $\{1, 3, 5, 7, 9\}$, $\{1, 3, 5, 7, 11\}$, $\{1, 3, 5, 9, 11\}$, $\{3, 5, 7, 9, 11\}$ 의 4개이 다. **12.** 집합 P 에 대하여 $2^A = \{P \mid P \subset A\}$ 로 정의한다. $A = \{1, 2, 4\}$ 일 때, 다음 중 옳지 않은 것은?

[배점 5, 상하]

- ① $\varnothing \in 2^A$ ② $\varnothing \subset 2^A$
- $(3) \{\emptyset\} \in 2^A$
- $\{\emptyset\} \subset 2^A$ $\{\emptyset\} \subset 2^A$

해설

 $2^A = \{P \mid P \subset A\}$ 는 집합 A 의 부분집합 의 집합을 의미한다. 집합 A의 부분집합은 \emptyset , $\{1\}$, $\{2\}$, $\{4\}$, $\{1,2\}$, $\{1,4\}$, $\{2,4\}$, $\{1,2,4\}$ 이다.

따라서 2^A 를 원소나열법으로 나타내면 $\{\emptyset, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\},$ {1,2,4}} 이다.

 $\Im \{\varnothing\} \notin 2^A$

13. $U = \{x | x$ 는 두 자리의 자연수 $\}$ 의 부분집합 $A_n =$ $\{x|x$ 는 n의 약수 $\}$ 에 대하여 $n(A_n)=6$ 을 만족하는 n 의 최댓값을 구하여라. [배점 6, 상중]

답:

➢ 정답: 99

해설

 $n(A_n)=6$ 이므로, $n=a^1 \times b^2$ 의 형태로 소인수 분해되는 수이다.

n 이 두 자리 수이기 때문에 b 가 될 수 있는 수는 2, 3, 5, 7 이다.

b 가 2, 3, 5, 7 일 때 최댓값을 각각 구해 보면,

 $2 \cong \mathbb{H}, 2^2 \times 23 = 92,$

3 일 때, $3^2 \times 11 = 99$,

 $5 \ \text{9 m}, \ 5^2 \times 3 = 75,$

7 일 때, $7^2 \times 2 = 98$

∴ n 의 최댓값= 99