다음 중 옳지 않은 것은?

[배점 2, 하중]


- ② $(x^2)^3 \times (x^3)^4 = x^{18}$
- $(3) \left(\frac{x^4}{y^2}\right)^3 = \frac{x^{12}}{y^6}$
- $(x^2y^5)^4 = x^8y^{20}$
- $(a^2b)^3 \div a^2 = a^4b^3$
- ① $3^5 \div 9^2 = 3^5 \div (3^2)^2 = 3$

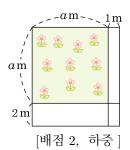
- **2.** x=2, y=-3 일 때, 2x+5y-(3y-3x) 를 계산하 [배점 2, 하중] 면?
 - $\bigcirc 1 8 \qquad \bigcirc 2 4 \qquad \bigcirc 3 \ 1$

- (4) 2

(준식) =
$$5x + 2y = 5 \times 2 + 2 \times (-3) = 4$$

3. 아람이네 가족은 다음 그림과 같이 한 변의 길이가 xm 인 정사각형의 꽃밭을 가로의 길이는 y m(x>y) 늘이 고, 세로의 길이는 y m 줄여서 새로운 꽃밭을 만들기로 하였다. 꽃밭의 넓이는?

[배점 2, 하중]


- ① $(x+y)^2 = x^2 + 2xy + y^2$ (m²)
- ② $(x-y)^2 = x^2 2xy + y^2$ (m²)
- $(x+y)(x-y) = x^2 y^2(m^2)$
- $(x + y)(x y) = x^2 + y^2(m^2)$
- $\Im (x+y)(x+y) = x^2 + y^2(m^2)$

해설

새로운 꽃밭의 가로의 길이 (x+y) m, 세로의 길이 (x-y) m

꽃밭의 넓이 : $(x+y)(x-y) = x^2 - y^2$ (m²)

4. 다음 그림과 같이 한 변의 길 이가 am 인 정사각형의 모양 의 화단을 가로와 세로를 각각 1m, 2m 만큼 늘릴 때, 화단의 넓이는?

- ① $(a^2 3a + 2)$ m²
- $(a^2 + 3a + 2)m^2$
- $(a^2 + 2a + 1)m^2$ $(a^2 4a + 4)m^2$
- \bigcirc $(a^2 + 6a + 9)$ m²

늘어난 화단의 가로의 길이 (a+1) m, 세로의 길 \circ] (a+2) m

따라서 화단의 넓이는 $(a+1)(a+2) = a^2 + 3a + 2$ 이다.

- **5.** $5^{x+3} = 5^x \times$ 에서 의 값은? [배점 3, 하상]
 - ① 25
- 2 5
- 3625

- 4 125
- **⑤** 75
- $5^{x+3} = 5^x \times 5^3$

- **6.** $(-2a^2)^2 \times (-3a^5) \times \frac{3}{4}a^3$ 을 간단히 하면? [배점 3, 하상]

 - ① $-9a^{14}$ ② $-9a^{12}$ ③ $-\frac{9}{2}a^{9}$
 - $9a^{9}$ $9a^{12}$

$$(-2a^{2})^{2} \times (-3a^{5}) \times \frac{3}{4}a^{3}$$
$$= 4a^{4} \times (-3a^{5}) \times \frac{3}{4}a^{3} = -9a^{12}$$

- 7. $\frac{8x^2y 6y^2}{2xy} + \frac{6x^2y 12xy^2}{-3xy}$ 를 간단히 하면? [배점 3, 하상]

 - ① x+y ② 2x+y ③ x+2y
 - 4 2x + 2y
- (5) 2x + 3y

$$\begin{aligned} &\frac{8x^2y - 6xy^2}{2xy} + \frac{6x^2y - 12xy^2}{-3xy} \\ &= \frac{8x^2y}{2xy} - \frac{6xy^2}{2xy} + \frac{6x^2y}{-3xy} - \frac{12xy^2}{-3xy} \\ &= 4x - 3y - 2x + 4y = 2x + y \end{aligned}$$

- 8. $(2a-b)(2a+b)-(a+3b)(a-3b)=pa^2+qb^2$ 상수 p, q의 합 p+q의 값은? [배점 3, 하상]

 - ① 3 ② 4 ③ 9
- **4** 11
- ⑤ 12

$$(2a)^{2} - b^{2} - \left\{a^{2} + (3b)^{2}\right\}$$

$$= 4a^{2} - b^{2} - a^{2} + 9b^{2}$$

$$= 3a^{2} + 8b^{2}$$

$$\therefore p + q = 3 + 8 = 11$$

- **9.** 다음 식을 전개할 때, x 의 계수가 가장 큰 것은? [배점 3, 하상]

 - ① $(3x+1)^2$ ② $(3x-1)^2$

 - (3x-1)(x-3) (4)(3x+1)(x+3)
 - \bigcirc (3x+1)(3x-1)

- ①은 전개하면 x 의 계수가 + 6
- ②는 전개하면 x 의 계수가 -6
- ③은 전개하면 x 의 계수가 -10
- ④는 전개하면 x 의 계수가 +10
- ⑤는 전개하면 x 의 계수가 0
- 따라서 x 의 계수가 가장 큰 것은 ④번이다.

10. 다음 \Box 안에 알맞은 수를 써넣어라.

$$\left(-3x \square y^2\right)^3 = -27x^{12}y \square \qquad [배점 3, \ 중하]$$

- 답:
- ▶ 답:
- ▷ 정답: 4
- ➢ 정답: 6

$$x^{3 \times \square} = x^{12}$$

$$\therefore$$
 = 4

$$y^{2\times 3} = y$$

$$\therefore \boxed{} = 6$$

- **11.** $128^{2a-1} \div 16^{a+2} = 8^{3a-4}$ 를 만족하는 a 의 값을 구하 [배점 3, 중하] 여라.
 - ▶ 답:
 - ➢ 정답: 3

$$(2^7)^{2a-1} \div (2^4)^{a+2} = (2^3)^{3a-4}$$

$$7(2a-1) - 4(a+2) = 3(3a-4)$$

$$14a - 7 - 4a - 8 = 9a - 12$$

$$10a - 9a = -12 + 15$$

$$\therefore a = 3$$

- 12. 지수법칙을 이용하여 $2^7 \times 5^5$ 은 몇 자리 수인지 구하 여라. [배점 3, 중하]
 - ▶ 답:
 - ▷ 정답: 6자리 수

$$2^7 \times 5^5 = 2^5 \cdot 2^2 \times 5^5 = (2 \times 5)^5 \times 4 = 4 \times 10^5$$

13. 다음 중 옳은 것은?

[배점 3, 중하]

①
$$4 \times (-2)^3 = 32$$

$$(-2)^2 \times (-2)^2 = -16$$

$$(3)(-2)^2 \times (-8) = -32$$

$$9 \times 3^2 = 3^3$$

$$\bigcirc$$
 $(-3) \times (-3)^3 = -3^4$

①
$$4 \times (-2)^3 = 4 \times (-8) = -32$$

$$(2)(-2)^2 \times (-2)^2 = (-2)^4 = 16$$

$$(3)(-2)^2 \times (-8) = 4 \times (-8) = -32$$

$$9 \times 3^2 = 3^2 \times 3^2 = 3^4$$

$$(-3) \times (-3)^3 = (-3)^4 = 3^4$$

14. 다음 조건을 만족할 때, 상수 A, B, C, D, E 의 값이 아닌 것은?

$$\bigcirc 4(x^2-3x)-(3x^2-6x+7)=Ax^2+Bx-7$$

$$\bigcirc \frac{2x^2 - 3x + 1}{2} - \frac{x^2 - 2x + 3}{3} = \frac{Cx^2 + Dx + E}{6}$$

[배점 3, 중하]

- ① A = 1 ② B = -6 ③ C = 4

- (4) D = -5 (5) E = 3

해설

즉,
$$Ax^2 + Bx - 7 = x^2 - 6x - 7$$
 이다.

따라서
$$A = 1$$
, $B = -6$ 이다.

$$=\frac{6x^2-9x+3}{6}-\frac{2x^2-4x+6}{6}$$

$$=\frac{6x^2 - 9x + 3 - (2x^2 - 4x + 6)}{6}$$

$$=\frac{6x^2-9x+3-2x^2+4x-6}{6}$$

$$= \frac{4x^2 - 5x - 3}{6}$$

즉,
$$\frac{Cx^2 + Dx + E}{6} = \frac{4x^2 - 5x - 3}{6}$$
 이다.

따라서 C=4, D=-5, E=-3 이다.

15. 수진이네 반에서 매달 실시하는 수학 퀴즈 대회는 문 제를 맞히는 모든 학생에게 도서 상품권을 준다고 한 다. 다음은 이번 달 수학 퀴즈 문제에 대하여 5 명의 학생들이 답을 적어 제출한 것이다. 이때 도서상품권을 받을 사람은 누구인지 말하여라.

> 문제) $3x-2y-\{x-(7y-6x)+5\}=ax+by+c$ 일 때, a-b+c 의 값을 구하여라.

서준: 14, 성진: 10, 유진: -10, 명수: -14,

형돈 : 12

[배점 3, 중하]

▷ 정답: 명수

해설

$$3x - 2y - \{x - (7y - 6x) + 5\}$$

= $3x - 2y - (x - 7y + 6x + 5)$
= $3x - 2y - (7x - 7y + 5)$
= $3x - 2y - 7x + 7y - 5$
= $-4x + 5y - 5$
이므로 $a = -4$, $b = 5$, $c = -5$ 이다.
따라서 $a - b + c = -4 - 5 + (-5) = -14$ 이다.

- **16.** x = -2, y = 5 일 때, 다음 식의 값을 구하여라. $6x^2y - 9x^5y^4$ [배점 3, 중하] $\overline{3xy}$
 - ▶ 답:

▷ 정답: -6004

(준식) =
$$\frac{6x^2y}{3xy} - \frac{9x^5y^4}{3xy} = 2x - 3x^4y^3$$

 $2x - 3x^4y^3$ 에 $x = -2$, $y = 5$ 를 대입하면
 $2 \times (-2) - 3 \times (-2)^4 \times 5^3 = -4 - 6000$
 $= -6004$

- **17.** $3^x \times 3^2 = 729$ 이고 $2^2 \times 4^3 \div 8 = 2^y$ 일 때, x + y 의 값은? [배점 4, 중중]
- ① 7 ② 8 ③ 9
- 4 10

$$3^{x+2} = 3^6, \ x = 4,$$

 $2^{2+6-3} = 2^y, \ y = 5$
 $\therefore x + y = 9$

- **18.** $3^3 = A$, $2^4 = B$ 라 할 때, 48^3 을 A, B를 이용하여 나타내면? [배점 4, 중중]
 - ① AB^2
- ② A^3B
- $3AB^3$

- (4) A^2B
- ⑤ $A^{3}B^{2}$

해설

$$48^3 = (2^4 \times 3)^3 = (2^4)^3 \times 3^3 = B^3 \times A$$
이다.

19. $(x^4)^3 \div (x^a)^2 = x^2$, $(y^3)^b \div y^9 = 1$, $x^8 \div (x^2)^c \div x =$ $\frac{1}{r}$ 을 만족할 때, a+b-c 의 값을 구하여라. [배점 4, 중중]

답:

▷ 정답: 4

해설

$$x^{12-2a} = x^2$$
, $12 - 2a = 2$

$$\therefore a = 5$$

$$y^{3b-9} = 1, 3b - 9 = 0$$

$$b = 3$$

$$x^{8-2c-1} = x^{-1}$$
, $8 - 2c - 1 = -1$

$$\therefore c = 4$$

$$\therefore a + b - c = 4$$

- **20.** $\frac{6x^2 9x}{3x} \frac{x^2 8x 4}{2} = ax^2 + bx + c$ $\Rightarrow ab c$ [배점 4, 중중] 의 값을 구하면?

 - $\bigcirc 1 4 \bigcirc 2 2 \bigcirc 3 \bigcirc 0 \bigcirc 4 \bigcirc 2 \bigcirc 5 \bigcirc 4$

$$\frac{6x^2 - 9x}{3x} = 2x - 3$$

$$2x - 3 - \frac{1}{2}x^2 + 4x + 2 = -\frac{1}{2}x^2 + 6x - 1$$

$$\therefore a = -\frac{1}{2}, b = 6, c = -1$$

$$ab - c = \left(-\frac{1}{2}\right) \times 6 - (-1) = -3 + 1 = -2$$

- **21.** 다항식 A에서 -x-2y+4를 빼었더니 4x+y-3이 되었다. 이때, 다항식 A는? [배점 4, 중중]
 - ① -5x 3y 7 ② -5x y + 1
 - 3x y + 1
- 4 5x + 3y 7
- \bigcirc 5x + 3y + 7

$$A = (4x + y - 3) + (-x - 2y + 4)$$
$$= 4x + y - 3 - x - 2y + 4$$
$$= 3x - y + 1$$

22. 음이 아닌 수 a, b에 대하여 $2^a + 2^b \le 1 + 2^{a+b}$ (단, 등호는 a = 0 또는 b = 0일 때 성립)이 성립한다. a+b+c=4일 때, $2^a+2^b+2^c$ 의 최댓값을 구하여라. $(단, c \ge 0)$ [배점 5, 중상]

▶ 답:

▷ 정답: 18

 $2^a + 2^b + 2^c < 1 + 2^{a+b} + 2^c$ (단, 등호는 a = 0

또는 b = 0일 때 성립)

 $2^a+2^b+2^c < 1+(1+2^{a+b+c})$ (단, 등호는 a+b=0

또는 c = 0일 때 성립)

 $2^a + 2^b + 2^c \le 1 + (1 + 2^4)$

 $2^a + 2^b + 2^c < 18$

따라서 최댓값은 18 (a = 0, b = 0 또는 b = 0,

c = 0 또는 c = 0, a = 0 일 때)

- **23.** 두 식 x, y 에 대하여 $*, \triangle = x * y = (8xy^2 + 4xy^2) \div$ 2xy , $x \triangle y = (12x^2y - 8x^2y) \div 4xy$ 로 정의할 때, $\frac{(x*y)-(x\triangle y)}{(x*y)+(x\triangle y)}$ 의 값은? [배점 5, 중상]
 - ① $\frac{6y+x}{6y+x}$ ② $\frac{6y-x}{6y-x}$ ④ $\frac{6y+x}{6y-x}$ ③ $\frac{3y-x}{3y+x}$

$$x * y = (8xy^{2} + 4xy^{2}) \div 2xy = 4y + 2y$$

$$x \triangle y = (12x^{2}y - 8x^{2}y) \div 4xy = 3x - 2x = x$$

$$\therefore \frac{(x * y) - (x \triangle y)}{(x * y) + (x \triangle y)} = \frac{6y - x}{6y + x}$$

- **24.** abc = 1 일 때, $\frac{a}{ab+a+1} + \frac{b}{bc+b+1} + \frac{c}{ca+c+1}$ 의 값을 구하여라.
 - 답:

▷ 정답: 1

$$\frac{a}{ab+a+1} + \frac{b}{bc+b+1} + \frac{c}{ca+c+1}$$

$$= \frac{a}{ab+a+1} + \frac{ab}{a(bc+b+1)} + \frac{abc}{ab(ca+c+1)}$$

$$= \frac{a}{ab+a+1} + \frac{ab}{abc+ab+a} + \frac{abc}{a^2bc+abc+ab}$$

$$= \frac{a}{ab+a+1} + \frac{ab}{1+ab+a} + \frac{1}{a+1+ab}$$

$$= \frac{a+ab+1}{ab+a+1} = 1$$

25. $xyz \neq 0$, xy = a, yz = b, zx = c 일 때, $x^2 + y^2 + z^2$ 의 값을 a, b, c에 관하여 바르게 나타낸 것은? [배점 5, 중상]

①
$$\frac{bc}{c} + \frac{ac}{a} + \frac{ab}{b}$$
 ② $\frac{bc}{b} + \frac{ac}{c} + \frac{ab}{a}$ ③ $\frac{bc}{c} + \frac{ac}{b} + \frac{ab}{a}$ ④ $\frac{bc}{b} + \frac{ac}{a} + \frac{ab}{c}$

$$\textcircled{4} \frac{bc}{b} + \frac{ac}{a} + \frac{ab}{c}$$

$$x^{2}y^{2}z^{2} = abc \circ] \mathfrak{I}$$

$$x^{2} = \frac{abc}{y^{2}z^{2}} = \frac{abc}{b^{2}} = \frac{ac}{b}$$

$$y^{2} = \frac{abc}{x^{2}z^{2}} = \frac{abc}{c^{2}} = \frac{ab}{c}$$

$$z^{2} = \frac{abc}{x^{2}y^{2}} = \frac{abc}{a^{2}} = \frac{bc}{a}$$

$$\therefore x^2 + y^2 + z^2 = \frac{ac}{b} + \frac{ab}{c} + \frac{bc}{a}$$