단원 종합 평가

- **1.** 두 집합 $A = \{a_1, a_2, a_3, a_4, a_5\}$, B = $\{a_3, a_4, a_5, a_6\}$ 에 대하여 조건 $A \cap X = X$ 및 $(A-B) \cup X = X$ 를 만족하는 집합 X 의 개수는? [배점 3, 중하]
 - ① 5
- ② 6 ③ 7
- **(5)** 9

해설

 $A \cap X = X \text{ old } X \subset A, (A - B) \cup X = X \text{ old } X$ $(A-B) \subset X$ 따라서, $(A-B) \subset X \subset A$ 이므로 X 는 A 의 부분집합 중에서 $A-B=\{a_1, a_2\}$ 를 포함하므로 A 의 부분집합 중에서 a_1, a_2 를 모두 포함하는 것의 개수이므로 $: 2^{5-2} = 2^3 = 8(71)$

2. 두 조건 p, q를 만족하는 집합을 각각 P, Q라고 할 때, p 또는q를 만족하는 집합을 구하면?

[배점 3, 중하]

- ① P-Q
- $\bigcirc Q P$
- \bigcirc $P^c \cup Q$

- $\bigcirc P \cup Q^c$
- $\bigcirc P \cap Q^c$

조건 $\sim q$ 를 만족하는 집합이 Q^c 이므로 'p 또 는 $\sim q$ '를 만족하는 집합은 $P \cup Q^c$ 이다.

- **3.** 전체집합 U의 두 부분집합 A, B에 대하여 $\{(A-B)\cup$ $(A \cap B)$ } $\cap B = A$ 가 성립할 때, 다음 중 항상 성립하는 것은? (단, $U \neq \phi$) [배점 4, 중중]
- $\bigcirc A B = U$
- 4 $A^c \subset B^c$
- \bigcirc $A^c \cup B = \phi$

해설

 $\{(A-B)\cup(A\cap B)\}\cap B=\{(A\cap B^c)\cup(A\cap B)\}\cap B$ $= \{A \cap (B^c \cup B)\} \cap B = (A \cap U) \cap B = A \cap B$

- $A \cap B = A \rightarrow A \subset B$
- $X A \subset B$ 일 때,
- $i) A \cup B = B$
- ii) $A \cap B = A$
- iii) $A B = A \cap B = \phi$
- iv) $A^c \cup B = U$
- v) $B^c \subset A^c$

- **4.** 두 집합 A, B에 대하여 $\{(A B) \cup (A \cap B)\} \cap B = A$ 가 성립할 때, 집합 A, B사이의 관계로 옳지 않은 것 은? [배점 4, 중중]
 - $\widehat{1}$ $A \cap B = A$
- \bigcirc $A \cup B = B$
- \bigcirc $A B = \emptyset$
- $A^c \subset B^c$
- \bigcirc $A \cap B^c = \emptyset$

해설

 $(A - B) \cup (A \cap B) = A$ $A \cap B = A : A \subset B$ $\Rightarrow A \cup B = B$ $\Rightarrow B^c \subset A^c$ $\Rightarrow A - B = A \cap B^c = \phi$

5. 두 명제 $p \to q$ 와 $r \to \sim q$ 가 모두 참일 때, 다음 명제 중 반드시 참인 것을 모두 고르면?

 $\bigcirc \sim g \rightarrow \sim p$

 $\bigcirc r \rightarrow \sim p$

 $\bigcirc r \rightarrow p$

[배점 4, 중중]

- (1)(n), (L)
- ② ①,
- 3 €, €

- ④ ⑦, ₪
- (5) (L), (E)

해설

 $p \to q$ 와 $r \to \sim q$ 가 참이면 그 대우인 $\sim q \to \sim p$, $q \to \sim r$ 이 참 $p \to q \to \sim r$ 이므로 $p \to \sim r$ 가 참이고 그 대우인 $r \to \sim p$ 가 참 **6.** 전체집합 U의 두 부분집합 A, B에 대하여 등식 $(A \cap B) \cup (A^c \cap B^c) = U$ 가 성립할 때, 다음 중 A, B사이의 관계를 가장 바르게 나타낸 것은? [배점 5, 중상]

 $\bigcirc A \cap B = B$

 \bigcirc $A - B = \emptyset$

- $\bigcirc A = B$
- \bigcirc $A \cap B = \emptyset$

해설

 $(A\cap B)\cup (A^c\cap B^c)=(A\cap B)\cup (A\cup B)^c=U$ 이므로 벤다이어그램을 그려보면 하얀 부분, 즉 $(A-B)\cup (B-A)=\varnothing \ \, 0\ \, \mbox{됨을 알 수 있다}.$

따라서 $A-B=\varnothing$ 이고 $B-A=\varnothing$ $(\because P\cup Q=\varnothing$ 이면 $P=\varnothing$ 이고 $Q=\varnothing)$

 $A\subset B,\ B\subset A\ (\because P-Q=arnothing)$ 면 $P\subset Q)$

 \therefore A = B (∵ $P \subset Q$, $Q \subset P$ 이면 P = Q)

7. 음이 아닌 정수 전체의 집합의 세 부분집합 A = {x|x = 10보다 작은 소수}, B = {x|x = (3ⁿ의 일의 자리수), n은 자연수}, C = {x|x = (7ⁿ - 4의 일의 자리수), n은 자연수}에 대하여, C - (A∩B) = {a, b}이다. 이 때 두 수 a, b의 차를 구하시오. [배점 5, 중상]

▶ 답:

정답: 4

해설

 $A = \{2, 3, 5, 7\}$

 3^n 에서 $n=1,\ 2,\ 3,\ \cdots$ 을 차례로 대입해 보면 $3,\ 9,\ 27,\ 81,\ 243,\cdots$ 이므로 일의 자리수는 $3,\ 9,\ 7,\ 1$ 이 반복된다. \therefore $B=\{1,3,7,9\}$ 7^n 에서 $n=1,\ 2,\ 3,\ \cdots$ 을 차례로 대입해 보면 $7,\ 49,\ 343,\ 2401,\ 16807,\ \cdots$ \therefore $C=\{3,5,7,9\}$ \therefore $C-(A\cap B)=\{5,\ 9\}$ 따라서, 두 수 $a,\ b$ 의 차는 4이다.

- 8. 다음은 a,b 가 실수일 때, 보기 중에서 서로 동치인 것끼리 짝지어 놓은 것이다. 옳지 않은 것은?
 - \bigcirc ab = 0
 - $a^2 + b^2 = 0$
 - $a^2 + b^2 > 0$

 - \bigcirc $a \neq 0$ 또는 $b \neq 0$
 - ⓒ ab = 0 이고 $b \neq 0$
 - ③ $a \neq 0$ 이고 $b \neq 0$

[배점 5, 중상]

- ① ①과 ①
- ② 🗅와 🖹
- ③ 🗇 과 🕗

- ④ 비와 ⑥
- ⑤⑤⑤②②②<

해설

 $ab \leftrightarrow a = 0$ 또는 b = 0 $a^2 + b^2 \leftrightarrow a = 0$ 이고 b = 0 $a^2 + b^2 > 0 \leftrightarrow a \neq 0$ 또는 $b \neq 0$ ab = 0 이고 $b \neq 0 \leftrightarrow a = 0$ 이고 $b \neq 0$

- 9. 자연수 n에 대하여 $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$ 로 정의된다. 예를 들어, 1! = 1, $2! = 2 \times 1$, $3! = 3 \times 2 \times 1 = 6$ 이다. 전체집합 $U = \{x | x$ 는 자연수\}에서 두 조건 p,q가 각각 p: 일의 자리가 0인수, q: 자리수가 네 자리 이상인 수 일 때, 조건 "p이고 $\sim q$ "를 만족하는 집합의 원소의 개수는? [배점 5, 중상]
 - ① 0개
- ② 1개
- ③2개

- ④ 3개
- ⑤ 4개

해설

"p이고 $\sim q$ " $\Rightarrow P \cap Q^c = P - Q$

- i) 일의 자리가 0인 수 중 네자리 미만인 수일의 자리가 0이기 위해서는 인수로 2, 5 를 가져야 한다.
- $5! = \underline{5} \times 4 \times 3 \times \underline{2} \times 1 = 120$
- ii) $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

10. 자연수를 원소로 갖는 집합 A가 다음 조건을 만족할 때, 집합 A의 개수는?

$$x \in A$$
 이면 $\frac{16}{x} \in A$

[배점 5, 상하]

- ① 4개
- ② 5개
- ③ 6개

- ④7개
- ⑤ 8개

해설

$$1 \in A$$
이면 $\frac{16}{1} = 16 \in A$,

$$2\in A$$
이면 $rac{16}{2}=8\in A,$

$$4 \in A$$
이면 $\frac{16}{4} = 4 \in A$

따라서 집합 A는

{4}, {1, 16}, {2, 8}, {1, 4, 16}, {2, 4, 8}, {1, 2, 8, 16}, {1, 2, 4, 8, 16}의 7개다.

- **11.** 자연수 n 에 대한 명제 p(n) 이 있다. p(n) , p(n+1) 중 어느 하나가 참이면 p(n+2) 가 참임을 알았다. 명제 p(n) 이 모든 자연수 n 에 대하여 참이기 위한 필요충 분조건은? [배점 5, 상하]
 - ① *p*(1) 이 참이다.
 - ② p(2) 가 참이다.
 - ③p(1) 과 p(2) 가 참이다.
 - ④ p(1) 과 p(3) 이 참이다.
 - ⑤ p(2) 와 p(3) 이 참이다.

해설

p(n) 또는 p(n+1) 이 참 $\Rightarrow p(n+2)$ 가 참

(i) p(1) 은 참, p(2) 는 거짓이라 하면,

p(1): 참 \Rightarrow p(3): 참

p(2) 또는 p(3) : 참 \Rightarrow p(4) : 참

이와 같이 계속하여 $n \neq 2$ 인 모든 자연수 n 에 대하여 p(n) 은 참이 된다.

(ii) p(1) 은 거짓, p(2) 는 참이라 하면,

p(1) 또는 p(2) : 참 $\Rightarrow p(3)$: 참

p(2) 또는 p(3) : 참 \Rightarrow p(4) : 참

이와 같이 계속하여 $n \neq 1$ 인 모든 자연수 n 에 대하여 p(n) 은 참이 된다.

(iii) p(1) , p(2) 가 모두 참이라 하면,

p(3), p(4), \cdots 도 계속 참이다.

따라서, (i), (ii), (iii) 에서 p(n) 이 모든 자연수 n 에 대 하여 참이 되려면 p(1), p(2) 모두 참이어야 한다.

12. x, y가 실수일 때, 다음 조건 중에서 조건 A가 조건 B이기 위한 필요충분조건인 것은? [배점 5, 상하]

① A: x+y>2 B: x>1이코 y>1

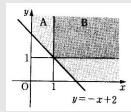
② $A: |x| + |y| = 0 B: \sqrt[3]{x} + \sqrt[3]{y} = 0$

③ A: x+y>0 이고 xy>0 B: x>0 이고 y>0

④ $A : xy > x + y > 4B : x > 2 \cap \mathbb{Z} y > 2$

⑤ A: x+y>2 B: x>2 또는 y>1

해설



- ① 그림에서 ${}^4 \stackrel{\sim}{\underset{}{\sim}}{}^B$ 이다. 즉, $B \subset A$ 이므로 A 는 B 이기 위한 필요조건
- ② $|x| + |y| = 0 \Leftrightarrow \sqrt{x^2} + \sqrt{y^2} = 0 \Leftrightarrow x = 0, \ y = 0, 3\sqrt{x} + \sqrt[3]{y} = 0$ 을 만족시키는 x, y는 $x = 0, \ y = 0$ 이외에도 $x = 8, \ y = -8, \cdots$ 등이 있다. x = 0 등 (충분조건)
- ③ $A \vdash x$ 축, y 축을 제외한 제1 사분면을 나타 내므로 B 와 동치이다.
- ④ $A \overset{\times}{\underset{\circ}{=}} B$ 이다.(필요조건) (반례) $x=4,\ y=\frac{3}{2}$ 이다. xy>x+y>4 이지만, $x>2,\ y<2$ 이다. ⑤ (충분조건) (반례) $x=3,\ y=-4$ 는B 를 만족

시키지만 A 를 만족시키지 않는다. $A \stackrel{\circ}{\leftarrow} B$

13. 다음 보기 중 두 조건 p, q에 대하여 p가 q이기 위한 필요충분조건인 것의 개수는?

 $\bigcirc p: xy+1 > x+y > 2 \ q: x > 1, \ y > 1$

① $p: x^2 > y^2 \ q: |x| > |y|$

 $\bigcirc p: |x| + |y| = 0 \ q: x^2 + y^2 = 0$

전체집합 U의 두 부분집합 A, B에 대하여

 $\textcircled{p}: (A \cup B) \cap (B - A)^C = A \cup B, q: B \subset A$

 $\bigcirc p: (A \cup B) - (A \cap B) = B, q: A - B = \phi$

[배점 5, 상하]

해설

⊙, ⓒ, ⓒ, ⊜, 憩이 필요충분조건이다.

① : $xy+1>x+y>2\Leftrightarrow (x-1)(y-1)>0\Leftrightarrow$ x>1,y>1 또는 x<1,y<1

그런데 x+y>2 이므로 x>1,y>1 ... $p\Rightarrow q$ 이고 역도 성립한다.

- **14.** 집합 X, Y 에 대하여 $X \triangle Y = (X Y) \cup (Y X)$ 라 하자. 집합 A, B, C가 $n(A \cup B \cup C) = 90, n(A \triangle B) = 40, n(B \triangle C) = 36, n(C \triangle A) = 58$ 일 때, $n(A \cap B \cap C)$ 를 구하면? [배점 $6, \$ 상중]
 - ① 15
- 2 17
- ③ 21

⑤ 25

해설

위의 벤 다이어그램에서 $n(A\triangle B)+n(B\triangle C)+n(C\triangle A)=2\times\{n(A\cup B\cup C)-n(A\cap B\cap C)\}$

- $\therefore 40 + 36 + 58 = 2 \times \{90 n(A \cap B \cap C)\}\$
- $\therefore n(A \cap B \cap C) = 23$

- **15.** 학생 수가 50 명인 학급에서 생일을 조사하였을 때, 다음 중 항상 옳은 것을 모두 고르면?
 - 5명 이상의 생일이 있는 달이 있다.
 - ◎ 모든 달에 생일이 있다.
 - © 8 명 이상의 생일이 있는 요일이 있다.
 - ② 생일이 같은 학생이 존재한다.

[배점 6, 상중]

① ①, ①

③ □, ⊜

④ ⊙, ⊙, ⊝ ⊙ ⊙, ⊝, ⊜

해설

- 50명의 생일이 12달에 가장 골고루 퍼져 있을 때, $50 = 12 \times 4 + 2$ 이므로 매달 4 명씩 생일이 있고 나머지 2명은 어느 달인가에 추가되어야 하므로, 5 명 이상의 생일이 있는 달이 반드시 존재한다.
- 50명 모두 특정한 달에는 생일이 있지 않을 수 도 있으므로 거짓이다.
- ◎ 의와 마찬가지로 생각해 보면, 50명의 생일이 일곱 요일에 가장 골고루 퍼져 있을 때는 50 = $7 \times 7 + 1$ 이므로 어느 요일인가에 8명의 생일이 있다. 따라서, 참이다.
- ② 어느 특정한 날에 생일이 같은 학생은 존재할 수도 있고 존재하지 않을 수도 있다.
- 그러므로 위의 ⊙, ⊙, ⊙, ② 중에서 항상 맞는 것 은 ③와 ⑤이다.