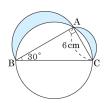

실력 확인 문제

 다음 그림은 ∠A = 90°인 직각삼각형 ABC에서 세변을 각각 한 변으로 하는 정사각형을 그린 것이다.
 △ABF와 넓이가 같지 않은 삼각형은 무엇인가?

[배점 2, 하하]


- ① △EBC
- \bigcirc \triangle BLF
- ③ △AFM

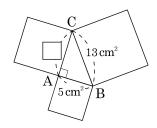
- ④ △EAB
- ⑤ △FMB

해설

- ① △EBC, SAS 합동
- ② △BLF, 밑변과 높이가 같은 삼각형
- ④ △EAB, △BLF와 넓이가 같다.
- ⑤ △FMB, 밑변과 높이가 같은 삼각형

2. 다음 그림은 ∠A = 90° 인 직각삼각형 ABC 의 세 변을 지름으로 하는 반원을 그린 것이다. 색칠한 부분의 넓이를 고르면?

[배점 2, 하중]

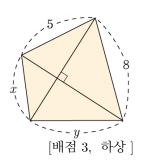

- ① $10\sqrt{3}$ cm²
- ② $12\sqrt{3}$ cm²
- $3 14\sqrt{3} \text{cm}^2$

- $4 16\sqrt{3} \text{cm}^2$
- $\boxed{3}$ $18\sqrt{3}$ cm²

해설

 \overline{AC} : \overline{AB} : $\overline{BC}=1$: $\sqrt{3}$: 2 이므로 $\overline{AB}=6\sqrt{3}(\mathrm{cm}), \ \overline{BC}=12(\mathrm{cm})$ (색칠한 부분의 넓이) = $(\triangle ABC$ 의 넓이) = $\frac{1}{2}$ × $6\sqrt{3}$ × $6=18\sqrt{3}(\mathrm{cm}^2)$

3. 다음 그림과 같이 △ABC가 직각삼각형일 때 ☐ 안에 알맞은 수는 ?

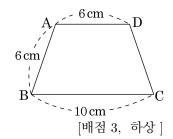

[배점 2, 하중]

- ① 11
- **2**12
- ③ 13
- 4 14
- **⑤** 15

해설

 $\sqrt{13^2 - 5^2} = \sqrt{144} = 12$

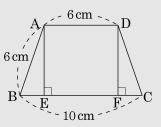
4. 다음 사각형의 두 대각선이 서로 직교할 때, $x^2 - y^2$ 의 값을 구하여라.


▶ 답:

➢ 정답: -39

해설

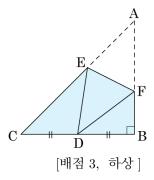
대각선이 직교하는 사각형에서 두 쌍의 대변의 제곱의 합이 서로 같으므로 $x^2+64=y^2+25$ 따라서 $x^2-y^2=-39$ 이다.


5. 다음과 같은 등변사다 리꼴 ABCD 의 넓이 는?

- ① $30\sqrt{2}\,\mathrm{cm}^2$
- ② $31\sqrt{2}\,\mathrm{cm}^2$
- $32\sqrt{2}\,{\rm cm}^2$
- $4.33\sqrt{2}\,\mathrm{cm}^2$
- $34\sqrt{2}\,\mathrm{cm}^2$

해설

점 A 와 점 D 에서 \overline{BC} 에 내 린 수선의 발을 6cc 각각 E, F 라 하 $\frac{1}{5}$ 자.

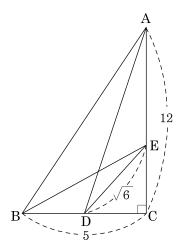

□ABCD 가 등변사

다리꼴이므로 $\triangle ABE \equiv \triangle DCF$ 이다. 따라서 $\overline{BE} = \overline{CF} = 2 (\, \mathrm{cm})$

 $\triangle ABE$ 에 피타고라스 정리를 적용하면 $\overline{AE}=\sqrt{36-4}=\sqrt{32}=4\sqrt{2} (\, {
m cm})$ 따라서 $\Box ABCD$ 의 넓이는 $\frac{1}{2} imes (10+6) imes 4\sqrt{2}=$

 $32\sqrt{2} (\text{ cm}^2)$

6. 다음 그림은 AB = BC
 인 직각이등변삼각형의
 종이를 EF를
 접는 선으로 하여 점 A 가
 BC 의 중점 D 에 겹치게
 접은 것이다. 다음 중
 틀린 것을 모두 고르면?



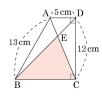
- ① $\angle AFE = \angle DFE$
- \bigcirc $\overline{AF} = \overline{FD}$
- $\overline{\text{3}}\overline{\text{BF}} = \overline{\text{DC}}$
- $\overline{AE} = \overline{ED}$
- \bigcirc \angle BFD = \angle DEC
- 6

해설

- ③ $\overline{BF} \neq \overline{DC} = \overline{DB}$ 이다.
- ⑤ ∠BFD ≠ ∠DEC 이다.

7. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AE}^2+\overline{DC}^2=21$ 일 때, $\overline{DE}^2+\overline{AC}^2$ 을 구하여라.

[배점 3, 하상]

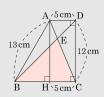


답:

▷ 정답: 21

해설

$$\overline{AE}^2 + \overline{DC}^2 = \overline{DE}^2 + \overline{AC}^2$$
 이므로 $\overline{DE}^2 + \overline{AC}^2$
= 21



[배점 3, 중하]

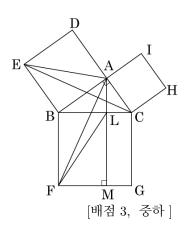
- 140cm^2
- \bigcirc 50cm²
- 360cm^2

- $4 70 \text{cm}^2$
- $5 80 \text{cm}^2$

해설

 $\overline{AH} = 12cm$

$$\overline{BH} = \sqrt{13^2 - 12^2} = 5 \text{(cm)}$$


△EBC ∽ △EDA(∵ AA닮음)

 $\overline{\mathrm{BE}}:\overline{\mathrm{DE}}=\overline{\mathrm{BC}}:\overline{\mathrm{AD}}=2:1$

(
$$\triangle$$
EBC의 넓이) = $\frac{2}{3} \times (\triangle$ DBC의 넓이) = $\frac{2}{3} \times$

$$\frac{1}{2} \times 10 \times 12 = 40 (\text{cm}^2)$$

9. 다음 그림은 ∠A 가 직각인 △ABC 의 각 변을 한 변으로 하 는 정사각형을 나타 낸 것이다. 다음 중 □ABED와 넓이가 같은 것을 고르면?

- ① △ABC
- ② □ACHI
- ③ □LMGC

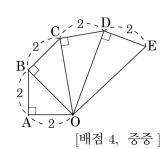
- (4) □BFML
- ⑤ △AEC

해설

 \triangle CBE = \triangle ABE (평행선을 이용한 삼각형의 넓

이)

 $\triangle CBE = \triangle ABF (SAS 합동)$


 $\triangle ABF = \triangle BFL$ (평행선을 이용한 삼각형의 넓

0])

에 의해서, $\triangle ABE = \triangle BFL$ 이다.

 $\therefore \Box ABED = \Box BFML$

10. 다름 그림에서 △ODE 의 넓이를 구하여라.

▶ 답:

▷ 정답: 4

해설

 $\overline{\mathrm{OD}} = \sqrt{2^2 + 2^2 + 2^2 + 2^2} = 4$ 이다. 따라서 $\triangle \mathrm{ODE}$ 의 넓이는 $\frac{1}{2} \times 2 \times 4 = 4$ 이다.