약점 보강 2

1. 자연수 n 에 대하여 n^2 을 오진법으로 나타내었을 때, 0,1,2,3,4 중 일의 자리의 숫자가 될 수 없는 것을 모두 구하여라. [배점 3, 하상]

▶ 답:

▶ 답:

▷ 정답: 2

➢ 정답: 3

해설

자연수 1 부터 제곱의 값을 써 보면, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, $196, 225, \cdots$

모든 제곱값의 일의 자리 수는 1,4,5,6,9,0 임을 알 수 있다.

따라서 일의 자리의 숫자가 될 수 없는 수는 2,3 이다.

2. 가로의 길이가 $6 \, \text{cm}$, 세로의 길이가 $8 \, \text{cm}$, 높이가 12 cm 인 직육면체 모양의 벽돌을 빈틈없이 쌓아서 가장 작은 정육면체 모양을 만들려고 한다. 이때. 정육면체의 한 모서리 길이는? [배점 2, 하하]

(1) 24 cm

 \bigcirc 32 cm

 $348 \,\mathrm{cm}$

④ 50 cm

⑤ 54 cm

정육면체의 한 변의 길이는 6, 8, 12 의 공배수 이어야 하고, 가장 작은 정육면체를 만들려면 한 변의 길이는 6, 8, 12 의 최소공배수이어야 한다. 따라서 정육면체의 한 모서리의 길이는 24 cm 이 다.

2) 6 8 12

2) 3 4 6

3) 3 2 3 **3.** 두 자연수 a, b 의 최소공배수가 46 일 때, 다음 중 a, b의 공배수인 것을 모두 골라라.

23, 46, 52, 60, 70, 92, 138, 184

[배점 2, 하중]

답:

답:

답:

답:

▷ 정답: 46

➢ 정답: 92

➢ 정답: 138

▷ 정답: 184

해설

최소공배수가 46 일 때, a,b 의 공배수는 46 의 배수이다.

따라서 46,92,138,184 이다.

- **4.** $11\underline{1}01_{(2)}$ 에서 밑줄 친 1 이 실제로 나타내는 값은? [배점 2, 하중]

 - ① 1 ② 2
- 4 6
- **(5)** 8

해설

 $11\underline{1}01_{(2)} = 1 \times 2^4 + 1 \times 2^3 + \underline{1} \times 2^2 + 1 \times 1$ 이므로 밑줄 친 1 이 실제로 나타내는 값은 4이다.

- **5.** 다음 중 10과 서로소인 것은? [배점 2, 하중]
 - \bigcirc 2
- ② 5
 - 3 10
- **4** 13
- (5) 20

해설

- ① 2 와 10 의 최대공약수는 2 이므로 서로소가 아니다.
- ② 5 와 10 의 최대공약수는 5 이므로 서로소가
- ③ 10 과 10 의 최대공약수는 10 이므로 서로소가 아니다.
- ④ 13 와 10 의 최대공약수는 1 이므로 서로소이다.
- ⑤ 20 과 10 의 최대공약수는 10 이므로 서로소가 아니다.

- **7.** 사탕 24개와 초콜릿 36개모두를 될 수 있는 대로 많은 학생에게 똑같이 나누어 주려고 한다. 이때, 몇 명에게 나누어 줄 수 있겠는가? [배점 3, 하상]
 - ① 12 명
- ② 10명
- ③ 8명
- ④ 6명 ⑤ 4명

해설

24 와 36 의 최대공약수는 12 이다

6. 다음 중 100 의 약수는? [배점 2, 하중]

- ① 30
- ② $5^2 \times 7^2$
- 3 80
- (4) $2^2 \times 5^2$
- \bigcirc 2³ \times 5 \times 7

100 을 소인수분해하면 $100 = 2^2 \times 5^2$ 이다. 이때 2^2 의 약수는 1, 2, 2^2 이고, 5^2 의 약수는 1, 5, 5^2 이다. 다음 표와 같이 2^2 의 약수와 5^2 의 약수를 각각 곱하면 100 의 약수는 1, 2, 4, 5, 10, 20, 25, 50, 100 이다.

×	1	2	2^2
1	1×1=1	$1 \times 2 = 2$	$1\times2^2=4$
5	5×1=5	5×2=10	$5 \times 2^2 = 20$
5 ²	$5^2 \times 1 = 25$	$5^2 \times 2 = 50$	$5^2 \times 2^2 = 100$

8. 다음 주어진 수 중에서 소인수가 다른 것은?

[배점 3, 하상]

- ① 144
- ② 216
- ③ 72

- 4 96

해설

- ① $2^4 \times 3^2$
- ② $2^3 \times 3^3$
- ③ $2^3 \times 3^2$
- $4 2^5 \times 3$
- (5) 2×7^2

9. $2^5 \times 3^2 \times 5^2$, 108 의 최대공약수는?

[배점 3, 하상]

- ① $2 \times 3 \times 5$ ② $2^2 \times 3^2 \times 5$
- $3 2^2 \times 3 \times 5^2$
- $(4) 2^3 \times 3^2$
- (5) $2^2 \times 3^2$

해설

공통인 소인수를 모두 곱하는데 지수가 같으면 그 대로, 다르면 작은 쪽을 택하여 곱한다.

∴ 2⁵ × 3² × 5², 108 = 2² × 3³ 의 최대공약수: $2^{2} \times 3^{2}$

10. 두 자연수의 최대공약수가 13, 최소공배수가 40 일 때, 두 수의 곱을 구하여라. [배점 3, 하상]

▶ 답:

➢ 정답: 520

두 수 A, B 의 최대공약수를 G, 최소공배수를 L이라 하면 $A \times B = L \times G$ 이므로

 $A \times B = 13 \times 40$ 이다.

 $A \times B = 520$

- 11. 다음에 주어진 이진법의 수 중 십진법의 수로 나타내었을 때, 3 의 배수인 것은? [배점 3, 하상]
 - ① $10111_{(2)}$ ② $1101_{(2)}$
- $(3)1001_{(2)}$

- $4 1011_{(2)}$
- ⑤ 10011₍₂₎

- ① $10111_{(2)} = 1 \times 2^4 + 1 \times 2^2 + 1 \times 2 + 1 \times 1 = 23$
- ② $1101_{(2)} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 1 = 13$
- $31001_{(2)} = 1 \times 2^3 + 1 \times 1 = 9$
- $\textcircled{4} 1011_{(2)} = 1 \times 2^3 + 1 \times 2 + 1 \times 1 = 11$
- \bigcirc 10011₍₂₎ = 1 × 2⁴ + 1 × 2 + 1 × 1 = 19
- ∴ 3의 배수인 것은 ③ 1001₍₂₎

12. 122 를 나누면 4 가 부족하고 186 을 나누면 3 이 부족한 수 중에서 가장 작은 수를 구하면? [배점 4, 중중]

- ① 3 ② 4
- ④ 9
- ⑤ 63

126 = 2 × 3² × 7, 189 = 3³ × 7 이므로 최대공약수는 $3^2 \times 7 = 63$,

63 의 약수 중 나머지 4 보다 큰 수는 7, 9, 21, 63 따라서 가장 작은 수는 7이다.