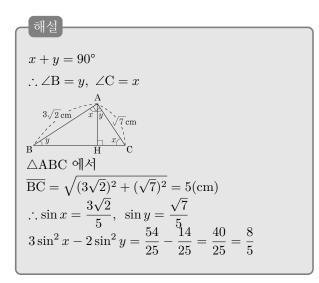
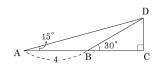

# 단원 형성 평가

1. 다음 그림과 같이  $\angle A = 90^{\circ}$  인 직각삼각형의 점 A 에서 빗변에 내린 수선의 발을 H 라 하고,


 $\overline{AB} = 3\sqrt{2}cm$ ,  $\overline{AC} = \sqrt{7}cm$ ,

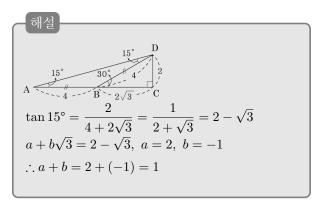
 $\angle BAH = x$ ,  $\angle CAH = y$  일 때,  $3\sin^2 x - 2\sin^2 y$  의 값을 구하여라.



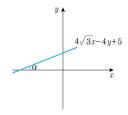

[배점 3, 중하]

ightharpoonup 정답:  $\frac{8}{5}$ 




**2.** 다음 그림에서  $\tan 15^\circ$  의 값이  $a+b\sqrt{3}$  일 때, a+b 의 값을 구하여라.




[배점 3, 중하]

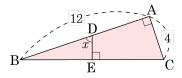
▶ 답:

▷ 정답: 1



**3.** 다음과 같은 직선  $4\sqrt{3}x - 4y + 5 = 0$  과 x 축의 양의 방향과 이루는 각의 크기를  $\alpha$  라 할 때,  $\tan \alpha$  의 값을 구하여라.




[배점 3, 중하]

▶ 답:

ightharpoons 정답:  $\sqrt{3}$ 

해설

 $4\sqrt{3}x - 4y + 5 = 0$ ,  $y = \sqrt{3}x + \frac{5}{4}$  에서  $\tan \alpha$  는 직선의 기울기를 뜻한다. 따라서  $\tan \alpha = \sqrt{3}$  이다. **4.** 다음 그림과 같은  $\triangle$ ABC 에서  $\sin x \times \cos x \times \tan x$ 의 값을 구하여라.



[배점 3, 중하]

답:

ightharpoonup 정답:  $\frac{9}{10}$ 

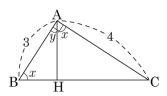
△DBE ∽ △CBA (AA 닮음)

$$\therefore \angle \mathbf{C} = x$$

$$\overline{BC} = \sqrt{12^2 + 4^2} = \sqrt{160} = 4\sqrt{10}$$

$$\sin x = \frac{\overline{AB}}{\overline{BC}} = \frac{12}{4\sqrt{10}} = \frac{3}{\sqrt{10}}$$

$$\sin x = \frac{\overline{AB}}{\overline{BC}} = \frac{12}{4\sqrt{10}} = \frac{3}{\sqrt{10}}$$


$$\cos x = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{4\sqrt{10}} = \frac{1}{\sqrt{10}}$$

$$\tan x = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{4} = 3$$

$$\tan x = \frac{\overline{AB}}{\overline{AC}} = \frac{12}{4} = 3$$

$$\therefore \sin x \times \cos x \times \tan x = \frac{9}{10}$$

5. 다음 보기 중  $\tan x$ 와 같은 값을 갖는 것을 보 기에서 모두 골라라.



 $\overline{\mathrm{CH}}$  $\overline{\mathrm{AH}}$ Ū  $\frac{\overline{\overline{AH}}}{\overline{AH}}$  $\overline{\mathrm{BH}}$  $\overline{\mathrm{AH}}$  $\overline{\overline{\mathrm{BC}}}$ 

[배점 3, 중하]

답:

답:

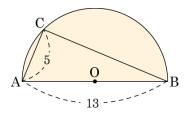
답:

▷ 정답: ⑤

▷ 정답: 心

▷ 정답: □

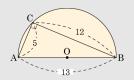
x+y=90°이므로  $\angle x+\angle C=90$ °가 되고, 따라


서  $\angle C = y$ 

△BCA ∽ △BAH ∽ △ACH 이므로

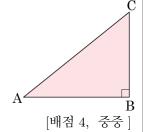
$$\operatorname{an} x = \frac{\overline{\operatorname{AC}}}{\overline{\operatorname{AB}}} = \frac{4}{3} = \frac{\overline{\operatorname{CH}}}{\overline{\operatorname{AH}}} = \frac{\overline{\operatorname{AH}}}{\overline{\operatorname{BH}}}$$

 $\tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{4}{3} = \frac{\overline{CH}}{\overline{AH}} = \frac{\overline{AH}}{\overline{BH}}$ 따라서  $\tan x$ 와 같은 것은  $\frac{4}{3}$ ,  $\frac{\overline{CH}}{\overline{AH}}$ ,  $\frac{\overline{AH}}{\overline{BH}}$ 이다.


6. 다음 그림과 같이  $\overline{AB}$  가 지름인 반원 O 에서  $\sin A$ 의 값을 구하면?



[배점 4, 중중]

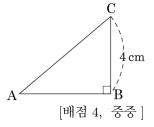

 $3 \frac{5}{13}$ 

해설



지름에 대한 원주각은  $90^{\circ}$  이므로  $\angle ACB = 90^{\circ}$  $\overline{BC} = \sqrt{13^2 - 5^2} = 12$  이다. 따라서  $\sin A = \frac{12}{13}$  이다.

**7.** 다음 그림과 같은 △ABC 에 서  $\angle B = 90^{\circ}, \overline{AB} : \overline{AC} =$ 4:5일 때,  $\sin A \times \cos A \times$ tan A 의 값을 구하면?

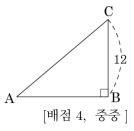



- ①  $\frac{5}{2}$  ②  $\frac{12}{5}$  ③  $\frac{12}{25}$  ④  $\frac{9}{25}$

 $\overline{AB} : \overline{AC} = 4 : 5$  이므로  $\overline{AB} = 4a, \ \overline{AC} = 5a$  $(a > 0 \ 0 \ \text{상수})$ 라 하면 피타고라스의 정리에 의 하여  $\overline{BC} = \sqrt{(5a)^2 - (4a)^2} = 3a$  이다.  $\sin A = \frac{3a}{5a} = \frac{3}{5}, \cos A = \frac{4a}{5a} = \frac{4}{5}, \tan A = \frac{3a}{5a}$ 

 $\therefore \sin A \times \cos A \times \tan A = \frac{3}{5} \times \frac{4}{5} \times \frac{3}{4} = \frac{9}{25}$ 

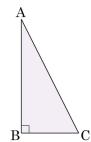
8. 다음 그림과 같은 직각삼 각형 ABC 에서  $\sin A =$  $\frac{2}{3}$ 이고,  $\overline{BC}$  가  $4\mathrm{cm}$  일 때,  $\overline{AB}$  의 길이는?




- $3 2\sqrt{7} \,\mathrm{cm}$

- ④ 3 cm
- $\Im 4\sqrt{3} \,\mathrm{cm}$

 $\sin A = \frac{\overline{\overline{BC}}}{\overline{\overline{AC}}} = \frac{2}{3}$  이므로  $4 = \overline{\overline{AC}} imes \frac{2}{3}$  이다. 따라서 피타고라스 정리에 의해  $\overline{\mathrm{AB}}$  $\sqrt{6^2 - 4^2} = \sqrt{20} = 2\sqrt{5}$  cm 이다.

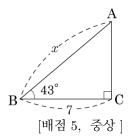

9. 다음 그림과 같은 직각삼각 형 ABC 에서  $\sin A = \frac{4}{5}$  이 고, BC 가 12cm 일 때, AC-<del>AB</del> 의 값은?



- ① 2
- 2 4
- **3** 6
- 4 8

 $\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{4}{5}$  이므로  $\overline{AC} \times \sin A = \overline{BC}$  이다.  $\Rightarrow \overline{\rm AC} \times \frac{4}{5} = 12$  ,  $\overline{\rm AC} = 15$ 피타고라스 정리에 의해  $\overline{AB}=\sqrt{15^2-12^2}=9$ 이다. 따라서  $\overline{AC} - \overline{AB} = 15 - 9 = 6$  이다.

**10.** 다음 그림과 같은 직각삼각형 ABC 에서  $\overline{AB}$ :  $\overline{BC} = 2:1$  일 때,  $\sin A \times$ cos C 의 값은? [배점 4, 중중]

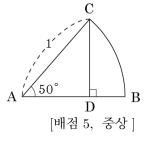



① 
$$\frac{1}{\sqrt{5}}$$
 ②  $\frac{2}{\sqrt{5}}$  ③  $\frac{1}{5}$ 

$$3\frac{1}{5}$$

 $\overline{\mathrm{AB}}=2, \ \overline{\mathrm{BC}}=1$  이라 하면  $\overline{\mathrm{AC}}=\sqrt{5}$  이다. 따라서  $\sin A \times \cos C = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{5}$  이다.

11. 다음 그림과 같은 직각삼각형 ABC 에서  $\overline{AB}$  를 x 라 할 때, x 값으로 옳은 것을 모두 고르 면?(정답 2개)






- $\Im 7 \sin 43^{\circ}$

$$\cos B = \cos 43^\circ = \frac{7}{x}$$
  
따라서  $x = \frac{7}{\cos 43^\circ}$  이다.  
 $\angle A = 90^\circ - 43^\circ = 47^\circ$  이므로  
 $\sin A = \sin 47^\circ = \frac{7}{x}$   
따라서  $x = \frac{7}{\sin 47^\circ}$  이다.

**12.** 다음 그림과 같이 반지름 의 길이가 1 인 부채꼴에 서  $\overline{\mathrm{CD}} \perp \overline{\mathrm{AB}}$  일 때,  $\overline{\mathrm{DB}}$  의 길이를 옳게 나타낸 것은?



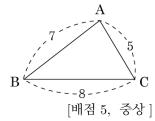
① cos 50°



- $3 1 \tan 50^{\circ}$
- $4 \tan 50^{\circ}$
- $(5) \sin 50^{\circ} + \cos 50^{\circ}$

## 해설

 $\overline{\mathrm{DB}} = \overline{\mathrm{AB}} - \overline{\mathrm{AD}} = 1 - \cos 50^{\circ}$ 

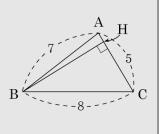

- **13.** sin A : cos A = 4 : 5 일 때 tan A 의 값은? [배점 5, 중상]
  - ① 0

- $4 \frac{\sqrt{3}}{2}$

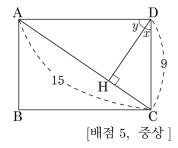
 $\sin A : \cos A = 4 : 5$  이므로  $5 \sin A = 4 \cos A$ 

양변을  $5\cos A$  로 나누면  $\frac{\sin A}{\cos A} = \frac{4}{5}$  이다. 따라서  $\tan A = \frac{4}{5}$  이다.

14. 다음 삼각형을 보고,  $\dfrac{\sin C}{\sin A}$  의 값을 구하여라.




답:


 $\triangleright$  정답:  $\frac{7}{8}$ 

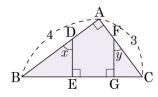


점 B 에서 AC 에 내린 수선의 발을 H 라 하면  $\sin A = \frac{\overline{BH}}{7}, \sin C =$  $\overline{\mathrm{BH}}$ 



15. 다음 그림과 같은 직사 각형 ABCD에서  $\cos x$ 의 값을 구하여라.




답:

 $\triangleright$  정답:  $\cos x = \frac{4}{5}$ 

x+y=90°,  $\angle \mathrm{DAC}+y=90$ °이므로  $\angle \mathrm{DAC}=x$ 이다.

이 때, 
$$\overline{AD} = \sqrt{15^2 - 9^2} = 12$$
이므로 
$$\cos x = \frac{\overline{AD}}{\overline{AC}} = \frac{12}{15} = \frac{4}{5}$$
이다.

**16.** 다음 그림과 같은 직각삼각형 ABC 에서  $\overline{DE} \perp \overline{BC}$ ,  $\overline{FG}\perp \overline{BC}$  일 때,  $\sin x - \cos y$  의 값은?



[배점 5, 중상]

① -1 ② 3

30

④ 2

 $\bigcirc$  -2

 $\overline{BC} = \sqrt{4^2 + 3^2} = 5$ 

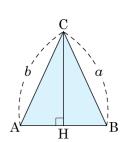
△ABC와 △EBD에서

∠B는 공통, ∠BAC = ∠BED = 90°이므로

 $\triangle$ ABC  $\bigcirc$   $\triangle$ EBD(AA 닮음)

따라서  $\angle x = \angle C$ 이므로  $\sin x = \sin C = \frac{4}{5}$ 

△ABC와 △GFC에서 ∠C는 공통,


 $\angle BAC = \angle FGC = 90$  °이므로

 $\triangle ABC \hookrightarrow \triangle GFC(AA 닮음)$ 

따라서  $\angle y = \angle B$  이므로  $\cos y = \cos B = \frac{4}{5}$  이다.

 $\therefore \sin x - \cos y = \frac{4}{5} - \frac{4}{5} = 0$ 

**17.** 다음 그림의 △ABC 에서  $\overline{AC} = b$ ,  $\overline{BC} = a$ ,  $\overline{CH} \perp \overline{AB}$ [배점 5, 중상]



①  $a^2b^2$  ② a+b

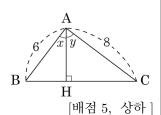
 $\bigcirc ab$ 

$$\sin \mathbf{A} = \frac{\overline{\mathbf{CH}}}{b}, \quad \sin \mathbf{B} = \frac{\overline{\mathbf{CH}}}{a}$$
  
따라서  $\frac{\sin A}{\sin B} = \frac{a}{b}$  이다.

**18.** 정사면체 O – ABC 에서 모서리 AB 의 중점을 M ,  $\angle OMC = \alpha$  라 할 때,  $\cos \alpha$  의 값을 구하여라.

[배점 5, 상하]

답:


 $\triangleright$  정답:  $\frac{1}{2}$ 

정사면체의 한 모서리의 길이를 x 라 하면  $\overline{\mathrm{OM}}$  =  $\frac{\sqrt{3}}{2}x$ 또 꼭짓점 O 에서 밑면에 내린 수선의 발을 H 라

하면 H 는 밑면의 무게중심이므로 
$$\overline{\text{MH}} = \frac{1}{3} \times \frac{\sqrt{3}}{2} x = \frac{\sqrt{3}}{6} x$$

따라서 
$$\cos \alpha = \frac{\frac{\sqrt{3}}{6}x}{\frac{\sqrt{3}}{2}x} = \frac{1}{3}$$
 이다.

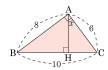
**19.** 다음 그림에서  $\overline{AH} \perp \overline{BC}$ , ∠BAC = 90° 일 때,  $\cos x + \sin y$  의 값을 구 하여라.



답:

 $\triangleright$  정답:  $\frac{8}{5}$ 

$$\overline{BC} = \sqrt{6^2 + 8^2} = 10$$

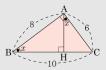

$$\angle \mathsf{ABH} = y \ , \angle \mathsf{ACH} = x$$

△ABC 에서

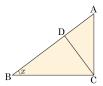
$$\cos x = \frac{\overline{\overline{AC}}}{\overline{BC}} = \frac{8}{10} = \frac{4}{5}, \sin y = \frac{\overline{AC}}{\overline{BC}} = \frac{4}{5}$$

$$\therefore \cos x + \sin y = \frac{8}{5}$$

**20.** 다음 그림의  $\triangle$ ABC 에서  $\angle$ BAC = 90°,  $\overline{AH}\bot\overline{BC}$ 이고  $\angle HAC = x$  라 할 때,  $\tan x$  의 값은?



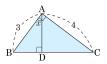

[배점 5, 상하]




 $\triangle$ AHC  $\hookrightarrow$   $\triangle$ BAC (AA 닮음),  $\angle x = \angle$ ABC

$$\therefore \tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{6}{8} = \frac{3}{4}$$

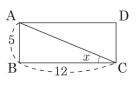



**21.** 다음 그림에서  $\angle C = 90^{\circ}$ ,  $\overline{AB} \perp \overline{CD}$  이고  $\angle B = x$  일 때, 다음 중 옳지 않은 것은?



[배점 5, 상하]

- ①  $\sin x = \frac{\overline{AC}}{\overline{AB}}$ ③  $\tan x = \frac{\overline{CD}}{\overline{AD}}$


**22.** 다음 그림과 같은 직각삼각형 ABC 에서  $\overline{AD} \perp \overline{BC}$ ,  $\overline{AB} = 3$ cm ,  $\overline{AC} = 4$ cm 일 때,  $\sin x$  의 값은?



[배점 5, 상하]

- ①  $\frac{3}{2}$  ②  $\frac{1}{3}$  ③  $\frac{5}{3}$  ④  $\frac{3}{5}$  ⑤  $\frac{1}{2}$
- $\angle x = \angle C$ ,  $\overline{BC} = 5$  이므로  $\sin x = \frac{3}{5}$  이다.

23. 다음 그림과 같은 직사각형 ABCD 에서  $\angle$ ACB = x라 할 때,  $\sin x + \cos x$ 의 값을 구하여라.



[배점 6, 상중]

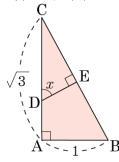

ightharpoonup 정답:  $\frac{17}{13}$ 

$$\overline{AC} = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$$
  
 $\therefore \sin x + \cos x = \frac{5}{13} + \frac{12}{13} = \frac{17}{13}$ 

**24.**  $\tan A = 4$  일 때,  $\sin^2 A - \cos^2 A$  의 값을 구하여라. (단, 0° < A < 90°) [배점 6, 상중]

### ▶ 답:

## ightharpoonup 정답: $\frac{15}{17}$




$$\sin^2 A - \cos^2 A$$

$$= \left(\frac{4}{\sqrt{17}}\right)^2 - \left(\frac{1}{\sqrt{17}}\right)^2$$

$$= \frac{16}{17} - \frac{1}{17} = \frac{15}{17}$$

**25.** 다음 그림에서  $\sin x$  의 값은? C

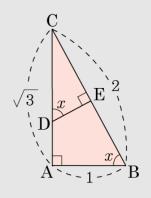


[배점 6, 상중]

- ①  $\sqrt{2}$

- ④  $\sqrt{3}$

 $\triangle$ CDE  $\hookrightarrow$   $\triangle$ CBA(AA 닮음) 이므로  $\angle x = \angle$ B ,


$$\sin x = \sin \mathbf{E}$$

$$\overline{BC} = \sqrt{(\sqrt{3})^2 + 1^2} = 2$$

$$\sin x = \sin B$$

$$\overline{BC} = \sqrt{(\sqrt{3})^2 + 1^2} = 2$$

$$\therefore \sin x = \frac{\overline{AC}}{\overline{BC}} = \frac{\sqrt{3}}{2}$$

