실력 확인 문제

- 1. $2 \le \sqrt{2x} < 4$ 을 만족하는 자연수 x 의 개수는? [배점 2, 하하]
 - ① 3개
- ② 4 개
- ③ 5개

- ④6 개
- ⑤ 7 개

해설

 $2 \le \sqrt{2x} < 4 는 4 \le 2x < 16$ 이다. 따라서 $2 \le x < 8$ 이므로 자연수 x 는 2, 3, 4, 5, 6, 7로 6개이다.

- 2. 다음 중 두 실수의 대소 관계가 옳지 않은 것은?
 - $\bigcirc \sqrt{21} + 3 < \sqrt{19} 4$
 - $\bigcirc \sqrt{19} \sqrt{5} > \sqrt{15} \sqrt{7}$
 - \bigcirc $\sqrt{15} + 3 > \sqrt{15} + 2$

[배점 2, 하하]

- 2 0
- 3 (T),(L)

- (4) (L),(E)
- ⑤ ⑦,∁,∁

해설

- $\therefore \sqrt{21} + 3 > \sqrt{19} 4$
- $\bigcirc (\sqrt{19} \sqrt{5}) (\sqrt{15} \sqrt{7}) = (\sqrt{19} \sqrt{15}) +$

 $(\sqrt{7} - \sqrt{5}) > 0 : \sqrt{19} - \sqrt{5} > \sqrt{15} - \sqrt{7}$

 \bigcirc $(\sqrt{15}+3)-(\sqrt{15}+2)=3-2>0$

3. 다음 중 대소비교가 옳은 것을 모두 고르면?

$$\bigcirc 4 - \sqrt{5} > 3 - \sqrt{6}$$

$$\bigcirc \sqrt{5} - \sqrt{2} < \sqrt{5} - 1$$

[배점 2, 하하]

- ① ①
- 2 7,0
- ③ ₺,₺

- 4 つ,⊜
- \bigcirc 0,0,0

해설

$$\therefore \sqrt{5} - \sqrt{2} < \sqrt{5})$$

①
$$4 - \sqrt{5} - (3 - \sqrt{6}) = 1 - \sqrt{5} + \sqrt{6} = \sqrt{6} - \sqrt{5} + 1 > 0$$

$$\therefore 4 - \sqrt{5} > 3 - \sqrt{6}$$

$$\bigcirc$$
 $\sqrt{5} - \sqrt{2} - (\sqrt{5} - 1) = -\sqrt{2} + 1 < 0$

$$1.5 \sqrt{5} - \sqrt{2} < \sqrt{5} - 1$$

4. 다음 중 가장 큰 값은?

[배점 2, 하하]

- (1) $\sqrt{4^2} \sqrt{2^2}$
- ② $\sqrt{3^2} + \sqrt{2^2}$
- $\sqrt{(-5)^2} \sqrt{(-2)^2}$
- $4 \sqrt{3^2} \sqrt{(-2)^2}$
- $\sqrt{25} + (-\sqrt{2})^2$

 - ① $\sqrt{4^2} \sqrt{2^2} = 4 2 = 2$
 - $2\sqrt{3^2} + \sqrt{2^2} = 3 + 2 = 5$
 - $\sqrt[3]{\sqrt{(-5)^2}} \sqrt{(-2)^2} = 5 2 = 3$
 - $4\sqrt{3^2} \sqrt{(-2)^2} = 3 2 = 1$
 - (5) $\sqrt{25} + (-\sqrt{2})^2 = 5 + 2 = 7$
 - 이므로 $\sqrt{25} + (-\sqrt{2})^2$ 가 가장 크다.
- 5. $\sqrt{40-x}$ 의 값이 자연수가 되도록 하는 가장 작은 자 연수 x는? [배점 2, 하하]
 - ① 1
- ②4 ③ 7 ④ 10 ⑤ 15

 $\sqrt{36}$ 이므로 x=4이다.

- **6.** 다음 부등식을 만족하는 자연수 x 의 개수를 구하여라. $\sqrt{2} < x < \sqrt{17}$ [배점 2, 하중]
 - 답:

▷ 정답: 3개

제곱하면 $2 < x^2 < 17$ 이므로 성립하는 자연수 x는 2,3,4 이다. 따라서 3개이다.

- 7. 다음 중 두 실수의 대소 관계가 옳지 않은 것은? [배점 2, 하중]
 - ① $\sqrt{5} 1 > 1$
 - ② $5 \sqrt{5} > 5 \sqrt{6}$
 - $3\sqrt{2}-1<\sqrt{3}-1$
 - $4) \sqrt{18} + 2 > \sqrt{15} + 2$
 - $\bigcirc -\sqrt{6} > -\sqrt{5}$

 $(5) -\sqrt{6} - (-\sqrt{5}) = -\sqrt{6} + \sqrt{5} < 0$ $\therefore -\sqrt{6} < -\sqrt{5}$

- 8. 다음 중 계산 한 값이 옳은 것은? [배점 2, 하중]
 - ① $\sqrt{3^2} \sqrt{(-5)^2} + \sqrt{2^2} = 10$
 - ② $\sqrt{(-2)^2} (-\sqrt{3})^2 \sqrt{5^2} = 0$

 - $4 \sqrt{2^2} \times \sqrt{(\frac{1}{2})^2 + \sqrt{(-\frac{1}{2})^2}} = 0$
 - - 해설
 - ① $\sqrt{3^2} \sqrt{(-5)^2} + \sqrt{2^2} = 3 5 + 2 = 0$
 - ② $\sqrt{(-2)^2} (-\sqrt{3})^2 \sqrt{5^2} = 2 3 5 = -6$

 - $(4) \sqrt{2^2} \times \sqrt{(\frac{1}{2})^2} + \sqrt{(-\frac{1}{2})^2} = 2 \times \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$
 - $\sqrt{3^2} + \sqrt{4^2} \sqrt{(-5)^2} = 3 + 4 5 = 2$
- 9. 다음 중 제곱근을 구할 수 있는 수를 모두 고르면? [배점 2, 하중]
- 3 -25
- $(4) -9 \qquad (5) -4$

 $(7의 제곱근) = \pm \sqrt{7}, (3의 제곱근) = \pm \sqrt{3}$ 제곱해서 음수가 되는 수는 없으므로 음수의 제곱 근은 없다.

10. 다음 중 가장 큰 수는?

[배점 2, 하중]

- ① $\sqrt{(-7)^2}$ ② $-(-\sqrt{3})^2$ ③ $\sqrt{20}$

- 4) 6
- ⑤ $\sqrt{45}$

- ① $7 = \sqrt{49}$
- $^{\circ}$ $^{\circ}$ $^{\circ}$
- $3\sqrt{20}$
- $46 = \sqrt{36}$
- $(5)\sqrt{45}$
- $\mathbf{11.}\ \sqrt{10+x}$ 의 값이 가장 작은 자연수가 되도록 하는 자 연수 x 의 값은? [배점 3, 하상]

 - ① 2 ② 4 ③ 6 ④ 8

해설

$$\sqrt{10+x} = 4$$

 $\therefore x = 6$

12. 다음 중 수직선 위에서 $-\sqrt{10}$ 과 3 사이에 있는 수에 대한 설명으로 옳지 않은 것을 모두 고르면?

[배점 3, 하상]

- ① 무리수는 무수히 많다.
- ②범위 안의 모든 수를 $\frac{n}{m}$ 으로 나타낼 수 있다.
- ③ 정수는 6 개가 있다.
- ④ 자연수는 3 개가 있다.
- ⑤ 실수는 무수히 많다.

 $3 < \sqrt{10} < 4$ 에서 $-4 < -\sqrt{10} < -3$ 이므로 범위는 $-3. \times \times \times \sim 3$

- ② 범위 안의 모든 수를 $\frac{n}{}$ 으로 나타낼 수 있다. \rightarrow 실수 중 유리수만이 $\frac{m}{m}$ 으로 나타낼 수 있다. ④ 자연수는 3 개가 있다. \rightarrow 1, 2 . 두 개 있다.
- **13.** 1 < x < 3 일 때, $\sqrt{(x-3)^2} + \sqrt{(x+1)^2}$ 을 간단히 하여라. [배점 3, 하상]

▶ 답:

➢ 정답 : 4

$$\sqrt{(x-3)^2} + \sqrt{(x+1)^2}$$

= -(x-3) + x + 1 = 4

14. a > 0 일 때, 다음 계산에서 옳지 않은 것을 모두 고르 면? (정답 2개) [배점 3, 하상]

①
$$\sqrt{64a^2} - \sqrt{a^2} = 7a$$

$$\bigcirc -\sqrt{9a^2} - \sqrt{(-3a)^2} = -12a$$

$$\sqrt[3]{\sqrt{(7a)^2}} + \sqrt{(-7a)^2} = 14a$$

$$(4)(-\sqrt{3a})^2 + (-\sqrt{4a^2}) = 8a$$

$$(-\sqrt{3a})^2 + (-\sqrt{(2a)^2}) = a$$

$$2 - \sqrt{9a^2} - \sqrt{(-3a)^2} = -3a - 3a = -6a$$

$$(-\sqrt{3a})^2 + (-\sqrt{4a^2}) = 3a + (-2a) = a$$

15. 세 $+ 1 + \sqrt{2}$, $\sqrt{5} + \sqrt{2}$, $\sqrt{2} + \sqrt{3}$ 를 작은 순서대로 바르게 나타낸 것은? [배점 3, 하상]

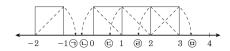
①
$$\sqrt{2} + \sqrt{3} < 1 + \sqrt{2} < \sqrt{5} + \sqrt{2}$$

②
$$\sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2} < 1 + \sqrt{2}$$

$$3 1 + \sqrt{2} < \sqrt{5} + \sqrt{2} < \sqrt{2} + \sqrt{3}$$

$$\boxed{4} 1 + \sqrt{2} < \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$$

⑤
$$\sqrt{5} + \sqrt{2} < \sqrt{2} + \sqrt{3} < 1 + \sqrt{2}$$


$$1 + \sqrt{2} - (\sqrt{2} + \sqrt{3}) = 1 - \sqrt{3} < 0 : 1 + \sqrt{2} < \sqrt{2} + \sqrt{3}$$

$$\sqrt{2} + \sqrt{3} - (\sqrt{5} + \sqrt{2}) = \sqrt{3} - \sqrt{5} < 0$$

 $\therefore \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$

따라서
$$1 + \sqrt{2} < \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$$
 이다.

16. 다음 수직선 위의 점 \bigcirc ~ \bigcirc 중에서 $2-\sqrt{2}$ 에 대응 하는 점은?

(단, 수직선 위의 각 사각형은 한 변의 길이가 1 인 정

[배점 3, 하상]

해설

대각선의 길이가 $\sqrt{2}$ 이므로 2 에서 대각선의 길 이만큼 왼쪽으로 간 지점이 $2-\sqrt{2}$ 이다.

 $17. (0.1)^2$ 의 음의 제곱근을 A, 25 의 제곱근의 개수를 B라고 할 때, 10A + B 값을 구하여라.

[배점 3, 하상]

▶ 답:

▷ 정답: 1

 $(0.1)^2 = 0.01$ 이고

 $(0.1)^2$ 의 음의 제곱근= -0.1 이다.

A = -0.1

25 는 양수이므로

25의 제곱근= ±5 이고,

개수는 2 개다.

B=2

 $\Rightarrow 10A + B = 10 \times (-0.1) + 2 = -1 + 2 = 1$

18. 0 < x 일 때, $\sqrt{x^2} + \sqrt{(x+3)^2}$ 를 간단히 하면? [배점 3, 중하]

① 3

② x+3

③ x-3

 \bigcirc 2x

 $\bigcirc 2x + 3$

$$\sqrt{x^2} + \sqrt{(x+3)^2}$$

$$= x + (x+3)$$

$$= 2x + 3$$

19. 다음 중 부등호가 다른 하나는? [배점 3, 중하]

① $6\sqrt{3}$ ② $2+\sqrt{3}$ ② $2+\sqrt{3}$ ③ $\sqrt{5}+1$

 $3\sqrt{2}-1$ $1-\sqrt{2}$ $4\sqrt{5}-2$ 0

 $\bigcirc -4 \boxed{ } -\sqrt{16}$

(1), (2), (3), (4): >

(5) :=

20. 다음 세 수 a, b, c 의 대소 비교를 하여라.

$$a = 2\sqrt{3} - 1$$
, $b = 3\sqrt{2} - 1$, $c = 9 - 3\sqrt{3}$

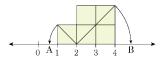
[배점 3, 중하]

답:

▷ 정답: a < b < c</p>

$$a = 2\sqrt{3} - 1 = \sqrt{12} - 1$$

$$b = 3\sqrt{2} - 1 = \sqrt{18} - 1$$


$$c = 9 - 3\sqrt{3} = 9 - \sqrt{27}$$

$$c - b = 9 - 3\sqrt{3} - 3\sqrt{2} + 1$$

$$= 10 - 3(\sqrt{3} + \sqrt{2}) > 0 \qquad \therefore c > b$$

$$\therefore c > b > a$$

21. 아래 수직선 위의 두 점 A, B 에 대응하는 수를 각각 A, B 라고 할 때 선분 AB 의 길이를 구하 여라.

[배점 3, 중하]

답:

 \triangleright 정답: $3\sqrt{2}$

작은 정사각형의 대각선의 길이는 $\sqrt{2}$ $\sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$

22. 다음 중에서 순환하지 않는 무한소수로만으로 이루어 진 집합으로 옳은 것을 고르면? [배점 3, 중하]

①
$$A = \{\sqrt{21}, -\sqrt{7}, 0.5\}$$

②
$$A = \{\sqrt{121}, \sqrt{5} - 1, \sqrt{21}\}$$

$$(4) \ A = \left\{ -\sqrt{\frac{1}{3}}, \ \sqrt{0.36}, \ \frac{\sqrt{4}}{2} \right\}$$

- ① $0.\dot{5} = \frac{5}{9}$ 은 유리수이다. ② $\sqrt{121} = 11$ 은 유리수이다.
- ③ $-\sqrt{1} = -1$ 은 유리수이다.
- ④ $\sqrt{0.36} = \frac{6}{10} = \frac{3}{5}$, $\frac{\sqrt{4}}{2} = \frac{2}{2} = 1$ 은 유리수이
- 23. 다음 중 유리수는 모두 몇 개인지 구하여라.

$$\sqrt{12}$$
, -3 , $\frac{1}{2}$, $\sqrt{4}$, $0.\dot{1}\dot{3}$, $6.2345235\cdots$

[배점 3, 중하]

답:

▷ 정답: 4개

$$-3$$
, $\frac{1}{2}$, $\sqrt{4} = 2$, $0.\dot{1}\dot{3} = \frac{13}{99}$

- **24.** $A=\sqrt{5}+\sqrt{3}$, $B=\sqrt{5}+1$, $C=3+\sqrt{3}$ 일 때, 가장 작은 수는? [배점 3, 중하]
 - ① A
- \bigcirc B

 \odot C

- A = C
- ⑤ A = B = C

해설

$$\begin{split} A-B&=(\sqrt{5}+\sqrt{3})-(\sqrt{5}+1)=\sqrt{3}-1>0\\ A-C&=(\sqrt{5}+\sqrt{3})-(3+\sqrt{3})=\sqrt{5}-3<0\\ 따라서 \ B<A<C$$
이다.

25. 다음 보기 중 옳지 않은 것을 모두 골라라.

보기

- \bigcirc a > 0 일 때, a 의 제곱근은 $\pm \sqrt{a}$ 이다.
- ① 5 의 제곱근은 $\pm\sqrt{5}$ 이다.
- ◎ -9 의 제곱근은 -3 이다.
- ② 0 의 제곱근은 0 이다.
- ◎ 음수의 제곱근은 1 개이다.

[배점 4, 중중]

- 답:
- ▶ 답:
- ▷ 정답: □
- ▷ 정답: ⑩

해설

- ◎ -9 의 제곱근은 존재하지 않는다.
- @ 음수의 제곱근은 없다.

- **26.** $\sqrt{\sqrt{x}}$ 가 3 의 양의 제곱근일 때, x 의 값을 구하여라. [배점 4, 중중]
 - ▶ 답:
 - ▷ 정답: 9

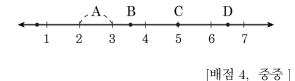
해설

$$\sqrt{\sqrt{x}} = \sqrt{3}$$
, $\sqrt{x} = 3$

- $\therefore x = 9$
- **27.** $\sqrt{54-x}$ 가 자연수가 되는 양의 정수 x 의 값들의 합은? [배점 4, 중중]
 - ① 60
- 2 116
- ③ 155

- 4 197
- **(5)** 238

해설


 $\sqrt{54-x}$ 가 자연수가 되기 위해서는,

54 - x = 완전제곱수가 되어야 한다.

54 - x = 1, 4, 9, 16, 25, 36, 49

 $\therefore x = 5 + 18 + 29 + 38 + 45 + 50 + 53 = 238$

28. 다음은 수직선을 보고 설명한 것이다. 다음 중 옳지 않은 것은?

- ① $2\sqrt{3}$ 에 대응하는 점은 B이다.
- ② A 구간에는 유한 개의 유리수가 존재한다.
- ③ $\sqrt{3} + 1$ 은 $3 \sqrt{3}$ 보다 오른쪽에 위치한다.
- ④ 점 B와 점 D 사이의 정수는 모두 3개이다.
- ⑤ $2\sqrt{5} + 2$ 는 점 D에 대응한다.

② A 구간에는 무한 개의 유리수가 존재한다.

29. 다음 수들이 위치하는 구간과 바르게 연결되지 않은 것은?

[배점 4, 중중]

①
$$1 - \sqrt{2} : B$$
 ② $1 + \sqrt{2} : E$

$$2 1 + \sqrt{2} : E$$

$$3 2 + \sqrt{5} : G$$
 $4 2 - \sqrt{3} : C$

$$4 2 - \sqrt{3} : C$$

$$\sqrt{5} - 4 : D$$

①
$$-\sqrt{4} < -\sqrt{2} < -\sqrt{1}$$

$$1 - \sqrt{4} < 1 - \sqrt{2} < 1 - \sqrt{1}$$

$$\therefore -1 < 1 - \sqrt{2} < 0 : B$$

②
$$\sqrt{1} < \sqrt{2} < \sqrt{4}$$

$$1 + \sqrt{1} < 1 + \sqrt{2} < 1 + \sqrt{4}$$

$$\therefore 2 < 1 + \sqrt{2} < 3 : E$$

③
$$\sqrt{4} < \sqrt{5} < \sqrt{9}$$

$$2 + \sqrt{4} < 2 + \sqrt{5} < 2 + \sqrt{9}$$

$$\therefore 4 < 2 + \sqrt{5} < 5 : G$$

$$4 - \sqrt{4} < -\sqrt{3} < -\sqrt{1}$$

$$2 - \sqrt{4} < 2 - \sqrt{3} < 2 - \sqrt{1}$$

$$0 < 2 - \sqrt{3} < 1 : C$$

$$(5)\sqrt{4} < \sqrt{5} < \sqrt{9}$$

$$\sqrt{4} - 4 < \sqrt{5} - 4 < \sqrt{9} - 4$$

$$\therefore -2 < \sqrt{5} - 4 < -1 : A$$

30. a > 0 일 때, 다음 중 옳지 <u>않은</u> 것은?

[배점 4, 중중]

- ① $\sqrt{a^2} = a$
- $(-\sqrt{a})^2 = a$
- ③ $-\sqrt{(-a)^2} = a$ ④ $(\sqrt{a})^2 = a$

- a > 0 일 때,
- ① $\sqrt{a^2} = a$
- $(-\sqrt{a})^2 = a$
- $(3) \sqrt{(-a)^2} = -\sqrt{a^2} = -a$
- $(\sqrt{a})^2 = a$