·인학습문제

1. 다음 수들의 최대공약수와 최소공배수를 차례로 써라.

 $2 \times 2 \times 3 \times 5$ $2 \times 3 \times 3 \times 7$

[배점 2, 하중]

▶ 답: ▶ 답:

▷ 정답: 6 ▷ 정답: 1260

최대공약수 $:2 \times 3 = 6$ 최소공배수 $:2 \times 2 \times 3 \times 3 \times 5 \times 7 = 1260$

2. 다음 중에서 두 수가 서로소인 것은?

[배점 2, 하중]

- ① (14, 22) ② (21, 49)
 - 3(27, 72)
- (4) (15, 58) (5) (2, 20)

해설

각각의 두 수의 최대공약수를 구해 보면

- ① $(14, 22) \Rightarrow 2$
- $2(21, 49) \Rightarrow 7$
- $\Im(27, 72) \Rightarrow 9$
- (4) $(15, 58) \Rightarrow 1$
- \bigcirc $(2, 20) \Rightarrow 2$

- **3.** 두 수 $2^3 \times 5^a \times 7$, $2^4 \times 5^5 \times 7^b$ 의 최대공약수가 $2^3 \times 5^3 \times 7$, 최소공배수가 $2^4 \times 5^5 \times 7^3$ 일 때, a+b의 값은? [배점 3, 하상]

 - ① 4 ② 5

- ④ 7 ⑤ 8

해설

최대공약수가 $2^3 \times 5^3 \times 7$ 이므로 a=3, 최소공배수가 $2^4 \times 5^5 \times 7^3$ 이므로 b=3따라서 a+b=6 이다.

- **4.** 자연수 n 의 약수의 집합을 $A_{(n)}$ 이라고 하자. 즉, 30의 약수의 집합은 $A_{(30)}$, 75 의 약수의 집합은 $A_{(75)}$ 이다. $A_{(30)} \cap A_{(75)} = A_{(x)}$ 라 할 때, x 의 값은? [배점 3, 하상]

- ① 11 ② 12 ③ 13 ④ 14

30 의 약수의 집합과 75 의 약수의 집합의 교집합 은 30 과 75 의 최대공약수의 약수의 집합과 같다. 따라서 구하고자 하는 x 는 30 과 75 의 최대공약 수와 같다.

 $30 = 2 \times 3 \times 5$, $75 = 3 \times 5^2$ 이므로 30 과 75 의 최대공약수는 $3 \times 5 = 15$ 이다.

 $\therefore x = 15$

5. 두 자연수 a , b 의 최소공배수가 32 일 때, 다음 중 a , b 의 공배수인 것을 모두 찾아라.

24, 32, 48, 56, 64, 78, 96

[배점 3, 하상]

- ▶ 답:
- ▶ 답:
- ▶ 답:
- ▷ 정답: 32
- ➢ 정답: 64
- ▷ 정답: 96

해설

두 수의 최소공배수인 32 의 배수들이 두 수의 공 배수이므로, <보기>에서의 공배수는 32, 64, 96이다.

- **6.** 두 수 $2^3 \times 3^4 \times 5$, $2^a \times 5^2$ 의 최대공약수가 $2^2 \times 5$ 일 때, a 의 값을 구하여라. [배점 3, 하상]
 - ▶ 답:

▷ 정답: 2

해설

최대공약수가 $2^2\times 5$ 이고 $2^3\times 3^4\times 5$ 에서 2 의 지수가 3 이므로 $2^a\times 5^2$ 에서 2 의 지수가 2 이어야 한다. 따라서 a=2

- 7. 다음 중 두 수의 최대공약수가 1 이 <u>아닌</u> 것은? [배점 3, 하상]
 - ① 8, 11
- 2 15, 16
- 3 19, 27

- **4** 13, 52
- ⑤ 28, 45

해설

④ 주어진 두 수의 최대공약수는 13 이다.

8. 1부터 100까지의 자연수 중에서 5의 배수도 아니고 7의 배수도 아닌 수는 모두 몇 개인지 구하여라.

[배점 3, 중하]

▶ 답:

▷ 정답: 68 개

해설

1 부터 100 까지의 자연수 중에서 5 의 배수를 A_5 , 7 의 배수를 A_7 라 할 때,

 $100 = 5 \times 20, 100 = 7 \times 14 + 2$

 $n(A_5) = 20, n(A_7) = 14, n(A_5 \cap A_7) = n(A_{35}) = 2,$

5 의 배수이거나 7 의 배수인 수의 갯수

 $n(A_5 \cup A_7) = n(A_5) + n(A_7) - n(A_{35}) = 20 + 14 - 2 = 32(7),$

5 의 배수도 아니고 7 의 배수도 아닌 수의 갯수는 $n((A \cup B)^c) = 100 - 32 = 68(개)$

9. 진희는 어머니 심부름으로 인터넷으로 과일의 가격을 알아보고 주문하려고 한다. 인터넷 검색 결과 아래 과 일의 가격이 다음과 같았다. 과일의 가격은 주어진 수 의 최소공배수라고 할 때, 가장 싼 과일을 말하여라.

> 거봉 1박스 $2^2 \times 5^2 \times 7 \times 11$, $2^2 \times 3 \times 5 \times 7$

키위 1박스 $2^2 \times 5^2$, $3^3 \times 5^2 \times 7$, 3^2

오렌지 1박스 $2^3 \times 5^2 \times 7$, $2 \times 3 \times 5^3$, 2×3

바나나 1박스 $2^2 \times 5^2 \times 7$, $2^3 \times 3 \times 5$, $3^2 \times 5 \times 7$

오렌지 1박스 $2^3 \times 5^2 \times 7$, $2 \times 3 \times 5^3$, 2×3

[배점 3, 중하]

답:

▷ 정답: 바나나

해설

 $2^2 \times 5^2 \times 7 \times 11$, $2^2 \times 3 \times 5 \times 7$ 의 최소공배수 : $2^2 \times 3 \times 5^2 \times 7 \times 11 = 23100$

→ 거봉 1 박스의 가격 23100 원

 $2^2 \times 5^2$, $3^3 \times 5^2 \times 7$, 3^2 의 최소공배수 : $2^2 \times 3^3 \times 1$ $5^2 \times 7 = 18900$

→ 키위 1 박스의 가격 18900 원

 $2^3 \times 5^2 \times 7$, $2 \times 3 \times 5^3$, 2×3 의 최소공배수 : $2^3 \times 3 \times 5^3 \times 7 = 21000$

→ 오렌지 1 박스의 가격 21000 원

 $2^2 \times 5^2 \times 7$, $2^3 \times 3 \times 5$, $3^2 \times 5 \times 7$ 의 최소공배수

 $: 2^3 \times 3^2 \times 5^2 \times 7 = 12600$

→ 바나나 1 박스의 가격 12600 원

10. 소인수분해를 이용하여 세 수 12,36,40 의 최소공배 수를 구하여라. [배점 3, 중하]

▶ 답:

▷ 정답: 360

해설

2) 12 2) 6

2)36 2) 18

3) 9

2)40 2)20

3)10

 $36=2^2\times 3^2 \quad 340=2^3\times 5$ $12=2^{2}\times 4$ 따라서 최소공배수는 $2^3 \times 3^2 \times 5 = 360$ 이다.

11. 다음 중 서로소인 두 수끼리 짝지어진 것은 모두 몇 개인지 구하여라.

 \bigcirc 7,11 \bigcirc 8,15 \bigcirc 9,21

 \bigcirc 12,60

⊕ 11, 121

[배점 3, 중하]

▶ 답:

▷ 정답: 3개

해설

- ◎ 9.21 의 최대공약수는 3 이므로 서로소가 아니 다.
- © 12,60 의 최대공약수는 12 이므로 서로소가 아 니다.
- ⊎ 11,121 의 최대공약수는 11 이므로 서로소가 아니다.

따라서 서로소인 두 수끼리 짝지어진 것은 ⊙,ଢ,❷ 의 3 개이다.

12. 자연수 A 와 36 의 최대공약수가 4 이고 최소공배수는 144 일 때, 자연수 *A* 의 값을 구하여라.

[배점 3, 중하]

▶ 답:

➢ 정답: 16

4) A 36

A 와 36 의 최소공배수가 144 이므로

 $4 \times a \times 9 = a \times 36 = 144$

 $a = 144 \div 36 = 4$

 $\therefore A = 4 \times 4 = 16$

[별해] 두 자연수 A, B 의 최대공약수와 최소공배 수의 곱은 두 자연수의 곱인 $A \times B$ 와 같다.

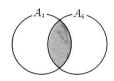
 $A \times 36 = 4 \times 144$

 $A = 4 \times 144 \div 36 = 16$

- ${f 13.}\ 100$ 이하의 자연수 중 5의 배수의 집합을 A , 7의 배수의 집합을 B 라 할 때 5의 배수이거나 7의 배수인 집합의 원소의 갯수는? [배점 4, 중중]
 - ① 31 개
- ②32 개
- ③ 33 개

- ④ 34 개
- ⑤ 35 개

n(A) = 20, n(B) = 14, $n(A \cap B) = 2$ $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 20 + 14 - 14$ 2 = 32


14. 세 수 42, 24, 63 의 최소공배수는?

[배점 4, 중중]

- ① $2^2 \times 3^2 \times 5$
- ② $2^2 \times 3^2 \times 7$
- ③ $2^2 \times 3^2 \times 5 \times 7$ ④ $2^3 \times 3^2 \times 5^2$
- $\bigcirc 2^3 \times 3^2 \times 7$

 $42 = 2 \times 3 \times 7$, $24 = 2^3 \times 3$, $63 = 3^2 \times 7$ 이므로 최소공배수는 $2^3 \times 3^2 \times 7$ 이다.

 ${f 15.}$ 자연수 n 의 배수의 집합을 A_n 으로 표현할 때, 4 의 배수의 집합은 A_4 , 6 의 배수의 집합은 A_6 이다. 아래 벤 다이어그램의 색칠한 부분은?

[배점 4, 중중]

- \bigcirc A_2
- \bigcirc A_4
- $3 A_6$

- (4) A_{12}
- ⑤ A_{24}

 $A_4 \cap A_6$ 은 4 와 6 의 공배수이다. 따라서 4 와 6 의 최소공배수는 $2^2 \times 3 = 12$ 이다.