단원 형성 평가

- 1. $5 \le \sqrt{3x} < 6$ 을 만족하는 정수 x 를 모두 구하여라. [배점 3, 중하]
 - 답:
 - ▶ 답:
 - ▶ 답:
 - ➢ 정답: 9
 - ▷ 정답: 10
 - ▷ 정답: 11

 $5 \le \sqrt{3x} < 6 는 \sqrt{25} \le \sqrt{3x} < \sqrt{36}$ 이므로 $25 \le 3x < 36$ 이다. 따라서 $\frac{25}{3} \le x < 12$ 이므로 정수 x 는 9, 10, 11 이다.

- 2. 다음 중 두 수의 대소 관계가 옳지 않은 것은? [배점 3, 중하]
 - ① $\sqrt{24} < 5$
- ② $\sqrt{17} > 4$
- $3 \ 4 < \sqrt{20}$
- $\frac{\sqrt{2}}{6} < \frac{\sqrt{3}}{6}$
- $\sqrt{0.7} < 0.7$

 $\sqrt{0.7} > \sqrt{0.49}$ 이므로 $\sqrt{0.7} > 0.7$ 이다.

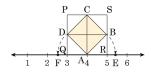
- 3. 다음 수들을 소수로 나타낼 때 순환하지 않는 무한소 수가 되는 것은? [배점 4, 중중]
 - ① $0.\dot{6} + \sqrt{3}$ ② $\frac{3}{\sqrt{4}}$
- $\sqrt{0.25}$

- $4 \frac{1}{3}$ $5 \sqrt{\frac{9}{4}}$

②
$$\frac{3}{2}$$
 ③ $\frac{1}{2}$ ④ $\frac{1}{3} = 0.3333 \cdots$ ⑤ $\frac{3}{2}$

- 4. 자연수, 정수, 유리수, 무리수, 실수 전체의 집합을 각각 N, Z, Q, I, R 라 할 때, 다음 중 옳지 않은 것은?(단, R 은 전체집합이다.) [배점 4, 중중]
 - ① $I \subset Z^c$
- \bigcirc $(N \cap Q) \subset Z$

5. 다음 그림과 같이 한 변의 길이가 2 인 정사각형 PQRS 가 있다. \overline{AB} 를 회전하여 수직선과 만나는 점을 E, \overline{AD} 를 회전하여 수직선과 만나는 점을 F 라고 할 때. 두 점의 좌표가 바르게 짝지어진 것은?



[배점 4, 중중]

- ① $E(5+\sqrt{2})$, $F(3-\sqrt{2})$
- ② $E(5-\sqrt{2})$, $F(4+\sqrt{2})$
- ③ $E(4+\sqrt{2})$, $F(4-\sqrt{2})$
- $\textcircled{4} \ \mathrm{E}(4-\sqrt{2}) \ , \ \mathrm{F}(4+\sqrt{2})$
- ⑤ $E(6-\sqrt{2})$, $F(2+\sqrt{2})$

한 변의 길이가 1 인 정사각형의 대각선의 길이는 $\sqrt{2}$ 이므로 $\overline{AB} = \overline{AE} = \overline{AD} = \overline{AF} = \sqrt{2}$ 점 E 는 4 보다 $\sqrt{2}$ 만큼 큰 수이므로 점E 의 좌표 는 $E(4+\sqrt{2})$

점 F 는 4 보다 $\sqrt{2}$ 만큼 작은 수이므로 점F 의 좌표는 $F(4-\sqrt{2})$

- **6.** $\{x|300 \le x \le 600, x$ 는 정수 $\}$ 에 대하여 $\sqrt{3} \times \sqrt{x}$ 가 양의 정수가 되도록 하는 정수 x 의 개수를 구하면? [배점 5, 중상]
 - ① 5 개
- ② 52개
- ③ 100개

- ④ 101 개
- ⑤ 301 개

 $\sqrt{3} \times \sqrt{x} = \sqrt{3x}$ 가 양의 정수일 때, 3x 는 제곱수 가 되어야 하고 이 때, $x = 3k^2(k 는 자연수)$ 이다. $300 \le 3k^2 \le 600 \Leftrightarrow 100 \le k^2 \le 200$

 $k^2 = 10^2$, 11^2 , 12^2 , 13^2 , 14^2

∴ x 의 개수는 5 개

7. 0 < a < 1 일 때, 다음 중 가장 큰 것은?

[배점 5, 중상]

- ① a
- $\bigcirc a^3$
- $\Im \sqrt{a}$

 $a=\frac{1}{2}$ 라고 하면

- ① $\frac{1}{2}$ ② $\frac{1}{8}$
- 4 8
- $\bigcirc \sqrt{2}$

8. 다음 중 그 결과가 반드시 무리수인 것은?

[배점 5, 중상]

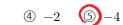
- ① (무리수)+ (무리수)
- ② (무리수)- (무리수)
- ③ (유리수)× (무리수)
- ④ (무리수)÷ (무리수)
- ⑤ (무리수) (유리수)

해설

- ① $\sqrt{2} + (-\sqrt{2}) = 0$ (유리수)
- ② $\sqrt{2} \sqrt{2} = 0$ (유리수)
- ③ $0 \times \sqrt{2} = 0$ (유리수)
- ④ $\sqrt{2} \div \sqrt{2} = 1$ (유리수)
- 9. $\sqrt{18} + 3$ 과 $\sqrt{15} 2$ 중 큰 수를 a, $2\sqrt{7}$ 과 $3\sqrt{2} 1$ 중 작은 수를 b라고 할 때, b-a 의 값을 구하면?

[배점 5, 중상]

- \bigcirc 4
- ② 2
- 3 0



- ① $\sqrt{18} + 3 (\sqrt{15} 2) = \sqrt{18} + 3 \sqrt{15} + 2 > 0$
- $1.0 \cdot \sqrt{18} + 3 > \sqrt{15} 2$
- $2\sqrt{7} (3\sqrt{2} 1) = 2\sqrt{7} 3\sqrt{2} + 1 = \sqrt{28} 1$ $\sqrt{18} + 1 > 0$
- $2\sqrt{7} > 3\sqrt{2} 1$
- $\therefore a = \sqrt{18} + 3 = 3\sqrt{2} + 3, b = 3\sqrt{2} 1$
- $b-a=3\sqrt{2}-1-(3\sqrt{2}+3)=-4$ 이다.

10. $\sqrt{10(n-1)}$ 의 값이 자연수가 되도록 하는 두 자리 자연수 n 의 값을 모두 구하여라. [배점 5, 상하]

▶ 답:

 \triangleright 정답: n=11, 41, 91

해설

n 이 두 자리의 자연수이므로 10 < n < 99

 $9 \le n - 1 \le 98$

 $\sqrt{10(n-1)}$ 이 자연수가 되기 위해서는

 $n-1=10\times 1^2,\ 10\times 2^2,\ 10\times 3^2,\ \cdots$

이때, $9 \le n - 1 \le 98$ 을 만족해야 하므로

 $n-1=10\times 1^2$ 에서 n=11

 $n-1=10\times 2^2$ 에서 n=41

 $n-1 = 10 \times 3^2$ 에서 n = 91

n = 11, 41, 91

11. 자연수 n 에 대하여 \sqrt{n} 이하의 자연수의 개수를 f(n)이라 할 때, $f(1) + f(2) + f(3) + \cdots + f(n) = 161$ 을 만족하는 n의 값을 구하여라. [배점 $5, \$ 상하]

▶ 답:

▷ 정답: 41

 $\sqrt{1} = 1, \sqrt{4} = 2, \sqrt{9} = 3, \sqrt{16} = 4, \sqrt{25} =$

 $5, \sqrt{36} = 6, \sqrt{49} = 7$ 이므로

n=1, 2, 3일 때, $f(n)=1 \rightarrow 3 \times 1=3$

 $n = 4, \dots, 8$ 일 때, $f(n) = 2 \to 5 \times 2 = 10$

 $n = 9, \cdots, 15$ 일 때, $f(n) = 3 \rightarrow 7 \times 3 = 21$

 $n = 16, \dots, 24$ 일 때, $f(n) = 4 \rightarrow 9 \times 4 = 36$

 $n = 25, \dots, 35$ 일 때, $f(n) = 5 \to 11 \times 5 = 55$

 $n = 36, \cdots, 48$ 일 때, $f(n) = 6 \rightarrow 13 \times 6 = 78$

3+10+21+36+55=125 이고,

n = 41이면 $125 + 6 \times 6 = 161$

 $\therefore n = 41$

- **12.** 다음 중 무리수에 대한 설명이 아닌 것을 <u>모두</u> 고르면? (정답 2개) [배점 5, 상하]
 - ① 순환하지 않는 무한소수
 - ② 분수로 나타낼 수 없는 수
 - ③ 유 한 소 수
 - ④ 순환소수
 - ⑤ 유리수가 아닌 수

해설

- ③ ④ 유한소수, 순환소수는 유리수이다.
- 13. 실수의 집합 R 의 부분집합 Q 가 유리수 전체의 집합이고, $x \in Q$, $y \in Q^c$ 일 때, 다음 중 항상 옳은 것을 골라라. [배점 5, 상하]
 - ① $x + y \in Q$
- ② $xy \in Q^c$
- $3 x^2y^2 \in Q$
- $\textcircled{4} x y \in Q^c$

해설

x 는 유리수, y 는 무리수이므로

- ①, ④ x + y, x y는 항상 무리수이다.
- ②, ③ xy, x^2y^2 는 유리수일 수도 있고 무리수일 수도 있다.
- ⑤ $\frac{x}{y}$ 는 x=0 일 때 유리수이다. 따라서 항상 옳은 것은 ④ $x-y\in Q^c$ 이다.

14. a - b > 0, ab < 0 일 때, 다음 중 옳은 것을 모두 골라라.

$$\bigcirc \sqrt{\left(ab\right)^2} = |ab|$$

[배점 6, 상중]

해설

b < 0 < a 이므로

$$: \sqrt{(b-a)^2} = a - b$$

$$\bigcirc: \sqrt{(ab)^2} = -ab = |ab|$$

$$: -\sqrt{b^2} = b, \ \sqrt{a^2} = a$$

$$b-a < 0$$
 이므로 $-\sqrt{b^2} < \sqrt{a^2} + 1$

$$\exists : \sqrt{(-a)^2} = a$$

$$-\sqrt{b^2} = -(-b) = b$$

$$\sqrt{(-a)^2} + 1 > 1 - \sqrt{b^2}$$

15. 한 변의 길이가 9인 정사각형의 내부에 10개의 점을 놓을 때, 두 점 사이의 거리가 *r* 이하인 두 점이 반드시 존재한다. 이때 *r* 의 최댓값을 구하여라.

[배점 6, 상중]

▶ 답:

ightharpoonup 정답: $3\sqrt{2}$

해설

한 변의 길이가 9인 정사각형의 내부를 한 변의 길이가 3인 작은 정사각형 9개로 나누고 작은 정사각형 한 개안에 하나의 점을 놓는다고 할 때,

모두 10개의 점을 놓아야 하므로 반드시 2개의 점은 한 개의 작은 정사각형 안에 들어간다. 한 변의 길이가 3인 작은 정사각형 안에 2개의 점을 놓을 때

두 점 사이의 거리의 최댓값은 작은 정사각형의 대각선의 길이이므로 $3\sqrt{2}$ 이므로

 $r = 3\sqrt{2}$