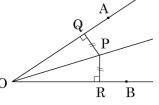
확인학습문제

 다음 그림의 ∠AOB 의 내부의 한 점 P 에서 두 변 OA, OB 에 내린 수 선의 발을 각각 Q, R 이 라고 하였을 때, QP =



 \overline{PR} 이다. 다음 중 옳지 않은 것은?

[배점 2, 하중]

- ① $\triangle QPO = \triangle RPO$
- \bigcirc $\overline{QO} = \overline{OR}$
- $\overline{\text{QO}} = \overline{\text{OP}}$
- \bigcirc \angle OPQ = \angle OPR

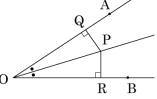
해설

각을 이루는 두 변에서 같은 거리에 있는 점은 그 각의 이등분선 위에 있다.

 $\overline{\mathrm{QP}} = \overline{\mathrm{PR}}$ 이므로 $\overline{\mathrm{OP}}$ 는 $\angle{\mathrm{QOR}}$ 의 이등분선이다.

그러므로 $\overline{\mathrm{QO}} \neq \overline{\mathrm{OP}}$ 이다.

2. 다음 그림과 같이
∠AOB 의 내부의 한
점 P 에서 두변 OA
, OB 에 내린 수선의
발을 각각 Q, R 이라



한다. $\angle QOP = \angle ROP$ 일 때, 다음 중 옳은 것을 모두 골라라.

보기

- \bigcirc \angle OQP = \angle ORP
- \bigcirc \angle AOP = \angle BOP
- $\bigcirc \overline{QP} = \overline{RP}$
- \bigcirc $\overline{OR} = \overline{PR}$
- \bigcirc $\overline{OQ} = \overline{OP}$

[배점 2, 하중]

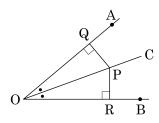
- ▶ 답:
- ▶ 답:
- ▶ 답:
- ▷ 정답: ⑤
- ▷ 정답: 心
- ▷ 정답 : □

해설

 $\overline{\mathrm{OP}}$ 가 $\angle{\mathrm{QOR}}$ 을 이등분하므로, $\triangle{\mathrm{QOP}}$ \equiv $\triangle{\mathrm{POR}}$ 이다.

 $\overline{\mathrm{OR}} = \overline{\mathrm{PR}} \; , \; \overline{\mathrm{OQ}} = \overline{\mathrm{OP}} \;$ 는 잘못 되었다.

3. 다음 그림에서 ∠AOB 의 이등분선 OC 위의 점 P 로 부터 변 OA, OB 에 내린 수선의 발을 각각 Q, R 라 할 때, 다음 중 옳지 않은 것은?



[배점 3, 하상]

- ① $\angle POQ = \angle POR$
- \bigcirc \angle OQP = \angle ORP

- $\overline{OQ} = \overline{OR} = \overline{OP}$

해설

점 Q 와 점 R 은 수선의 발을 내린 것 이므로

 $\angle OQP = \angle ORP = 90^{\circ} (2)$

△POQ 와 △POR 에서

- i)OP 는 공통
- ii)∠PQO = ∠PRO = 90° (가정)
- iii)∠QOP = ∠ROP (가정)

직각삼각형에서 빗변의 길이가 같고 한 내각의 크 기가 같으므로

 $\triangle POQ \equiv \triangle POR(RHA합동)$ 이다. (③)

합동인 삼각형의 두 대변의 길이는 같으므로 ④는 참이다.

또, 합동인 삼각형의 두 대각의 크기는 같으므로 ①은 참이다. 4. 다음은 ∠XOY 의 이등분선 위의 한 점을 P 라 하고 점P 에서 OX, OY 에 내린 수선의 발을 각각A, B 라고 할 때, PA = PB 임을 증명하는 과정이다. ○~
⑩에 들어갈 것으로 옳지 않은 것은?

[가정]∠AOP = (⊙),

 $\angle PAO = \angle PBO = 90^{\circ}$

[결론] (○)= (□)

[증명]△POA 와 △POB 에서

 $\angle AOP = (\bigcirc) \cdots \bigcirc$

(🖹)는 공통 … 🗓

 $\angle PAO = \angle PBO = 90^{\circ} \cdots \odot$

ⓐ, ⓑ, ⓒ에 의해서 $\triangle POA \equiv \triangle POB$ ((\square)

합동)

 $(\bigcirc)=(\bigcirc)$

[배점 3, 하상]

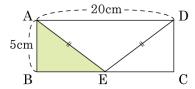
- ② ①<u>PA</u>
- ③ **□**PB

- ④ ⊕ OP
- (5) @SAS

해설

 \triangle POA \equiv \triangle POB 는 \angle AOP = \angle BOP , \overline{OP} 는 공통, \angle PAO = \angle PBO = 90° 이므로 RHA 합동 이다.

5. 다음 그림의 직사각형 ABCD 는 $\overline{AB}=5$ cm, $\overline{AD}=20$ cm 이다. \overline{BC} 위에 $\overline{AE}=\overline{DE}$ 가 되도록 점 E 를 잡을 때, $\triangle ABE$ 의 넓이는?



[배점 3, 하상]

- \bigcirc 20cm²
- 25cm^2
- 30cm^2

- $4 35 \text{cm}^2$
- 35cm^2

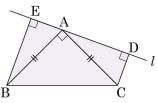
해설

 $\triangle ABE$ 와 $\triangle DCE$ 에서 $\angle ABC = \angle DCE = 90^{\circ}$ $\overline{AE} = \overline{DE}, \ \overline{AB} = \overline{DC}$

∴ $\triangle ABE \equiv \triangle DCE$ (RHS 합동), $\overline{BE} = \overline{CE}$ 이 므로 $\overline{BE} = \frac{1}{2} \times \overline{BC} = \frac{1}{2} \times 20 = 10$ (cm)

 $\therefore \triangle ABE = \frac{1}{2} \times 10 \times 5 = 25 \text{(cm}^2\text{)}$

6. 그림과 같이 직각이등 변삼각형 ABC 의 직각 인 꼭짓점 A 를 지나는 직선 l 에 점 B,C 에서 각각 내린 수선의 발을



E,D 라 하자. $\overline{AB}=\overline{AC}$ 이고, $\overline{BE}=4,\ \overline{CD}=1$ 일 때, \overline{ED} 를 구하여라.

[배점 3, 하상]

▶ 답:

▷ 정답: 5

해설

△BAE 와 △ACD 에서

 $\bigcirc \overline{AB} = \overline{AC}$

 $2\angle AEB = \angle ADC = 90^{\circ}$

③∠EAB + ∠CAD = 90°이므로

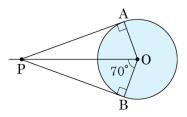
 $\angle EAB = \angle ACD$

따라서 ①, ②, ③에 의해서 $\triangle BAE \equiv \triangle ACD$

 $\overline{\mathrm{BE}} = \overline{\mathrm{AD}} = 4$, $\overline{\mathrm{CD}} = \overline{\mathrm{AE}} = 1$ 이 성립하므로

 $\overline{\mathrm{ED}} = 5$

7. 다음 그림에서 ∠APB 의 크기는 ?



[배점 3, 하상]

- ① 20°
- ②40°
- 3 80°

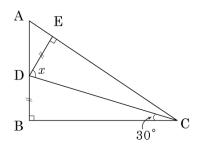
- ④ 90°
- ⑤ 140°

해설

 $\triangle PAO \equiv \triangle PBO (RHA 합동) 이므로$

 $\angle POA = 70^{\circ}$

- ∴ ∠APB = 40°
- 8. 다음 그림과 같이 직각삼각형 ABC에서 점 D에서 \overline{AC} 에 내린 수선의 발이 E이고 $\overline{BD} = \overline{ED}$ 일 때, $\angle x$ 의 크기를 구하여라.



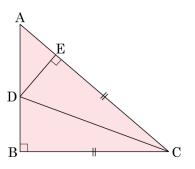
[배점 3, 중하]

- ▶ 답:
- ▷ 정답: 60°

해설

 \triangle CDB와 삼각형 \triangle CDE는 RHS 합동이다. $\angle x = \angle$ CDB이므로 $\angle x = 60^{\circ}$

9. $\angle B = 90$ ° 인 직각삼각형 ABC가 있다. $\angle DEC = 90$ °, $\overline{BC} = \overline{EC}$ 이고, $\triangle DBC \equiv \triangle DEC$ (RHS 합동)을 증명하기 위해 필요한 조건을 보기에서 모두 골라라.



보기

- \bigcirc \angle DBC = \angle DEC
- \bigcirc \triangle DBC \equiv \triangle DEC
- \bigcirc $\overline{DB} = \overline{DE}$
- \bigcirc \angle DAE = \angle BDC

[배점 3, 중하]

- ▶ 답:
- ▶ 답:
- ▷ 정답: ③
- ▷ 정답 : □

해설

RHS 합동은 두 직각삼각형의 빗변의 길이와 다른 한 변의 길이가 각각 같으면 합동이다.

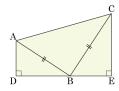
두 직각삼각형은 \angle DBC = \angle DEC 이다.

빗변의 길이 $\overline{\mathrm{CD}}$ 는 공통된 변으로 같다.

 $\overline{BC} = \overline{EC}$ 이므로 빗변이 아닌 다른 한 변의 길이 가 같다.

따라서 $\triangle DBC \equiv \triangle DEC$ (RHS 합동) 라고 할 수 있다. 필요한 것은 \bigcirc , \bigcirc 이다.

10. 다음 그림과 같이 직각이등변삼각형 ABC 의 두 꼭짓 점 A, C 에서 꼭짓점 B 를 지나는 직선에 내린 수선의 발을 각각 D, E 라 하자. 옳지 않은 것을 모두 골라라.



보ブ

- \bigcirc $\overline{AD} = \overline{BE}$
- \bigcirc \angle ABD = \angle BAC
- \bigcirc \angle DAB = \angle CBE

- H $\triangle ABD \equiv \triangle BCE$

[배점 3, 중하]

- ▶ 답:
- ▶ 답:
- ▷ 정답: ⑤
- ▷ 정답: ⑩

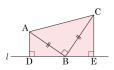
해설

직각삼각형 ABD 와 BCE 는 빗변의 길이가 같고, \angle ABD = \angle BCE (\because \angle ABD + 90° + \angle CBE = 180°, \angle BCE + \angle CBE + 90° = 180°)

이므로 직각삼각형 ABD 와 BCE 는 RHA 합동 이다.

- \bigcirc . $\angle ABD = \angle BCE$
- \bigcirc $\overline{BD} = \overline{CE}$

11. 다음 그림과 같이 ∠B = 90° 이고 ĀB = CB 인 직 각이등변삼각형 ABC 의 꼭짓점 A, C 에서 점 B 를 지나는 직선 l 에 내린 수선의 발을 각각 D, E 라 하자.
다음은 △ADB ≡ △BEC 임을 증명하는 과정이다. 빈 칸에 알맞은 것을 써넣어라.



가정) $\angle B = 90^{\circ}$, $\overline{AB} = \overline{CB}$, $\angle ADB =$

 $\angle BEC = 90^{\circ}$

결론) \triangle ADB $\equiv \triangle$ BEC

증명) △ADB 와 △BEC 에서

∠ADB = ____ (가정) · · · ①

 $\overline{AB} =$ (가정) \cdots ①

∠ABC = (가정) 이므로

 $\angle ABD + \angle CBE =$

또, △ADB 에서 ∠ABD + ∠BAD =

- ∴ ∠BAD = ... ©
- ⊙, ⓒ, ⓒ에 의하여

 $\triangle ADB \equiv \triangle BEC$ (합동)

[배점 3, 중하]

- ▶ 답:

▷ 정답: ∠BEC

▷ 정답: 90°

➢ 정답 : 90°

➢ 정답 : 90°

▷ 정답: 90°

> 정답: ∠CBE

▷ 정답: ∠RHA

해설

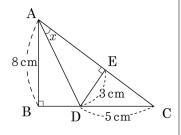
가정

 $\angle B = 90^{\circ}$, $\overline{AB} = \overline{CB}$, $\angle ADB = \angle BEC =$

90°

5

12. 다음 그림과 같이 직각 이등변삼각형 ABC에서 점 D에서 AC에 내린 수선의 발을 E라고하면 DE = 3 cm일 때,
∠DAE의 크기를 구하여라.



[배점 3, 중하]

▶ 답:

➢ 정답: 22.5°

해설

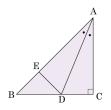
 $\overline{AB} = \overline{CB}$, $\overline{BD} = \overline{BC} - \overline{CD} = \overline{AB} - \overline{CD} = 8 - 5 = 3(cm)$

 $\overline{BD} = \overline{DE}$ 이므로, $\triangle ADB \equiv \triangle ADE$ 이다.

 \angle DAB = \angle DAE 이고 \triangle ABC는 직각 이등변 삼각형이므로 \angle BAC = 45° 이다.

 $\therefore \angle x = 45^{\circ} \times \frac{1}{2} = 22.5^{\circ}$ 이다.

13. $\overline{AC} = \overline{BC}$ 인 직각이등변삼각형에 꼭짓점 A 의 이등분 선이 밑변 BC 와 만나는 점을 D, D 에서 빗변AB 에 수선을 그어 만나는 점을 E 라 할 때, 다음 중 올바른 것을 모두 고르면?



[배점 4, 중중]

- $\boxed{3}\overline{AC} + \overline{CD} = \overline{AB}$
- ⑤ 점 D 는 △ABC 의 내심

. 해설

 $\triangle AED \equiv \triangle ACD(RHA합동)$

△EBD 는 이등변 삼각형이므로

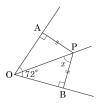
 $\overline{\mathrm{EB}} = \overline{\mathrm{ED}}$ 이고 $\triangle \mathrm{AED} \equiv \triangle \mathrm{ACD}(\mathrm{RHA합동})$ 이

므로 $\overline{\mathrm{CD}} = \overline{\mathrm{ED}}$

따라서 $\overline{EB} = \overline{ED} = \overline{CD}$ 이다.

- $\therefore \angle ADE = 180^{\circ} (90^{\circ} + 22.5^{\circ}) = 67.5^{\circ}$

14. 다음 그림에서 $\overline{PA} = \overline{PB}$, $\angle AOB = 72^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.



[배점 4, 중중]

- ① 50°
- ② 52°
- 3)54°

- ④ 56°
- ⑤ 58°

해설

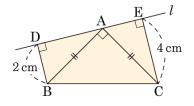
△PAO 와 △PBO 에서

- i) ∠A = ∠B = 90° (∵가정)
- ii) AP = BP (∵가정)
- iii) $\overline{\mathrm{OP}}$ 는 공통
- i), ii), iii)에 의해 $\triangle PAO \equiv \triangle PBO(RHS합동)$ 이다. 합동인 도형의 대응각의 크기는 같으므로

 $\angle AOP = \angle BOP = 36^{\circ}$

 $\therefore \angle x = 90^{\circ} - 36^{\circ} = 54^{\circ}$

15. 다음 그림과 같은 직각이등변삼각형 ABC 의 꼭짓점 B, C 에서 직선 l 위에 내린 수선의 발을 각각 D, E 라 하자. $\overline{BD} = 2 \mathrm{cm}$, $\overline{CE} = 4 \mathrm{cm}$ 일 때, $\triangle ABD$ 의 넓이를 구하여라.



[배점 4, 중중]

▶ 답:

정답: 4 cm²

해설

 $\angle EAC = \angle a$ 라 하면, $\angle ECA = 90^{\circ} - \angle a$,

$$\angle DAB = 180^{\circ} - (\angle BAC + \angle CAE)$$

$$= 180^{\circ} - (90^{\circ} + \angle a) = 90^{\circ} - \angle a$$

∴ ∠ECA = ∠DAB

△ABD 와 △CAE 에서

 $i)\overline{BA} = \overline{CA}$ (가정)

ii)∠BDA = ∠AEC = 90° (가정)

 $iii) \angle ECA = \angle DAB$

i), ii), iii)에 의해

 \triangle ABD \equiv \triangle CAE (RHA 합동)이다.

합동인 도형의 대응변의 길이는 같으므로

 $\overline{\rm DB}=\overline{\rm EA}=2{\rm cm}$, $\overline{\rm DA}=\overline{\rm EC}=4{\rm cm}$

 \therefore \triangle ABD 의 넓이 = $(2 \times 4) \times \frac{1}{2} = 4 \text{(cm}^2)$