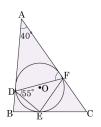

단원테스트 1차

1. 다음 그림에서 $\widehat{AD} = \widehat{EC}$ 이고, $\angle BOE = 110^\circ$ 일 때, $\angle DPA$ 의 크기를 구하여라.

[배점 5, 중상]


▶ 답:

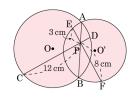
▷ 정답: 55°

해설

$$\angle \mathrm{BAE} = \frac{1}{2} \times 110^\circ = 55^\circ$$
 $\widehat{\mathrm{AD}} = \widehat{\mathrm{EC}}$ 이므로 $\overline{\mathrm{AE}} \ /\!\!/ \, \overline{\mathrm{DC}}$ $\angle \mathrm{DPA} = \angle \mathrm{BAE} = 55^\circ$

2. 다음 그림에서 △ABC 의 내접원은 △DEF 의 외접원이다. ∠BAC = 40°, ∠FDE = 55°일 때, ∠AFD 의 크기를 구하여라.

[배점 5, 중상]


답:

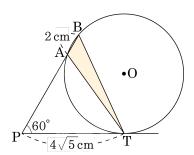
▷ 정답: 70°

해설

$$\overline{\mathrm{AD}} = \overline{\mathrm{AF}}$$
 이므로 $\angle \mathrm{AFD} = \frac{1}{2}(180^{\circ} - 40^{\circ}) = 70^{\circ}$

다음 그림에서 AB는 두 원의 공통현이고, 점 P 는 원 O
의 현 CD 와 원 O'의 현 EF 의 교점이다. PE = 3 cm
, PF = 8cm , PC = 12cm 일 때, PD 의 길이를 구하여라.

[배점 5, 중상]


▶ 답:

➢ 정답 : 2 cm

해설

원 O 에서
$$\overline{AP} \times \overline{PB} = \overline{PC} \times \overline{PD} \cdots$$

원 O' 에서 $\overline{AP} \times \overline{PB} = \overline{PE} \times \overline{PF} \cdots$
①, ① 에서 $\overline{PC} \times \overline{PD} = \overline{PE} \times \overline{PF}$
 $12 \times \overline{PD} = 3 \times 8 \quad \therefore \overline{PD} = 2(cm)$

4. 다음 그림에서 \overrightarrow{PT} 는 원 \overrightarrow{O} 의 접선이고 \overrightarrow{PB} 는 원 \overrightarrow{O} 의 할선이다. $\overline{PT} = 4\sqrt{5} \, \mathrm{cm}$, $\overline{AB} = 2 \, \mathrm{cm}$, $\angle P = 60^{\circ}$ 일 때, △ATB 의 넓이를 구하여라.

[배점 5, 중상]

▶ 답:

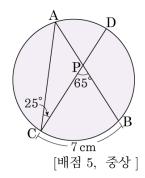
ightharpoonup 정답: $2\sqrt{15}\,\mathrm{cm}^2$

해설

 $\overline{PA} = x$ 라 하면

 $\overline{PT}^2 = \overline{PA} \times \overline{PB}$

80 = x(x+2)


 $x^{2} + 2x - 80 = (x + 10)(x - 8) = 0$

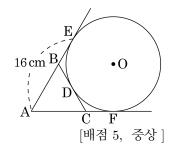
 $\therefore x = 8(\text{cm})(\because x > 0)$

(△ATB 의 넓이)

 $= \frac{1}{2} \times 10 \times 4\sqrt{5} \times \sin 60^{\circ} - \frac{1}{2} \times 8 \times 4\sqrt{5} \times \sin 60^{\circ} =$ $2\sqrt{15} (\text{cm}^2)$

5. 다음 그림에서 점 P 는 두 현 AB, CD 의 교점이고 $\widehat{BC} = 7 \, \text{cm}, \ \angle ACD =$ 25°, ∠BPC = 65° 일 때, 이 원의 둘레의 길이를 구하 여라.

답:

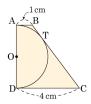

> 정답: 31.5 cm

 \triangle ACP에서 \angle CAB = $65\,^{\circ}$ - $25\,^{\circ}$ = $40\,^{\circ}$

BC의 원주각이 40°이므로 중심각은 80°이다.

80°: 360° = 7: (원주) $\therefore (원주) = \frac{360° \times 7}{80°} = 31.5 \text{ (cm)}$

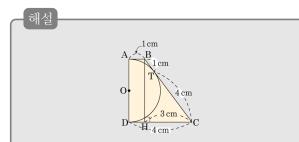
6. 다음 그림에서 점 D, E, F 는 원 O 의 접 점이고 $\overline{AE} = 16 \, \mathrm{cm}$ 일 때, △ABC 의 둘레의 길이를 구하여라.



답:

▷ 정답: 32 cm

 \overline{AE} , \overline{AF} 는 원 O 의 접선이므로 $\overline{AE} = \overline{AF}$ 이고 \overline{BE} , \overline{BD} 는 원 O 의 접선이므로 $\overline{BE} = \overline{BD}$ 이다. $\overline{\text{CD}}, \overline{\text{CF}}$ 는 원 O 의 접선이므로 $\overline{\text{CD}} = \overline{\text{CF}}$ 이다. 따라서 \triangle ABC 의 둘레의 길이는 $2 \times 16 = 32$ (cm) 이다.


7. 그림에서 AD 는 반원의 지름이고, AB, BC, CD 는 반원에 접한다. 이 때, □ABCD 의 둘레의 길이는?

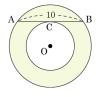
[배점 5, 중상]

- ①14cm
- ② 28cm
- ③ 31cm

- ④ 35cm
- ⑤ 40cm

점 B 에서 $\overline{\text{CD}}$ 에 내린 수선의 발을 H 라 하자.

 $\overline{\mathrm{AB}} = \overline{\mathrm{BT}}$, $\overline{\mathrm{DC}} = \overline{\mathrm{CT}}$

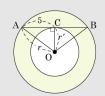

 $\overline{\text{CH}} = 3 \,\text{cm}, \quad \overline{\text{BC}} = \overline{\text{BT}} + \overline{\text{CT}} = 5 \,\text{cm}$

 $\therefore \overline{BH} = \sqrt{5^2 - 3^2} = 4 \, \text{cm} \therefore \overline{AD} = \overline{BH} = 4(\, \text{cm})$

따라서, $\square ABCD$ 의 둘레의 길이는 $\overline{AB} + \overline{AD} +$

 $\overline{DC} + \overline{BC} = 1 + 4 + 4 + 5 = 14(cm)$

8. 다음 그림과 같이 두 개의 동심원이 있다. 큰 원의 현 AB 가 작은 원에 접하고, $\overline{AB} = 10$ 일 때, 색칠한 부분의 넓이는?

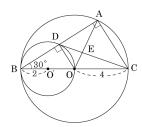


[배점 5, 중상]

- ① 10π
- ② 15π
- $3 20\pi$

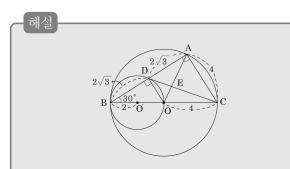
- $4)25\pi$
- $\bigcirc 30\pi$

해설


큰 원의 반지름의 길이를 r , 작은 원의 반지름의 길이를 r' 라고 하자.

 \overline{AB} 는 작은 원의 접선이므로 $\overline{OC}\bot\overline{AB}, \ \overline{AC}=\frac{1}{2}\overline{AB}=5$ 이다.

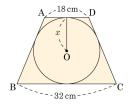
² 직각삼각형 \triangle ACO 에서 $r^2 - {r'}^2 = 5^2$ 이다.


색칠한 부분의 넓이= $\pi r^2 - \pi r'^2 = \pi (r^2 - r'^2) = 25\pi$ 이다.

9. 다음 그림의 $\Theta O = A = 0$ 이 지름은 A = 0 이 지름은 A = 0 $\angle ABC = 30^{\circ}$ 이다. 이때, \overline{DE} 의 길이는?

[배점 5, 중상]

- ① $\frac{\sqrt{7}}{3}$ ② $\frac{\sqrt{7}}{2}$ ④ $\sqrt{7}$ ③ $\frac{3\sqrt{7}}{2}$



 $\overline{AD} = \overline{BD} = 2\sqrt{3}, \ \overline{BO} = \overline{CO} = 4$ 이므로 점 E 는 △ABC 의 무게중심이다.

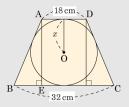
 $\triangle ACD$ 에서 $\overline{CD} = 2\sqrt{7}$ 이다.

$$\therefore \overline{\mathrm{DE}} = 2\sqrt{7} \times \frac{1}{3} = \frac{2\sqrt{7}}{3}$$

 ${f 10.}$ 다음 그림과 같이 원 ${f O}$ 에 외접하는 등변사다리꼴 ABCD 에서 $\overline{AD} = 18 \text{cm}$, $\overline{BC} = 32 \text{cm}$ 일 때, 원 O 의 반지름의 길이는?

[배점 5, 중상]

- ① 12cm
- ② 13cm
- ③ 14cm

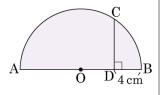

- ④ 15cm
- ⑤ 18cm

해설

 $\overline{AB} + \overline{CD} = 18 + 32 = 50$ (cm)

 \square ABCD 는 등변사다리꼴이므로 $\overline{AB} = \overline{CD}$

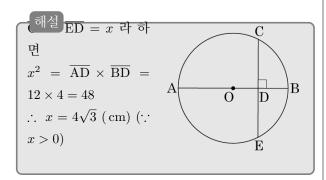
 $\therefore \overline{AB} = 25 (cm)$

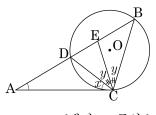


점 A 에서 \overline{BC} 에 내린 수선의 발을 E 라 하면

$$\overline{\text{BE}} = 7 \text{ (cm)}$$
 $\therefore \overline{\text{AE}} = 2x = \sqrt{25^2 - 7^2} = 24 \text{ (cm)}$

$$\therefore x = 24 \times \frac{1}{2} = 12 \text{ (cm)}$$


11. 다음 그림에서 AB 는 반지
름의 길이가 8 cm 인 반원
O의 지름이고, AB⊥CD
이다. BD = 4 cm 일 때, A
CD 의 길이를 구하여라.


[배점 5, 중상]

ightharpoonup 정답: $4\sqrt{3}\,\mathrm{cm}$

12. 다음 그림에서 ∠ACD = x, ∠DCE = ∠BCE = y 이고, x + y = 70°일 때, ∠A 의 크기를 구하여라. (단, 단위는 생략)

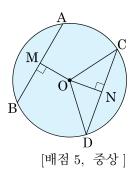
[배점 5, 중상]

▶ 답:

▷ 정답: 40

 $\angle \mathbf{B} = x$

 $\angle \text{CED} = x + y$

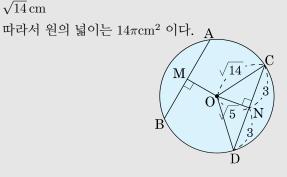

 \triangle ACE 에서

 $\angle A + \angle CEA + \angle ACE = 180^{\circ}$

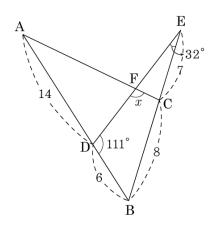
 $\angle A + (x + y) + (x + y) = 180^{\circ}$

∴ ∠A = 40°

13. 다음 그림의 원 O 에서 AB⊥OM 이고 AB = CD 이다. AM = 6cm , OM = √5cm 일 때, 원 O 의 넓이는?



- $14\pi \text{cm}^2$
- $2 16\pi \text{cm}^2$
- $3 19\pi \text{cm}^2$


- $4 22\pi \text{cm}^2$
- $\Im 24\pi \text{cm}^2$

해설

 $\overline{\rm AB}=\overline{\rm CD}$ 이므로 $\overline{\rm OM}=\overline{\rm ON}=\sqrt{5}{\rm cm}$ 이다. 피타고라스의 정리에 의해 $\overline{\rm OC}=\sqrt{\sqrt{5}^2+3^2}=\sqrt{14}{\rm \,cm}$

14. 다음 그림에서 x 의 크기를 구하여라. (단, 단위는 생략한다.)

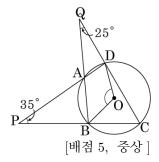
[배점 5, 중상]

▶ 답:

▷ 정답: 101°

해설

 $\overline{\mathrm{BD}} \cdot \overline{\mathrm{BA}} = \overline{\mathrm{BC}} \cdot \overline{\mathrm{BE}}$ 이므로


점 A, C, D, E 는 한 원 위의 점이다.

 \angle FEC = \angle FAD = 32 °

 $\angle ADF = 180^{\circ} - 111^{\circ} = 69^{\circ}$

 $\therefore x = 69^{\circ} + 32^{\circ} = 101^{\circ}$

15. 다음 그림에서 □ABCD 는 원 O 에 내접하고 ∠DPC = 35°, ∠BQC = 25°일 때, ∠BOD 의 크 기는?

① 100°

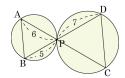
② 110°

4 135°

⑤ 150°

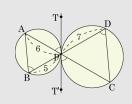
해설

 $\angle BCD = x$ 라 하면, $\angle DAQ = x$ (외각과 내대각)


∠ADQ = x + 35° (삼각형의 외각)

 $\triangle QAD \text{ odd } x + 25 \degree + (x + 35 \degree) = 180 \degree$

 $\therefore x = 60^{\circ}$

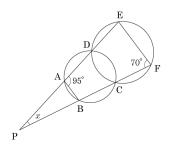

따라서 $\angle BOD = 2\angle BCD = 2 \times 60^{\circ} = 120^{\circ}$ 이다.

16. 다음 그림과 같이 점 P 에서 접하는 두 원에 대하여 $\overline{AP} = 6$, $\overline{BP} = 5$, $\overline{DP} = 7$ 일 때, \overline{PC} 의 길이는?

[배점 5, 중상]

- ① 6

공통외접선을 그으면 ∠ABP = ∠APT, ∠APT = ∠T/PC (맞꼭지각),


$$\angle T/PC = \angle PDC$$
 $\therefore \angle ABP = \angle CDP$

또한 ∠BAP = ∠DCP,∠ABP = ∠CDP 이므로 $\triangle PAB \sim \triangle PCD$ (AA 닮음)

따라서, $\overline{PA} : \overline{PC} = \overline{PB} : \overline{PD}$ 이므로 $6 : \overline{PC} =$ 5:7이다.

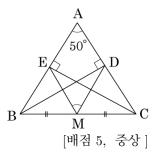
$$\therefore \overline{PC} = \frac{42}{5}$$

17. 다음 그림에서 두 원은 두 점 C, D 에서 만나고, \angle EFC = 70°, \angle BAD = 95° 일 때, $\angle x$ 의 크기는?

[배점 5, 중상]

- ① 20°
- ③ 30°

- **4** 35°
- ⑤ 40°

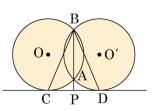

해설

보조선 $\overline{\mathrm{CD}}$ 를 연결하면 내접하는 사각형의 성질 에 의해

∠DAB = ∠DCF = 95° 이고 대각의 합 ∠DEF = $180^{\circ} - \angle DCF = 85^{\circ}$ 이다.

따라서 $\angle x = 180^{\circ} - 70^{\circ} - 85^{\circ} = 25^{\circ}$ 이다.

18. 다음 그림의 \triangle ABC 에서 점 $M \in \overline{BC}$ 의 중점이고, $\overline{AB}\bot\overline{CE}$, $\overline{AC}\bot\overline{BD}$ 이다. $\angle A = 50\,^{\circ}$ 일 때, $\angle EMD$ 의 크기를 구하면?


- ① 40°
- ② 50°
- ③80°

- 4 85°
- ⑤ 90°

해설

 \angle BEC = \angle BDC 이므로 네 점 B, C, D, E 는 한 원 위에 있고, $\overline{\rm BM} = \overline{\rm CM}$ 이므로 점 M 은 원의 중 심이다. \triangle ABD 에서 \angle ABD = 90° – 50° = 40° 따라서 \angle EMD = $2\angle$ EBD = $2\times40^{\circ}$ = 80° 이다.

19. 다음 그림과 같이 두 원
O, O'의 공통외접선 CD
와 공통현 AB의 연장선이
점 P에서 만난다. PA =
1cm, AB = 4cm, BC =

 $\overline{BD} = \sqrt{30} \text{cm}$ 일 때, $\triangle CBD$ 의 넓이는?

[배점 5, 중상]

- ① $10\,\mathrm{cm}^2$
- ② $5\sqrt{3}\,\text{cm}^2$
- $3 6\sqrt{2} \, \text{cm}^2$

- $45\sqrt{5}\,\mathrm{cm}^2$

$\overline{CP} = \sqrt{5} \text{ cm}$ $\therefore \overline{CD} = 2\overline{CP} = 2\sqrt{5} \text{ cm}$ $\therefore \Delta CBD = \frac{1}{2} \times 2\sqrt{5} \times 5 = 5\sqrt{5}(\text{ cm}^2)$