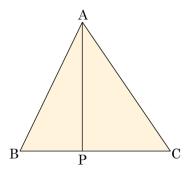
확인학습문제

1. 다음 그림에서 \overline{BP} : $\overline{CP}=1:2,\ \triangle ABC=8\ cm^2$ 일 때, $\triangle ABP$ 의 넓이를 구하여라.



[배점 2, 하중]

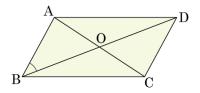
▶ 답:

ightharpoonup 정답: $rac{8}{3}\,\mathrm{cm}^2$

해설

 \triangle ABP와 \triangle APC의 높이는 같으므로 \triangle ABP = $8 \times \frac{1}{3} = \frac{8}{3} \ (\ cm^2)$

2. 다음 그림의 평행사변형 ABCD 가 마름모가 될 조건을 골라라.



 $\bigcirc \overline{AB} = \overline{AD}$

 \bigcirc $\overline{AO} = \overline{AD}$

 \bigcirc $\overline{AC} \perp \overline{BD}$

 \bigcirc $\angle A = 90^{\circ}$

[배점 2, 하중]

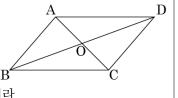
▶ 답:

답:> 정답: □

▷ 정답 : □

. 해설

평행사변형이 마름모가 되려면 이웃하는 두 변의 길이가 같고, 두 대각선이 서로 수직으로 만나야 한다. 3. 다음 그림과 같은 평행사변형 ABCD 에서 △ABC = △DCB 이면 □ABCD 는 어떤 B
 사각형이 되는지 구하여라.



[배점 3, 하상]

▷ 정답 : 직사각형

해설

 $\square ABCD$ 는 평행사변형이고 $\triangle ABC \equiv \triangle DCB$ 이므로 $\overline{AC} = \overline{BD}$ (대각선) 따라서 $\square ABCD$ 는 직사각형이다.

4. 다음 그림과 같은 정사각형 ABCD 에 대한 설명으로 옳지 않은 것을 모두 고르면?

[배점 3, 하상]

 \bigcirc $\angle AOB = 90^{\circ}$

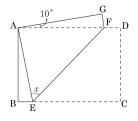
 $\overline{\text{AD}} = \overline{\text{BD}}$

 $\overline{\text{(3)}}\overline{\text{BC}} = \overline{\text{OC}}$

해설

정사각형은 두 대각선은 길이가 같고, 서로 다른 것을 수직이등분한다. 따라서 $\overline{AC}=\overline{DB}$ 이고, $\angle AOB=90^\circ$, $\overline{AB}=\overline{BC}$ 이다.

5. 다음 그림과 같이 직사각형 ABCD 의 꼭짓점 C 가 A 에 오도록 접었다. \angle GAF = 10° 일 때, $\angle x$ 의 값을 구하여라.



[배점 3, 하상]

▶ 답:

▷ 정답: 50°

해설

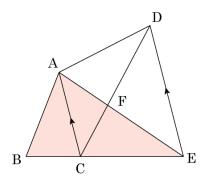
 $\angle GAE = 90^{\circ}$ 이고 $\angle GAF = 10^{\circ}$ 이므로 $\angle FAE = 80^{\circ}$ 이다.

 \angle FEC = \angle AFE = \angle X 이므로 \triangle AEF 는 이등변삼각형이다.

따라서 $(180^{\circ} - 80^{\circ}) \div 2 = 50^{\circ}$ 이다.

따라서 $\angle x = 50^{\circ}$ 이다.

6. 다음 그림은 □ABCD 의 변 \overline{BC} 의 연장선 위에 \overline{AC} // \overline{DE} 가 되게 점 E 를 잡은 것이다. $\Box ABCD$ 의 넓이가 30 cm² 일 때, △ABE 의 넓이는?



[배점 3, 하상]

- ① $15 \, \text{cm}^2$
- ② $20 \, \text{cm}^2$
- $3 25 \, \text{cm}^2$

- $430\,{\rm cm}^2$
- $\odot 60 \, \text{cm}^2$

 $\overline{AC} // \overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$ 이다.

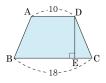
 $\triangle ABE = \triangle ABC + \triangle ACE$

 $= \triangle ABC + \triangle ACD$

 $= \Box ABCD$

 $\therefore \triangle ABE = 30 (\text{cm}^2)$

7. 다음 그림의 $\square ABCD$ 는 \overline{AD} $//\overline{BC}$ 인 등변사다리꼴이 다. $\overline{AD} = 10$, $\overline{BC} = 18$ 일 때, \overline{CE} 의 길이는?



[배점 3, 하상]

- ① 1
- ② 2

- 4 6 5 8

점 A 에서 \overline{BC} 에 수선을 내려 만나는 점을 H라 할 때, $\triangle ABH \equiv \triangle DCE$ 는 RHA 합동이다. 따라서 $\overline{BH} = \overline{EC}$ 이므로 $\overline{EC} = (18 - 10) \div 2 = 4$ 이다.

8. 다음은 '이웃하는 두 변의 길이가 같은 평행사변형은 마름모이다.' 를 증명하는 과정이다. □안에 들어갈 알 맞은 것은?

 $\overline{AB} = \overline{BC}$ 이고 $\square ABCD$ 는 평행사변형이면

 $\overline{AB} = \overline{DC}, \ \overline{AD} = \overline{BC}$

이므로

 $\overline{AB} = \overline{BC} = \overline{DC} = \overline{AD}$

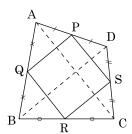
따라서 □ABCD는 마름모이다.

[배점 3, 하상]

- ① $\overline{AD} = \overline{BC}$
- $\boxed{2}\overline{AB} = \overline{BC}$
- $\overline{\text{AD}} = \overline{\text{CD}}$
- \bigcirc $\overline{BC} = \overline{DC}$

가정에서 $\overline{AB} = \overline{BC}$ 라고 했으므로 $\overline{AB} = \overline{BC} =$ $\overline{DC} = \overline{AD}$ 이다.

9. 다음은 사각형 ABCD 에서 각 변의 중점들을 연결한 사각형이 평행사변형임을 증명하는 과정이다. (기 ~ (미) 에 들어갈 것으로 옳지 않은 것은?



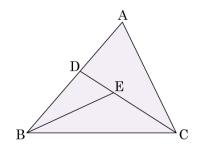
△ABC 와 △ACD 에서 삼각형의 중점연결 정리 에 의하여 $\overline{\mathrm{QS}} = \frac{1}{2}$ (기) , $\overline{\mathrm{PR}} = \frac{1}{2}\overline{\mathrm{AC}}$ $\triangle \mathrm{ABD}$ 와 $\triangle \mathrm{BCD}$ 에서 삼각형의 중점연결 정리에 의하여 (L) $=\frac{1}{2}\overline{\mathrm{BD}}$, $\overline{\mathrm{RS}} = \frac{1}{2}$ (C) 대응하는 두 (a) 가 같으므로 □PQRS 는

[배점 3, 하상]

- ① (\neg) \overline{AC}
- ② (L) \overline{PQ}
- \bigcirc (\Box) $\overline{\mathrm{BD}}$
- ④ (a) 각의 크기
- ⑤ (ロ) 평행사변형

△ABC 와 △ACD 에서 삼각형의 중점연결 정리 에 의하여 $\overline{QS} = \frac{1}{2}\overline{AC}$, $\overline{PR} = \frac{1}{2}\overline{AC}$ $\triangle ABD$ 와 $\triangle BCD$ 에서 삼각형의 중점연결정리에 의하여 $\overline{PQ} = \frac{1}{2}\overline{BD}$, $\overline{RS} = \frac{1}{2}\overline{BD}$ 대응하는 두 쌍의 대변의 길이가 같으므로 □PQRS 는 평행사변형이다.

10. 다음 그림에서 △ABC 의 넓이는 $24 \,\mathrm{cm}^2$ 이고 $\overline{\mathrm{AD}}$: $\overline{\mathrm{DB}} = 1:2$, $\overline{\mathrm{DE}}:\overline{\mathrm{EC}} = 1:3$ 일 때, $\triangle\mathrm{EBC}$ 의 넓이 는?



[배점 3, 중하]

- $\bigcirc 4 \, \mathrm{cm}^2$
- 2 8 cm^2
- $312 \, \text{cm}^2$

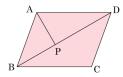
- $4 16 \, \text{cm}^2$
- $\odot 20 \, \text{cm}^2$

△DAC와 △DBC의 높이는 같으므로

$$\triangle$$
DBC = $24 \times \frac{2}{3} = 16 \text{ cm}^2$)
 \triangle DBE와 \triangle EBC의 높이는 같으므로

$$\triangle BEC = 16 \times \frac{3}{4} = 12 (\text{ cm}^2)$$

11. 다음 그림의 평행사변형 ABCD 의 넓이는 $70cm^2$ 이고 \overline{BP} : $\overline{PD} = 2:3$ 이다. $\triangle ABP$ 의 넓이는?



[배점 3, 중하]

- \bigcirc 5cm²
- ② 10cm^2
- $314 \mathrm{cm}^2$

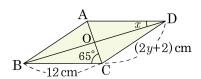
- $4 21 \text{cm}^2$
- $\odot 25 \text{cm}^2$

$$\triangle ABD = \frac{70}{2} = 35 (cm^2) = \triangle ABP + \triangle ADP$$

$$2: 3 = \triangle ABP : \triangle APD$$

$$\therefore \triangle ABP = 35 \times \frac{2}{5} = 14(cm^2)$$

12. 다음 그림에서 ABCD가 마름모일 때, x - y의 값을 구하여라.



[배점 3, 중하]

▶ 답:

▷ 정답: 20

마름모는 두 대각선이 서로 직교하므로 ∠AOD = 90°가 된다.

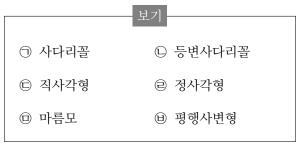
 $\angle BCO = \angle DAO = 65^{\circ}$ 이므로 x = 25가 된다.

마름모이므로 모든 변의 길이가 같다.

따라서 12 = 2y + 2, y = 5이다.

$$\therefore x - y = 25 - 5 = 20$$

13. 다음 보기의 사각형 중에서 두 대각선의 길이가 같은 것을 모두 골라라.



[배점 3, 중하]

- 답:
- 답: 답:
- ▷ 정답: 心
- ▷ 정답: □
- ▷ 정답: ②

해설

대각선의 길이가 같은 도형은 등변사다리꼴, 직사 각형, 정사각형이다.

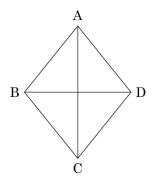
14. 직사각형의 중점을 연결했을 때 나타나는 사각형의 성 질을 나타낸 것이다. 다음 중 옳지 <u>않은</u> 것은?

[배점 3, 중하]

- ① 네 변의 길이가 모두 같다.
- ② 두 대각선이 서로 수직으로 만난다.
- ③ 두 쌍의 대변이 각각 평행하다.
- ④ 네 각의 크기가 모두 직각이다.
- ⑤ 두 대각선이 내각을 이등분한다.

해설

직사각형의 중점을 연결해 생기는 사각형은 마름 모이다. 마름모는 네 각의 크기가 모두 직각이 아 니다. 15. 다음 그림의 마름모 ABCD 의 각 변의 중점을 연결하여 만든 사각형의 성질이 <u>아닌</u> 것을 보기에 서 모두 골라라.



보기

- ⊙ 두 대각선의 길이가 서로 같다.
- ① 두 대각선이 서로 수직으로 만난다.
- ◎ 네 변의 길이가 모두 같다.
- ◎ 네 각의 크기가 모두 직각이다.
- ◎ 두 쌍의 대변이 각각 평행하다.

[배점 3, 중하]

▶ 답:

▶ 답:

▷ 정답 : □

▷ 정답: ②

해선

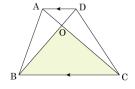
마름모의 중점을 연결하여 만든 사각형은 직사각 형이 된다.

두 대각선이 서로 수직으로 만나는 것과 네 변의 길이가 모두 같은 것은 마름모의 성질이다.

- **16.** 다음은 사각형과 그 중점을 연결해 만든 사각형을 대응 시켜놓은 것이다. 옳지 않은 것은? [배점 3, 중하]
 - ① 정사각형 직사각형
 - ② 마름모 직사각형
 - ③ 직사각형 정사각형
 - ④ 평행사변형 평행사변형
 - ⑤ 등변사다리꼴 마름모

직사각형의 중점을 연결해 만들면 마름모가 된다. 마름모는 반드시 정사각형이라고 할 수 없다. 따라서 ③은 틀렸다.

17. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{AO}:\overline{CO}=1:3$ 이고 $\triangle AOB=6 {
m cm}^2$ 일 때, $\triangle OBC$ 의 넓이를 구하여라.



[배점 3, 중하]

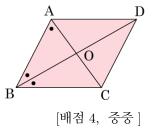
> 정답: 18 cm²

해설

 \triangle ABO , \triangle OBC 는 높이가 같고 밑변이 다르다. \triangle ABO : \triangle OBC = 1 : 3 = 6cm² : \triangle OBC \therefore \triangle OBC = 18cm²

18. 다음 그림과 같은 평행사 변형 ABCD 에서

∠OAB = ∠OBA = ∠OBC 이면 □ABCD 는 어떤 사각형이 되는지 구 B⁴하여라.



- ① 사다리꼴
- ② 직사각형
- ③ 정사각형
- ④ 마름모
- ⑤ 평행사변형

. 해설

 $\square ABCD$ 는 평행사변형이므로 $\overline{AO}=\overline{CO}$, $\overline{BO}=\overline{DO}$, $\overline{AB}=\overline{DC}$, $\overline{AD}=\overline{BC}$ 이다.

△OAB 는 이등변삼각형이므로

 $\overline{OA} = \overline{OB} \Leftrightarrow \overline{OA} = \overline{OB} = \overline{OC} = \overline{OD}$

→ □ABCD 는 직사각형

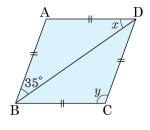
∠OBA = ∠ODC 이므로

 $\overline{BC} = \overline{DC} \Leftrightarrow \overline{AB} = \overline{BC} = \overline{CD} = \overline{DA}$

→□ABCD 는 마름모

∴ □ABCD 는 직사각형이자 마름모 이므로 정사 각형이다. **19.** □ABCD 에서 ∠x + ∠y = ()° 이다. () 안에 알맞은 수는?

[배점 4, 중중]



- ① 135
- 2 140
- **3**145
- (4) 150
- **⑤** 155
 - 해설

 $\overline{\mathrm{AB}} = \overline{\mathrm{AD}}$ 이므로 $x = 35^{\circ}$

 $y = \angle BAD$

 $\angle BAD = 180^{\circ} - (35^{\circ} + 35^{\circ}) = 110^{\circ}$

따라서 $y=110^{\circ}$ 이고, $\angle x+\angle y=35^{\circ}+110^{\circ}=145^{\circ}$ 이다.

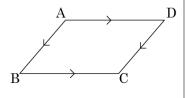
 20. AB // DC, AD // BC

 인 사각형 ABCD 가

 다음 조건을 만족할

 때, 직사각형이라고 B'

 말할 수 없는 것은?



[배점 4, 중중]

- ① $\angle A = 90^{\circ}$
- ② $\overline{AC} = \overline{BD}$
- \bigcirc $\overline{AC}\bot \overline{BD}$
- ④ 점 M이 \overline{AD} 의 중점일 때, $\overline{MB} = \overline{MC}$
- ⑤ 점 O가 \overline{AC} 와 \overline{BD} 의 교점일 때, $\overline{AO} = \overline{BO}$
 - 해설

한 내각이 직각이거나 두 대각선의 길이가 같은 평행사변형은 직사각형이다.

하지만 두 대각선이 직교하는 것은 마름모이다.

21. 다음 그림에서 $\square ABCD$ 는 정사각형이고 대각선 AC 위에 한 점 P 를 잡았다. $\angle ABP = 10^{\circ}$ 일 때, $\angle x$ 의 크기를 구하여라.

[배점 4, 중중]

- ① 50△
- ②55△
- ③ 60△

- ④ 65△
- ⑤ 70△

해설

△ADP 와 △ABP 에서

 $\overline{AB} = \overline{AD}$, \overline{AP} 는 공통,

 $\angle BAP = \angle DAP = 45^{\circ}$ 이므로,

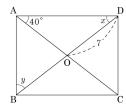
 $\triangle ABP \equiv \triangle ADP (SAS 합동)$

따라서 ∠ADP = 10° 이고, ∠CDP = 80°

 \triangle CDP 에서 \angle CDP = 80°, \angle DCP = 45°

 $\therefore \angle x = 180^{\circ} - (80^{\circ} + 45^{\circ}) = 55^{\circ}$

22. 직사각형 ABCD 에서 ∠x + ∠y = ()° 이다. () 안에 알맞은 수를 구하여라.



[배점 4, 중중]

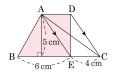
▶ 답:

▷ 정답: 90

해설

 \triangle OAD 는 이등변삼각형이므로 $\angle x=40^\circ$ 이다. \angle AOB = 80° 이다. \triangle OAB 는 이등변삼각형이므로 $(180^\circ-80^\circ)\div 2=50^\circ=\angle y$ 이다. $\angle x+\angle y=40^\circ+50^\circ=90^\circ$ 이다.

23. 다음 그림의 ĀD // BC 인 사다리꼴 ABCD 에서 ĀE // DC 일 때, □ABED 의 넓이는?



[배점 4, 중중]

- \bigcirc 25cm²
- ② 30cm^2
- 35cm^2

- 40cm^2
- (5) 45cm^2

해설

 $\overline{AE} /\!\!/ \overline{DC}$ 이므로 밑변과 높이가 같아 $\triangle AEC = \triangle ADE$ 이다.

 $\Box ABED = \triangle ABE + \triangle ADE = \triangle ABE + \\ \triangle AEC = \triangle ABC$

∴ $\Box ABED = \frac{1}{2} \times 5 \times (6 + 4) = 25 \text{(cm}^2)$

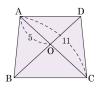
24. 다음 중 옳은 것은?

[배점 4, 중중]

- ① \overline{AC} ⊥ \overline{BD} 인 평행사변형 ABCD는 직사각형이다.
- ② $\overline{AB} = \overline{BC}$ 인 평행사변형 ABCD는 직사각형이다.
- ③ ∠A = 90°인 평행사변형 ABCD는 마름모이다.
- ④ $\overline{AB} = \overline{BC}$, $\overline{AC} = \overline{BD}$ 인 평행사변형 ABCD는 정사각형이다.
- ⑤ ∠B + ∠D = 180°, AC⊥BD인 평행사변형 ABCD는 마름모이다.

해설

- ① 마름모
- ② 마름모
- ③ 직사각형
- ⑤ 정사각형
- **25.** 다음 그림과 같은 등변사다리꼴 ABCD에서 점 O가 두 대각선의 교점일 때, \overline{BO} 의 길이를 구하여라.



[배점 4, 중중]

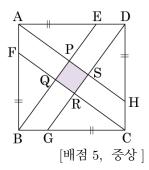
▶ 답:

▷ 정답: 6

해설

등변사다리꼴의 성질에 의해서 $\overline{\rm BO} = \overline{\rm OC}$ 이므로 $\overline{\rm OC} = \overline{\rm AC} - \overline{\rm AO} = 6$ 이다.

26. 정사각형 ABCD 의 각 변 에 $\overline{AF} = \overline{BG} = \overline{CH} = \overline{DE}$ 가 되도록 점 E, F, G, H 를 잡았을 때, □PQRS 는 어떤 사각형이 되는지 말 하여라.



▶ 답:

▷ 정답: 정사각형

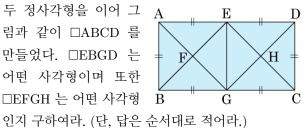
해설

- (i) □AFCH,□BGDE 는 평행사변형
- ∴ □PQRS 는 \overline{PS} // \overline{QR} , \overline{PQ} // \overline{SR} 인 평행사변
- $(ii)\triangle APE \equiv \triangle BQF \equiv \triangle CRG \equiv \triangle DSH$
- $\therefore \angle QPS = \angle PSR = \angle SRQ = \angle RQP = 90^{\circ}$

 $(iii)\overline{PQ} = \overline{BE} - \overline{PE} - \overline{BQ} = \overline{CF} - \overline{FQ} - \overline{RC} = \overline{QR}$

- $\therefore \overline{PQ} = \overline{QR} = \overline{RS} = \overline{SP}$
- (i), (ii), (iii)에 의하여 □PQRS 는 정사각형이 다.

27. 두 정사각형을 이어 그 림과 같이 □ABCD 를 만들었다. □EBGD 는 어떤 사각형이며 또한 □EFGH 는 어떤 사각형 B



[배점 5, 중상]

- ① 평행사변형, 마름모
- ② 평행사변형, 직사각형
- ③ 평행사변형, 정사각형
- ④ 사다리꼴, 정사각형
- ⑤ 사다리꼴, 마름모

해설

 $\overline{\mathrm{BG}} = \overline{\mathrm{ED}}, \ \overline{\mathrm{BG}}//\overline{\mathrm{ED}}$ 이므로

□EBGD 는 평행사변형이다.

 $\overline{\mathrm{EF}} = \overline{\mathrm{EH}} = \overline{\mathrm{HG}} = \overline{\mathrm{FG}}$ (: 대각선의 길이가 서로 같다)

따라서 □EFGH 는 정사각형이다.

28. 다음 설명 중 옳지 않은 것은? [배점 5, 중상]

- ① 두 대각선이 서로 다른 것을 이등분하는 사각형 은 등변사다리꼴이다.
- ② 두 대각선의 길이가 같은 평행사변형은 직사각 형이다.
- ③ 등변사다리꼴의 두 대각선은 길이가 같다.
- ④ 두 대각선이 서로 수직인 평행사변형은 마름모 이다
- ⑤ 두 대각선이 서로 다른 것을 수직이등분하는 평 행사변형은 마름모이다.

해설

① 두 대각선이 서로 다른 것을 이등분하는 사각형은 평행사변형이다.

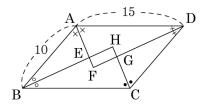
- 29. 직사각형의 집합을 A, 정사각형의 집합을 B, 사다리 꼴의 집합을 C, 평행사변형의 집합을 D라 할 때, 다음 중 포함 관계가 옳은 것은?
 [배점 5, 중상]
 - $(1) A \subset B \subset C \subset D$
 - ② $A \subset B \subset D \subset C$
 - \bigcirc D \subset B \subset A \subset C
- 4 B \subset A \subset C \subset D

 $\bigcirc B \subset A \subset D \subset C$

해설

- {사각형} ⊃ {사다리꼴} ⊃ {평행사변형} ⊃
 {직사각형}⊃ {정사각형}
- {사각형} ⊃ {사다리꼴} ⊃ {등변사다리꼴} ⊃ {직사각형} ⊃ {정사각형}

30. 평행사변형 ABCD 의 네 각의 이등분선으로 만들어진 □EFGH 에서 $\overline{AB} = 10$, $\overline{AD} = 15$, $\overline{EG} = 4$ 일 때, \overline{HF} 의 길이를 구하여라.



[배점 5, 중상]

▶ 답:

▷ 정답: 4

해설

 $\angle A + \angle B = 180^{\circ}, \ \angle C + \angle D = 180^{\circ}, \ \frac{1}{2}(\angle A + \angle A)$

$$\angle B$$
) = 90°, $\frac{1}{2}(\angle C + \angle D) = 90°$

 $\angle AEB = \angle CGD = 90^{\circ}$

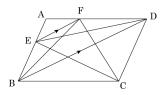
맞꼭지각으로 \angle FEH = \angle FGH = 90°

마찬가지의 방법으로 $\angle \mathrm{EHG} = \angle \mathrm{EFG} = 90\,^{\circ}$

□EFGH 는 직사각형이다.

 $\therefore \overline{EG} = \overline{HF} = 4$

31. 다음 그림의 평행사변형 ABCD 에서 $\overline{\rm BD}//\overline{\rm EF}$ 일 때, 넓이가 다른 것을 골라라.



© ∆EBC

© △FDB

□ △EFC

[배점 5, 중상]

▶ 답:

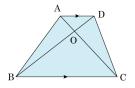
▷ 정답: ⑩

해설

 $\overline{\mathrm{BD}}\,/\!/\,\overline{\mathrm{EF}}$ 임을 이용해야 한다.

 $\triangle EBD = \triangle EBC$, $\triangle EBD = \triangle FDB = \triangle CFD$

32. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴에서 \overline{OA} : $\overline{OC}=1:3$ 이다. $\Box ABCD=64cm^2$ 일 때, $\triangle ABO$ 의 넓이를 구하여라.



[배점 5, 중상]

답:

정답: 12 cm²

해설

 $\square ABCD = \triangle AOD + \triangle DOC + \triangle OBC + \triangle ABO$ 이다.

 $\triangle AOD$ 의 넓이를 a 라고 하면, $1:3=a:\triangle DOC$, $\triangle DOC=3a$

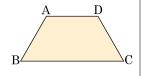
 $\triangle \mathrm{DOC} = \triangle \mathrm{ABO} = 3a$, $1:3=3a:\triangle \mathrm{BOC}$,

 $\triangle BOC = 9a$

 $\Box {\rm ABCD} = a + 3a + 3a + 9a = 16a = 64 {\rm cm}^2 \ ,$ $a = 4 {\rm cm}^2$

 $\therefore \triangle ABO = 3a = 12cm^2$.

33. 다음 그림은 \overline{AD} $//\overline{BC}$ 인 등 변사다리꼴이다. $\overline{AB} = \overline{AD} =$ $\overline{\text{CD}}$ 이고, $\overline{\text{AD}} = \frac{1}{2}\overline{\text{BC}}$ 일 때, ∠B 의 크기를 구하여라.

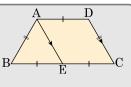


[배점 5, 중상]

▷ 정답: 60°

해설 평행하게 AE를 그

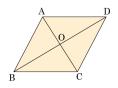
으면 □AECD 는 평행사 변형이 되고, $\overline{AD} = \frac{1}{2}\overline{BC}$ 이므로 점 E 는 \overline{BC} 의 중



점에 위치하게 된다. 그러므로 $\overline{AB} = \overline{BE} = \overline{AE}$ 이므로 △ABE 는 정삼각형이 된다.

 $\therefore \angle B = 60^{\circ}$

34. 다음 평행사변형 ABCD가 마름모가 되려면 다음 중 어떤 조건이 더 있어야 하는지 모두 골라라.



[배점 5, 상하]

② $\angle A = 90^{\circ}$

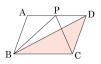
 $\overline{AC} = \overline{BD}$

 $(4)\overline{AC}\bot\overline{BD}$

 \bigcirc $\overline{AO} = \overline{BO} = \overline{CO} = \overline{DO}$

평행사변형의 이웃하는 두 변의 길이가 같거나, 두 대각선이 직교하면 마름모이다.

35. 다음 그림과 같이 □ABCD가 평행사변형이고 $\triangle PBC = 14cm^2$ 일 때, 어두운 부분의 넓이는?



[배점 5, 상하]

 \bigcirc 13cm²

 $214 \mathrm{cm}^2$

 315cm^2

 $4 16 \text{cm}^2$

 \bigcirc 17cm²

 \triangle PBC와 \triangle DBC는 밑변의 길이 \overline{BC} 와 높이가 같으므로

 $\triangle DBC = \triangle PBC = 14(cm^2)$ 이다.